Abstract

A one-dimensional photonic-crystal (PC) cavity with nanoholes is proposed for extreme enhancement of terahertz (THz) electric fields using the electromagnetic (EM) boundary conditions. Both slot (for the perpendicular component of the electric displacement field) and anti-slot (for the parallel component of the electric field) effects contribute to the considerable field enhancement. The EM energy density can be enhanced by a factor of (εh/εl)2 in the high-refractive-index material, where εh and εl are the permittivities of the high- and low-refractive-index materials, respectively. Correspondingly, the mode volume can be reduced by a factor of 288, compared with a conventional THz PC cavity, and is three orders of magnitude smaller than the diffraction limitation. Further, the proposed THz cavity design also supports modes with high quality factors (Q) > 104, which induces strong Purcell enhancement by a factor exceeding 106. Our THz cavity design is feasible and attractive for experimental demonstrations, because the semiconductor layer in which the EM is maximized can naturally be filled with quantum-engineered active materials. Thus, the proposed design can possibly be used to develop room-temperature coherent THz radiation sources.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness

A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa
Opt. Express 16(1) 448-455 (2008)

Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk
Opt. Express 18(11) 11230-11241 (2010)

Highly efficient collection for photon emission enhanced by the hybrid photonic-plasmonic cavity

Guixin Zhu and Qinghua Liao
Opt. Express 26(24) 31391-31401 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
    [Crossref]
  2. S. Fan, Y. He, B. S. Ung, and E. Pickwell-Macpherson, “The growth of biomedical terahertz research,” J. Phys. D Appl. Phys. 47(37), 374009 (2014).
    [Crossref]
  3. E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
    [Crossref] [PubMed]
  4. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
    [Crossref]
  5. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [Crossref] [PubMed]
  6. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub‐THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
    [Crossref]
  7. C. Walther, G. Scalari, M. Beck, and J. Faist, “Purcell effect in the inductor-capacitor laser,” Opt. Lett. 36(14), 2623–2625 (2011).
    [Crossref] [PubMed]
  8. Y. Todorov, I. Sagnes, I. Abram, and C. Minot, “Purcell enhancement of spontaneous emission from quantum cascades inside mirror-grating metal cavities at THz frequencies,” Phys. Rev. Lett. 99(22), 223603 (2007).
    [Crossref] [PubMed]
  9. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  10. E. J. R. Vesseur, F. J. G. De Abajo, and A. Polman, “Broadband Purcell enhancement in plasmonic ring cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165419 (2010).
    [Crossref]
  11. Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Opt. Express 18(13), 13886–13907 (2010).
    [Crossref] [PubMed]
  12. C. Feuillet-Palma, Y. Todorov, R. Steed, A. Vasanelli, G. Biasiol, L. Sorba, and C. Sirtori, “Extremely sub-wavelength THz metal-dielectric wire microcavities,” Opt. Express 20(27), 29121–29130 (2012).
    [Crossref] [PubMed]
  13. A. Berrier, P. Albella, M. A. Poyli, R. Ulbricht, M. Bonn, J. Aizpurua, and J. G. Rivas, “Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators,” Opt. Express 20(5), 5052–5060 (2012).
    [Crossref] [PubMed]
  14. D. W. Vogt and R. Leonhardt, “High resolution terahertz spectroscopy of a whispering gallery mode bubble resonator using Hilbert analysis,” Opt. Express 25(14), 16860–16866 (2017).
    [Crossref] [PubMed]
  15. D. W. Vogt and R. Leonhardt, “Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide,” Opt. Lett. 42(21), 4359–4362 (2017).
    [Crossref] [PubMed]
  16. D. W. Vogt and R. Leonhardt, “Ultra-high Q terahertz whispering-gallery modes in a silicon resonator,” APL Photonics 3(5), 051702 (2018).
    [Crossref]
  17. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  18. C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform,” Opt. Express 15(11), 6846–6856 (2007).
    [Crossref] [PubMed]
  19. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
    [Crossref] [PubMed]
  20. Q. Lu, F.-J. Shu, and C.-L. Zou, “Dielectric bow-tie nanocavity,” Opt. Lett. 38(24), 5311–5314 (2013).
    [Crossref] [PubMed]
  21. Q. Lu, F.-J. Shu, and C.-L. Zou, “Extremely local electric field enhancement and light confinement in dielectric waveguide,” IEEE. Photonic. Tech. L 26(14), 1426–1429 (2014).
    [Crossref]
  22. S. Hu and S. M. Weiss, “Design of photonic crystal cavities for extreme light concentration,” ACS Photonics 3(9), 1647–1653 (2016).
    [Crossref]
  23. H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
    [Crossref] [PubMed]
  24. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21(7), 1379–1386 (2004).
    [Crossref]
  25. C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
    [Crossref]
  26. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [Crossref]
  27. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref] [PubMed]
  28. D. Yang, F. Gao, Q. T. Cao, C. Wang, Y. Ji, and Y. F. Xiao, “Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities,” Photon. Res. 6(2), 99–108 (2018).
    [Crossref]
  29. R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  30. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  31. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
    [Crossref] [PubMed]
  32. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [Crossref]
  33. J. J. Mock, R. T. Hill, Y. J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12(4), 1757–1764 (2012).
    [Crossref] [PubMed]
  34. X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
    [Crossref] [PubMed]
  35. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals: Molding the Flow of Light,” (Princeton University Press, Princeton, NJ, 2011).
  36. T. Grange, G. Hornecker, D. Hunger, J. P. Poizat, J. M. Gérard, P. Senellart, and A. Auffèves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114(19), 193601 (2015).
    [Crossref] [PubMed]
  37. H. Choi, D. Zhu, Y. Yoon, and D. Englund, “Indistinguishable Single-Photon Sources with Dissipative Emitter Coupled to Cascaded Cavities,” arXiv Prepr. arXiv1809.01645v (2018).
  38. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
    [Crossref] [PubMed]
  39. W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle based Terahertz metamaterial sensors: Mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
    [Crossref]
  40. G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” J. Opt. 20(7), 073004 (2018).
    [Crossref]
  41. I. Y. Chestnov, V. A. Shahnazaryan, A. P. Alodjants, and I. A. Shelykh, “Terahertz lasing in ensemble of asymmetric quantum dots,” ACS Photonics 4(11), 2726–2737 (2017).
    [Crossref]

