Abstract

We present modeling and measurements of flattop amplification of a laser pulse train in a diode pumped Nd:YLF system. We establish a theoretical model, accounting for the transverse Gaussian shape of an amplified laser beam, in order to explain remaining slopes in the pulse train energy. The influence of the transverse Gaussian shape on the train’s flatness has been experimentally verified. Based on the model we are able to increase the total amplification of a long train of infrared seed beam in the drive laser system at the Fermilab Accelerator Science and Technology facility. The single-pass amplifier improvements resulted in a gain of ∼7 with flat output pulse train for up to 1000 seed pulses.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photoinjector drive laser of the FLASH FEL

Ingo Will, Horst I. Templin, Siegfried Schreiber, and Wolfgang Sandner
Opt. Express 19(24) 23770-23781 (2011)

X-ray free-electron lasers—present and future capabilities [Invited]

John N. Galayda, John Arthur, Daniel F. Ratner, and William E. White
J. Opt. Soc. Am. B 27(11) B106-B118 (2010)

Disk Yb:KGW amplifier of profiled pulses of laser driver for electron photoinjector

E. I. Gacheva, V. V. Zelenogorskii, A. V. Andrianov, M. Krasilnikov, M. A. Martyanov, S. Yu. Mironov, A. K. Potemkin, E. M. Syresin, F. Stephan, and E. A. Khazanov
Opt. Express 23(8) 9627-9639 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Bucksbaum, “The future of attosecond spectroscopy,” Science 317, 766–769 (2007).
    [Crossref] [PubMed]
  2. I. Will, A. Liero, D. Mertins, and W. Sandner, “Feedback-Stabilized Nd : YLF Amplifier System for Generation of Picosecond Pulse Trains of an Exactly Rectangular Envelope,” IEEE J. Quantum Electron. 34, 2020–2028 (1998).
    [Crossref]
  3. I. Will, H. I. Templin, S. Schreiber, and W. Sandner, “Photoinjector drive laser of the FLASH FEL,” Opt. Express 19, 23770–23781 (2011).
    [Crossref] [PubMed]
  4. T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2, 599–604 (2008).
    [Crossref]
  5. M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
    [Crossref]
  6. S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
    [Crossref]
  7. D. Mihalcea, A. Murokh, P. Piot, and J. Ruan, “Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering,” Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interactions with Mater. Atoms 402, 212–215 (2017).
    [Crossref]
  8. J. Li, R. Tikhoplav, and A. C. Melissinos, “Performance of the upgraded laser system for the Fermilab-NIU photoinjector,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 564, 57–65 (2006).
    [Crossref]
  9. “Proposal for an Accelerator R&D User Facility at Fermilab’s Advanced Superconducting Test Accelerator (ASTA), Fermilab-TM-2568,” Tech. Rep. October (2013).
  10. G. J. Doster and R. Feeler, “Laser Pulse Train Amplification with PowerPULSE Modules,” (2011).
  11. A. Hanuka and L. Schächter, “Optimized operation of dielectric laser accelerators: Multibunch,” Phys. Rev. Accel. Beams 21, 064402 (2018).
    [Crossref]

2018 (1)

A. Hanuka and L. Schächter, “Optimized operation of dielectric laser accelerators: Multibunch,” Phys. Rev. Accel. Beams 21, 064402 (2018).
[Crossref]

2017 (2)

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

D. Mihalcea, A. Murokh, P. Piot, and J. Ruan, “Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering,” Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interactions with Mater. Atoms 402, 212–215 (2017).
[Crossref]

2011 (1)

2009 (1)

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

2008 (1)

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2, 599–604 (2008).
[Crossref]

2007 (1)

P. H. Bucksbaum, “The future of attosecond spectroscopy,” Science 317, 766–769 (2007).
[Crossref] [PubMed]

2006 (1)

J. Li, R. Tikhoplav, and A. C. Melissinos, “Performance of the upgraded laser system for the Fermilab-NIU photoinjector,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 564, 57–65 (2006).
[Crossref]

1998 (1)

I. Will, A. Liero, D. Mertins, and W. Sandner, “Feedback-Stabilized Nd : YLF Amplifier System for Generation of Picosecond Pulse Trains of an Exactly Rectangular Envelope,” IEEE J. Quantum Electron. 34, 2020–2028 (1998).
[Crossref]

Antipov, S.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Baer, C. R.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2, 599–604 (2008).
[Crossref]

Batteiger, V.

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Broemmelsiek, D.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Bruhwiler, D.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Bucksbaum, P. H.

P. H. Bucksbaum, “The future of attosecond spectroscopy,” Science 317, 766–769 (2007).
[Crossref] [PubMed]

Doster, G. J.

G. J. Doster and R. Feeler, “Laser Pulse Train Amplification with PowerPULSE Modules,” (2011).

Edstrom, D.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Feeler, R.

G. J. Doster and R. Feeler, “Laser Pulse Train Amplification with PowerPULSE Modules,” (2011).

Gingras, G.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2, 599–604 (2008).
[Crossref]

Gohle, C.

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Haas, M.

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Hänsch, T. W.

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Hanuka, A.

A. Hanuka and L. Schächter, “Optimized operation of dielectric laser accelerators: Multibunch,” Phys. Rev. Accel. Beams 21, 064402 (2018).
[Crossref]

Harms, E.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Hashimoto, S.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2, 599–604 (2008).
[Crossref]

Herrmann, M.

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Jentschura, U. D.

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Keller, U.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2, 599–604 (2008).
[Crossref]

Knünz, S.

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Kolachevsky, N.

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Kottmann, F.

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Lebedev, V.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Leibfried, D.

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Leibfritz, J.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Li, J.

J. Li, R. Tikhoplav, and A. C. Melissinos, “Performance of the upgraded laser system for the Fermilab-NIU photoinjector,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 564, 57–65 (2006).
[Crossref]

Liero, A.

I. Will, A. Liero, D. Mertins, and W. Sandner, “Feedback-Stabilized Nd : YLF Amplifier System for Generation of Picosecond Pulse Trains of an Exactly Rectangular Envelope,” IEEE J. Quantum Electron. 34, 2020–2028 (1998).
[Crossref]

Marchese, S. V.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2, 599–604 (2008).
[Crossref]

Melissinos, A. C.

J. Li, R. Tikhoplav, and A. C. Melissinos, “Performance of the upgraded laser system for the Fermilab-NIU photoinjector,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 564, 57–65 (2006).
[Crossref]

Mertins, D.

I. Will, A. Liero, D. Mertins, and W. Sandner, “Feedback-Stabilized Nd : YLF Amplifier System for Generation of Picosecond Pulse Trains of an Exactly Rectangular Envelope,” IEEE J. Quantum Electron. 34, 2020–2028 (1998).
[Crossref]

Mihalcea, D.

D. Mihalcea, A. Murokh, P. Piot, and J. Ruan, “Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering,” Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interactions with Mater. Atoms 402, 212–215 (2017).
[Crossref]

Murokh, A.

D. Mihalcea, A. Murokh, P. Piot, and J. Ruan, “Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering,” Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interactions with Mater. Atoms 402, 212–215 (2017).
[Crossref]

Nagaitsev, S.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Ozawa, A.

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Park, C.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Piekarz, H.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Piot, P.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

D. Mihalcea, A. Murokh, P. Piot, and J. Ruan, “Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering,” Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interactions with Mater. Atoms 402, 212–215 (2017).
[Crossref]

Prebys, E.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Romanov, A.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Ruan, J.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

D. Mihalcea, A. Murokh, P. Piot, and J. Ruan, “Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering,” Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interactions with Mater. Atoms 402, 212–215 (2017).
[Crossref]

Saathoff, G.

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Sandner, W.

I. Will, H. I. Templin, S. Schreiber, and W. Sandner, “Photoinjector drive laser of the FLASH FEL,” Opt. Express 19, 23770–23781 (2011).
[Crossref] [PubMed]

I. Will, A. Liero, D. Mertins, and W. Sandner, “Feedback-Stabilized Nd : YLF Amplifier System for Generation of Picosecond Pulse Trains of an Exactly Rectangular Envelope,” IEEE J. Quantum Electron. 34, 2020–2028 (1998).
[Crossref]

Schächter, L.

A. Hanuka and L. Schächter, “Optimized operation of dielectric laser accelerators: Multibunch,” Phys. Rev. Accel. Beams 21, 064402 (2018).
[Crossref]

Schreiber, S.

Schüssler, H. A.

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Sen, T.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Shiltsev, V.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Stancari, G.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Südmeyer, T.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2, 599–604 (2008).
[Crossref]

Templin, H. I.

Thangaraj, C.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Thurman-Keup, R.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Tikhoplav, R.

J. Li, R. Tikhoplav, and A. C. Melissinos, “Performance of the upgraded laser system for the Fermilab-NIU photoinjector,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 564, 57–65 (2006).
[Crossref]

Udem, T.

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Valishev, A.

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Will, I.