2018 (3)

D. W. Vogt and R. Leonhardt, “Ultra-high Q terahertz whispering-gallery modes in a silicon resonator,” APL Photonics 3(5), 051702 (2018).
[Crossref]

D. Yang, F. Gao, Q. T. Cao, C. Wang, Y. Ji, and Y. F. Xiao, “Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities,” Photon. Res. 6(2), 99–108 (2018).
[Crossref]

G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” J. Opt. 20(7), 073004 (2018).
[Crossref]

2017 (4)

I. Y. Chestnov, V. A. Shahnazaryan, A. P. Alodjants, and I. A. Shelykh, “Terahertz lasing in ensemble of asymmetric quantum dots,” ACS Photonics 4(11), 2726–2737 (2017).
[Crossref]

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
[Crossref] [PubMed]

D. W. Vogt and R. Leonhardt, “High resolution terahertz spectroscopy of a whispering gallery mode bubble resonator using Hilbert analysis,” Opt. Express 25(14), 16860–16866 (2017).
[Crossref] [PubMed]

D. W. Vogt and R. Leonhardt, “Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide,” Opt. Lett. 42(21), 4359–4362 (2017).
[Crossref] [PubMed]

2016 (2)

S. Hu and S. M. Weiss, “Design of photonic crystal cavities for extreme light concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle based Terahertz metamaterial sensors: Mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

2015 (1)

T. Grange, G. Hornecker, D. Hunger, J. P. Poizat, J. M. Gérard, P. Senellart, and A. Auffèves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114(19), 193601 (2015).
[Crossref] [PubMed]

2014 (2)

Q. Lu, F.-J. Shu, and C.-L. Zou, “Extremely local electric field enhancement and light confinement in dielectric waveguide,” IEEE. Photonic. Tech. L 26(14), 1426–1429 (2014).
[Crossref]

S. Fan, Y. He, B. S. Ung, and E. Pickwell-Macpherson, “The growth of biomedical terahertz research,” J. Phys. D Appl. Phys. 47(37), 374009 (2014).
[Crossref]

2013 (3)

D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
[Crossref]

Q. Lu, F.-J. Shu, and C.-L. Zou, “Dielectric bow-tie nanocavity,” Opt. Lett. 38(24), 5311–5314 (2013).
[Crossref] [PubMed]

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
[Crossref] [PubMed]

2012 (4)

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

J. J. Mock, R. T. Hill, Y. J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12(4), 1757–1764 (2012).
[Crossref] [PubMed]