I. Will, H. I. Templin, S. Schreiber, and W. Sandner, “Photoinjector drive laser of the FLASH FEL,” Opt. Express 19, 23770–23781 (2011).
[Crossref] [PubMed]

I. Will, A. Liero, D. Mertins, and W. Sandner, “Feedback-Stabilized Nd : YLF Amplifier System for Generation of Picosecond Pulse Trains of an Exactly Rectangular Envelope,” IEEE J. Quantum Electron. 34, 2020–2028 (1998).
[Crossref]

Witzel, B.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2, 599–604 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

I. Will, A. Liero, D. Mertins, and W. Sandner, “Feedback-Stabilized Nd : YLF Amplifier System for Generation of Picosecond Pulse Trains of an Exactly Rectangular Envelope,” IEEE J. Quantum Electron. 34, 2020–2028 (1998).
[Crossref]

J. Instrumentation (1)

S. Antipov, D. Broemmelsiek, D. Bruhwiler, D. Edstrom, E. Harms, V. Lebedev, J. Leibfritz, S. Nagaitsev, C. Park, H. Piekarz, P. Piot, E. Prebys, A. Romanov, J. Ruan, T. Sen, G. Stancari, C. Thangaraj, R. Thurman-Keup, A. Valishev, and V. Shiltsev, “IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program,” J. Instrumentation 12, T03002 (2017).
[Crossref]

Nat. Photonics (1)

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2, 599–604 (2008).
[Crossref]

Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. (1)

J. Li, R. Tikhoplav, and A. C. Melissinos, “Performance of the upgraded laser system for the Fermilab-NIU photoinjector,” Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 564, 57–65 (2006).
[Crossref]

Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interactions with Mater. Atoms (1)

D. Mihalcea, A. Murokh, P. Piot, and J. Ruan, “Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering,” Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interactions with Mater. Atoms 402, 212–215 (2017).
[Crossref]

Opt. Express (1)

Phys. Rev. A (1)

M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1 S –2 S transition in singly ionized helium,” Phys. Rev. A 79, 052505 (2009).
[Crossref]

Phys. Rev. Accel. Beams (1)

A. Hanuka and L. Schächter, “Optimized operation of dielectric laser accelerators: Multibunch,” Phys. Rev. Accel. Beams 21, 064402 (2018).
[Crossref]

Science (1)

P. H. Bucksbaum, “The future of attosecond spectroscopy,” Science 317, 766–769 (2007).
[Crossref] [PubMed]

Other (2)

“Proposal for an Accelerator R&D User Facility at Fermilab’s Advanced Superconducting Test Accelerator (ASTA), Fermilab-TM-2568,” Tech. Rep. October (2013).

G. J. Doster and R. Feeler, “Laser Pulse Train Amplification with PowerPULSE Modules,” (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematics of the experimental optical layout: (a) Seed laser train macro-pulse (1 ms) consists of 1000 pulses spaced at 333 ns. (b) Seven stages of amplification increase the infrared seed beam energy for higher ultraviolet pulse energies.
Fig. 2
Fig. 2 (a) Seed laser profile. The beam’s RMS radius is 0.08 cm. (b) Long delay time (τD) between the seed laser train τS = 333 μs (green) and the pump diode (pink) causes negative slope. (c) Short delay between the seed and pump lasers causes positive slope. Flattened peak can never be achieved by adjusting the diode trigger delay for long train.
Fig. 3
Fig. 3 Output energy versus time for a train of 1000 seed laser pulses, as captured by the oscilloscope. At the beginning of the train (point 1) there is a negative slope, followed by a curvature (point 2), and a steady state region (point 3) is obtained towards the end of the train. Steady state flat output for the whole train can never be achieved for any delay time.
Fig. 4
Fig. 4 Beam’s gain for 1000 seed laser pulses as a function of time, for three different delay times, the parameters listed in Table 1 and two beam shapes: (a) Radially-uniform beam and (b) Gaussian beam. In the positive (blue) or negative (red) slopes, steady state (green) has not yet been achieved. (c) A comparison between the steady state curve (green) for the Gaussian beam from Fig. 4b, and the envelope of the measured data (green dots) from Fig. 3.
Fig. 5
Fig. 5 (a) Output energy for the Gaussian beam as a function of time, for four concentric rings, shown in the small insert; each ring yields a different type of slope, whereas their sum yields the steady state nearly flat case (green curve in 4b). (b) Input fluence (solid black) and averaged beam gain on time (dashed pink) as a function of the radial location. Although the input fluence is the highest in the beam’s center, the corresponding gain is the lowest.
Fig. 6
Fig. 6 Each ring’s output energy normalized to the first pulse’s output energy E out Ring ( t = τ D ), as a function of time provides a set of relative intensity profiles for each region: (a) for the beam core (ring 1), (b) for the intermediate region (ring 3), (c) and for the outer/edge region (ring 4). The solid curves represent the simulation results shown in Fig. 5a, and the gray dots represent the corresponding measured data. The transverse laser beam’s profile is shown in Fig. 2a, and its RMS radius is 0.08 cm.

Tables (1)

Tables Icon

Table 1 Parameters of the pump and seed lasers.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d n d t = W p ( n tot n ) n τ f
n ( t i ) = h c λ s [ E stored ( t i 1 ) E out ( t i 1 ) ] ,
E out ( τ ) = F sat L rod ln { 1 + ( exp [ E in π R s 2 F sat ] 1 ) exp [ σ n ( τ ) L rod ] }