C. Feuillet-Palma, Y. Todorov, R. Steed, A. Vasanelli, G. Biasiol, L. Sorba, and C. Sirtori, “Extremely sub-wavelength THz metal-dielectric wire microcavities,” Opt. Express 20(27), 29121–29130 (2012).
[Crossref] [PubMed]

A. Berrier, P. Albella, M. A. Poyli, R. Ulbricht, M. Bonn, J. Aizpurua, and J. G. Rivas, “Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators,” Opt. Express 20(5), 5052–5060 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (3)

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

E. J. R. Vesseur, F. J. G. De Abajo, and A. Polman, “Broadband Purcell enhancement in plasmonic ring cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165419 (2010).
[Crossref]

Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Opt. Express 18(13), 13886–13907 (2010).
[Crossref] [PubMed]

2009 (3)

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub‐THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

2008 (1)

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2007 (3)

2005 (2)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

2004 (3)

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

1999 (1)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

1946 (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Abram, I.

Y. Todorov, I. Sagnes, I. Abram, and C. Minot, “Purcell enhancement of spontaneous emission from quantum cascades inside mirror-grating metal cavities at THz frequencies,” Phys. Rev. Lett. 99(22), 223603 (2007).
[Crossref] [PubMed]

Ahn, J. S.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
[Crossref] [PubMed]

Ahn, K. J.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
[Crossref] [PubMed]

Aizpurua, J.

Albella, P.

Almeida, V. R.

Alodjants, A. P.

I. Y. Chestnov, V. A. Shahnazaryan, A. P. Alodjants, and I. A. Shelykh, “Terahertz lasing in ensemble of asymmetric quantum dots,” ACS Photonics 4(11), 2726–2737 (2017).
[Crossref]

Andrews, A. M.

Auffèves, A.

T. Grange, G. Hornecker, D. Hunger, J. P. Poizat, J. M. Gérard, P. Senellart, and A. Auffèves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114(19), 193601 (2015).
[Crossref] [PubMed]

Barrios, C. A.

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Beck, M.

Beere, H.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub‐THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Berrier, A.

Biasiol, G.

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Bonn, M.

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Cao, Q. T.

Casquel, R.

Chen, L.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

Chen, X.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
[Crossref] [PubMed]

Chestnov, I. Y.

I. Y. Chestnov, V. A. Shahnazaryan, A. P. Alodjants, and I. A. Shelykh, “Terahertz lasing in ensemble of asymmetric quantum dots,” ACS Photonics 4(11), 2726–2737 (2017).
[Crossref]

Chilkoti, A.

J. J. Mock, R. T. Hill, Y. J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12(4), 1757–1764 (2012).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Choi, H.

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
[Crossref] [PubMed]

Ciracì, C.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref] [PubMed]

Colombelli, R.

Dai, J.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

De Abajo, F. J. G.

E. J. R. Vesseur, F. J. G. De Abajo, and A. Polman, “Broadband Purcell enhancement in plasmonic ring cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165419 (2010).
[Crossref]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Englund, D.

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
[Crossref] [PubMed]

Faist, J.

C. Walther, G. Scalari, M. Beck, and J. Faist, “Purcell effect in the inductor-capacitor laser,” Opt. Lett. 36(14), 2623–2625 (2011).
[Crossref] [PubMed]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub‐THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Fan, S.

S. Fan, Y. He, B. S. Ung, and E. Pickwell-Macpherson, “The growth of biomedical terahertz research,” J. Phys. D Appl. Phys. 47(37), 374009 (2014).
[Crossref]

Fernández-Domínguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Feuillet-Palma, C.

Fischer, M.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub‐THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Fitzgerald, A. J.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref] [PubMed]

Gao, F.

Genov, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Gérard, J. M.

T. Grange, G. Hornecker, D. Hunger, J. P. Poizat, J. M. Gérard, P. Senellart, and A. Auffèves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114(19), 193601 (2015).
[Crossref] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Grange, T.

T. Grange, G. Hornecker, D. Hunger, J. P. Poizat, J. M. Gérard, P. Senellart, and A. Auffèves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114(19), 193601 (2015).
[Crossref] [PubMed]

Griol, A.

Grischkowsky, D.

Gylfason, K. B.

He, Y.

S. Fan, Y. He, B. S. Ung, and E. Pickwell-Macpherson, “The growth of biomedical terahertz research,” J. Phys. D Appl. Phys. 47(37), 374009 (2014).
[Crossref]

Heuck, M.

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
[Crossref] [PubMed]

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

J. J. Mock, R. T. Hill, Y. J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12(4), 1757–1764 (2012).
[Crossref] [PubMed]

Holgado, M.

Hornecker, G.

T. Grange, G. Hornecker, D. Hunger, J. P. Poizat, J. M. Gérard, P. Senellart, and A. Auffèves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114(19), 193601 (2015).
[Crossref] [PubMed]

Hu, S.

S. Hu and S. M. Weiss, “Design of photonic crystal cavities for extreme light concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

Hunger, D.

T. Grange, G. Hornecker, D. Hunger, J. P. Poizat, J. M. Gérard, P. Senellart, and A. Auffèves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114(19), 193601 (2015).
[Crossref] [PubMed]

Im, H.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
[Crossref] [PubMed]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Ji, Y.

Käll, M.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Kim, D. S.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
[Crossref] [PubMed]

Kim, Y. J.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
[Crossref] [PubMed]

Klang, P.

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Krauss, T. F.

G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” J. Opt. 20(7), 073004 (2018).
[Crossref]

Leonhardt, R.

Lindquist, N. C.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
[Crossref] [PubMed]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Lipson, M.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[Crossref] [PubMed]

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Loncar, M.

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Lu, Q.

Q. Lu, F.-J. Shu, and C.-L. Zou, “Extremely local electric field enhancement and light confinement in dielectric waveguide,” IEEE. Photonic. Tech. L 26(14), 1426–1429 (2014).
[Crossref]

Q. Lu, F.-J. Shu, and C.-L. Zou, “Dielectric bow-tie nanocavity,” Opt. Lett. 38(24), 5311–5314 (2013).
[Crossref] [PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Ma, Y.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle based Terahertz metamaterial sensors: Mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Maier, S. A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Manolatou, C.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

Minot, C.

Y. Todorov, I. Sagnes, I. Abram, and C. Minot, “Purcell enhancement of spontaneous emission from quantum cascades inside mirror-grating metal cavities at THz frequencies,” Phys. Rev. Lett. 99(22), 223603 (2007).
[Crossref] [PubMed]

Mittleman, D. M.

D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
[Crossref]

Mock, J. J.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

J. J. Mock, R. T. Hill, Y. J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12(4), 1757–1764 (2012).
[Crossref] [PubMed]

Oh, S. H.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Park, H. R.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
[Crossref] [PubMed]

Park, N.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
[Crossref] [PubMed]

Pelton, M.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
[Crossref] [PubMed]

Pendry, J. B.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Pepper, M.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref] [PubMed]

Piao, X.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
[Crossref] [PubMed]

Pickwell, E.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref] [PubMed]

Pickwell-Macpherson, E.

S. Fan, Y. He, B. S. Ung, and E. Pickwell-Macpherson, “The growth of biomedical terahertz research,” J. Phys. D Appl. Phys. 47(37), 374009 (2014).
[Crossref]

Pile, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Pitruzzello, G.

G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” J. Opt. 20(7), 073004 (2018).
[Crossref]

Poizat, J. P.

T. Grange, G. Hornecker, D. Hunger, J. P. Poizat, J. M. Gérard, P. Senellart, and A. Auffèves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114(19), 193601 (2015).
[Crossref] [PubMed]

Polman, A.

E. J. R. Vesseur, F. J. G. De Abajo, and A. Polman, “Broadband Purcell enhancement in plasmonic ring cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165419 (2010).
[Crossref]

Poyli, M. A.

Purcell, E.

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Quan, Q.

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Ritchie, D.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub‐THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Rivas, J. G.

Robinson, J. T.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Sagnes, I.

Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Opt. Express 18(13), 13886–13907 (2010).
[Crossref] [PubMed]

Y. Todorov, I. Sagnes, I. Abram, and C. Minot, “Purcell enhancement of spontaneous emission from quantum cascades inside mirror-grating metal cavities at THz frequencies,” Phys. Rev. Lett. 99(22), 223603 (2007).
[Crossref] [PubMed]

Sánchez, B.

Scalari, G.

C. Walther, G. Scalari, M. Beck, and J. Faist, “Purcell effect in the inductor-capacitor laser,” Opt. Lett. 36(14), 2623–2625 (2011).
[Crossref] [PubMed]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub‐THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Senellart, P.

T. Grange, G. Hornecker, D. Hunger, J. P. Poizat, J. M. Gérard, P. Senellart, and A. Auffèves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114(19), 193601 (2015).
[Crossref] [PubMed]

Shahnazaryan, V. A.

I. Y. Chestnov, V. A. Shahnazaryan, A. P. Alodjants, and I. A. Shelykh, “Terahertz lasing in ensemble of asymmetric quantum dots,” ACS Photonics 4(11), 2726–2737 (2017).
[Crossref]

Shelykh, I. A.

I. Y. Chestnov, V. A. Shahnazaryan, A. P. Alodjants, and I. A. Shelykh, “Terahertz lasing in ensemble of asymmetric quantum dots,” ACS Photonics 4(11), 2726–2737 (2017).
[Crossref]

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Sherwin, M. S.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

Shu, F.-J.

Q. Lu, F.-J. Shu, and C.-L. Zou, “Extremely local electric field enhancement and light confinement in dielectric waveguide,” IEEE. Photonic. Tech. L 26(14), 1426–1429 (2014).
[Crossref]

Q. Lu, F.-J. Shu, and C.-L. Zou, “Dielectric bow-tie nanocavity,” Opt. Lett. 38(24), 5311–5314 (2013).
[Crossref] [PubMed]

Sirtori, C.

Smith, D. R.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

J. J. Mock, R. T. Hill, Y. J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12(4), 1757–1764 (2012).
[Crossref] [PubMed]

Sohlström, H.

Sorba, L.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Steed, R.

Strasser, G.

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Teissier, J.

Terazzi, R.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub‐THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Todorov, Y.

Tosetto, L.

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Tsai, Y. J.

J. J. Mock, R. T. Hill, Y. J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12(4), 1757–1764 (2012).
[Crossref] [PubMed]

Ulbricht, R.

Ung, B. S.

S. Fan, Y. He, B. S. Ung, and E. Pickwell-Macpherson, “The growth of biomedical terahertz research,” J. Phys. D Appl. Phys. 47(37), 374009 (2014).
[Crossref]

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Vasanelli, A.

Vesseur, E. J. R.

E. J. R. Vesseur, F. J. G. De Abajo, and A. Polman, “Broadband Purcell enhancement in plasmonic ring cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165419 (2010).
[Crossref]

Vogt, D. W.

Wallace, V. P.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref] [PubMed]

Walther, C.

C. Walther, G. Scalari, M. Beck, and J. Faist, “Purcell effect in the inductor-capacitor laser,” Opt. Lett. 36(14), 2623–2625 (2011).
[Crossref] [PubMed]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub‐THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Wang, C.

D. Yang, F. Gao, Q. T. Cao, C. Wang, Y. Ji, and Y. F. Xiao, “Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities,” Photon. Res. 6(2), 99–108 (2018).
[Crossref]

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle based Terahertz metamaterial sensors: Mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Weiss, S. M.

S. Hu and S. M. Weiss, “Design of photonic crystal cavities for extreme light concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

Xiao, Y. F.

Xie, L.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle based Terahertz metamaterial sensors: Mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Xu, H.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Xu, Q.

Xu, W.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle based Terahertz metamaterial sensors: Mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Xu, X.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle based Terahertz metamaterial sensors: Mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Yang, D.

Ye, Z.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle based Terahertz metamaterial sensors: Mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Yee, C. M.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

Ying, Y.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle based Terahertz metamaterial sensors: Mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, J.

Zhang, W.

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhu, J.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle based Terahertz metamaterial sensors: Mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Zou, C.-L.

Q. Lu, F.-J. Shu, and C.-L. Zou, “Extremely local electric field enhancement and light confinement in dielectric waveguide,” IEEE. Photonic. Tech. L 26(14), 1426–1429 (2014).
[Crossref]

Q. Lu, F.-J. Shu, and C.-L. Zou, “Dielectric bow-tie nanocavity,” Opt. Lett. 38(24), 5311–5314 (2013).
[Crossref] [PubMed]

ACS Photonics (3)

S. Hu and S. M. Weiss, “Design of photonic crystal cavities for extreme light concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle based Terahertz metamaterial sensors: Mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

I. Y. Chestnov, V. A. Shahnazaryan, A. P. Alodjants, and I. A. Shelykh, “Terahertz lasing in ensemble of asymmetric quantum dots,” ACS Photonics 4(11), 2726–2737 (2017).
[Crossref]

APL Photonics (1)

D. W. Vogt and R. Leonhardt, “Ultra-high Q terahertz whispering-gallery modes in a silicon resonator,” APL Photonics 3(5), 051702 (2018).
[Crossref]

Appl. Phys. Lett. (3)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

IEEE. Photonic. Tech. L (1)

Q. Lu, F.-J. Shu, and C.-L. Zou, “Extremely local electric field enhancement and light confinement in dielectric waveguide,” IEEE. Photonic. Tech. L 26(14), 1426–1429 (2014).
[Crossref]

J. Opt. (1)

G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” J. Opt. 20(7), 073004 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

S. Fan, Y. He, B. S. Ung, and E. Pickwell-Macpherson, “The growth of biomedical terahertz research,” J. Phys. D Appl. Phys. 47(37), 374009 (2014).
[Crossref]

Laser Photonics Rev. (1)

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub‐THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Nano Lett. (1)

J. J. Mock, R. T. Hill, Y. J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12(4), 1757–1764 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4(1), 2361 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
[Crossref]

Nature (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (5)

Photon. Res. (1)

Phys. Med. Biol. (1)

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref] [PubMed]

Phys. Rev. (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B Condens. Matter Mater. Phys. (1)

E. J. R. Vesseur, F. J. G. De Abajo, and A. Polman, “Broadband Purcell enhancement in plasmonic ring cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165419 (2010).
[Crossref]

Phys. Rev. Lett. (5)

Y. Todorov, I. Sagnes, I. Abram, and C. Minot, “Purcell enhancement of spontaneous emission from quantum cascades inside mirror-grating metal cavities at THz frequencies,” Phys. Rev. Lett. 99(22), 223603 (2007).
[Crossref] [PubMed]

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
[Crossref] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

T. Grange, G. Hornecker, D. Hunger, J. P. Poizat, J. M. Gérard, P. Senellart, and A. Auffèves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114(19), 193601 (2015).
[Crossref] [PubMed]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

Science (1)

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Other (2)

H. Choi, D. Zhu, Y. Yoon, and D. Englund, “Indistinguishable Single-Photon Sources with Dissipative Emitter Coupled to Cascaded Cavities,” arXiv Prepr. arXiv1809.01645v (2018).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals: Molding the Flow of Light,” (Princeton University Press, Princeton, NJ, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of proposed THz PC cavities with nanoholes. In the type-1 structure, an elliptical air hole with a convex surface is inserted into the cavity center. In the type-2 structure, two silicon holes are shifted in opposite directions on the y-axis, yielding a remaining air hole with a concave surface. 2-D and 1-D distributions of |E| in (b) conventional, (c) type-1, and (d) type-2 THz PC cavities. Right panels: Enlarged views of center |E| field distributions of conventional, type-1, and type-2 cavities and air holes in type-1 and type-2 cavities.
Fig. 2
Fig. 2 (a) Quality factor (Q), (b) normalized mode volume (V/V0), (c) resonant wavelength (λ), and (d) Purcell factor (Fp) versus longer radius ra for both proposed THz PC cavities, where ra > 0 for the type-1 structure and ra < 0 for the type-2 structure.
Fig. 3
Fig. 3 (a) W(x, 0)-field and (b) W(0, y)-field distributions in type-1 structure for different ra. (c) Enlarged view of W(0, y)-field distribution (yellow region) in (b). (b, insets): 2-D |E| and |D| distributions. (c, insets): 2-D W distributions with ra = 100 and 500 nm, respectively.
Fig. 4
Fig. 4 (a) W(x, 0)-field and (b) W(0, y)-field distributions in type-2 structure for different ra. (c) Enlarged view of W(0, y)-field distribution (yellow region) in (b). (b, inset) 2-D W distributions with ra = 500 nm.
Fig. 5
Fig. 5 (a)−(c) 1-D |E|-field, |D|-field, and W-field distributions in x direction in THz PC cavities with two horizontally coupled air holes. Left inset in (a) shows the schematic of two coupled air holes separated by w; Right inset in (a) shows the 2-D |E|-field distribution. Inset in (b) show 2-D |D|-field distribution. Inset in (c) shows the 2-D W-field distribution. (d)−(f) Q-factor, V/V0, and Fp as functions of hole number. Inset in (d) shows 2-D W-field distribution with five horizontally coupled air holes. Scale bars (red lines) in the insets of (a)-(d) are 200 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V= all ε(r)| E(r) | 2 d 3 r max[ ε(r) | E(r) | 2 ] .
F p = 3 4 π 2 ( λ n ) 3 ( Q V ),
D A,h = D A,l ,
E A,l = ε h ε l E A,h ,
E B,h = E B,l ,
D B,h = ε h ε l D B,l .