Abstract

Recently, the visible light communication (VLC) based on LEDs has attracted much attention. In this paper, in order to realize multi-user wireless communication for VLC-based indoor hybrid networks, a network selection method based on Multi Attribute Decision Making (MADM) is proposed, which effectively combines the subjective preference of the user with the objective performance of each network. And then, a VH-based (virtual handover) multi-user access scheme is proposed, which considers different MAC and channel information. Wherein, a concept of backoff lock is presented to control the access request of the user to different channels; a concept of VH is also put forward to reduce access delay, and improve access success ratio. When VH is triggered, the user can use the backoff lock to lock the current access request and send access request to other networks. The expressions of collision probability, access delay, and access success ratio are given. Analytical and simulation results show that the proposed network selection method can effectively meet the users' requirement, and the evaluation value obtained by our method is also in accordance with the objective network performance, and that the VH-based multi-user access scheme can reduce the collision probability and the access delay, and increase the access success ratio for VLC-based hybrid networks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comprehensive Performance Analysis of IEEE 802.15.7 CSMA/CA Mechanism for Saturated Traffic

Sina Khoshabi Nobar, Kamal Adli Mehr, and Javad Musevi Niya
J. Opt. Commun. Netw. 7(2) 62-73 (2015)

IEEE 802.15.7 MAC Under Unsaturated Traffic: Performance Analysis and Queue Modeling

Kamal Adli Mehr, Sina Khoshabi Nobar, and Javad Musevi Niya
J. Opt. Commun. Netw. 7(9) 875-884 (2015)

Design and Analysis of a Visible-Light-Communication Enhanced WiFi System

Sihua Shao, Abdallah Khreishah, Moussa Ayyash, Michael B. Rahaim, Hany Elgala, Volker Jungnickel, Dominic Schulz, Thomas D. C. Little, Jonas Hilt, and Ronald Freund
J. Opt. Commun. Netw. 7(10) 960-973 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
    [Crossref]
  2. J. Vucic and K. D. Langer, “High-speed visible light communications: state-of-the-art,” in OFC/NFOEC (2012), pp. 1–3.
  3. L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Netw. 30(6), 77–83 (2016).
    [Crossref]
  4. I. C. Lu, C. H. Yeh, D. Z. Hsu, and C. W. Chow, “Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication,” IEEE Photonics J. 8(3), 1–6 (2016).
    [Crossref]
  5. Z. Li, C. Zhang, D. Sun, H. Yang, and J. Song, “A real-time high-speed visible light communication system based on RGB-LEDs,” in 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (2017), pp. 1–4.
    [Crossref]
  6. J. Kim and H. Park, “A coding scheme for visible light communication with wide dimming range,” IEEE Photonics Technol. Lett. 26(5), 465–468 (2014).
    [Crossref]
  7. I. Stefan and H. Haas, “Hybrid visible light and radio frequency communication systems,” in 2014 IEEE 80th Vehicular Technology Conference (2014), pp. 1–5.
  8. M. B. Rahaim, A. M. Vegni, and T. D. C. Little, “A hybrid radio frequency and broadcast visible light communication system,” in 2011 IEEE GLOBECOM Workshops (2011), pp. 792–796.
  9. X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63(4), 1770–1778 (2014).
    [Crossref]
  10. A. Sgora, D. D. Vergados, and P. Chatzimisios, “An access network selection algorithm for heterogeneous wireless environments,” in The IEEE symposium on Computers and Communications (2010), pp. 890–892.
  11. Q. Y. Song and A. Jamalipour, “Network selection in an integrated wireless LAN and UMTS environment using mathematical modeling and computing techniques,” IEEE Wirel. Commun. 12(3), 42–48 (2005).
    [Crossref]
  12. R. K. Goyal and S. Kaushal, “Effect of utility based functions on fuzzy-AHP based network selection in heterogenous wireless networks,” 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS) (2015), pp. 1–5.
  13. B. Hu, N. Li, and J. Zhang, “IASS: An intelligence access selection scheme for heterogeneous networks,” 2015 International Conference on Information Networking (ICOIN) (2015), pp. 531–536.
    [Crossref]
  14. N. N. Sui, D. M. Zhang, W. Zhong, and C. Wang, “Network selection for heterogeneous wireless networks based on multiple attribute decision making and evolutionary game theory,” 2016 25th Wireless and Optical Communication Conference (WOCC) (2016), pp. 1–5.
  15. L. Li, Y. X. Zhang, B. Fan, and H. Tian, “Mobility-aware load balancing scheme in hybrid VLC-LTE networks,” IEEE Commun. Lett. 20(11), 2276–2279 (2016).
    [Crossref]
  16. G. Bianchi, L. Fratta, and M. Oliveri, “Performance evaluation and enhancement of the CSMA/CA MAC protocol for 802.11 wireless LANs,” Personal, Indoor and Mobile Radio Communications, 1996. PIMRC'96., Seventh IEEE International Symposium on (1996), pp. 392–396.
  17. J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length-based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks,” IEEE/ACM Trans. Netw. 20(3), 825–836 (2012).
    [Crossref]
  18. H. Ma, X. Li, H. W. Li, P. Y. Zhang, S. X. Luo, and C. Yuan, “Dynamic optimization of IEEE 802.11 CSMA/CA based on the number of competing stations,” in 2004 IEEE International Conference on Communications (2004), pp. 191–195.
    [Crossref]
  19. W. Guo, Q. Li, H. Y. Yu, and J. H. Liu, “A parallel transmission MAC protocol in hybrid VLC-RF network,” J. Commun. 10(1), 80–85 (2015).
    [Crossref]
  20. V. V. Mai, T. C. Thang, and A. T. Pham, “CSMA/CA-based uplink MAC protocol design and analysis for hybrid VLC/Wifi networks,” in 2017 IEEE International Conference on Communications Workshops (ICC Workshops) (2017), pp. 457–462.
    [Crossref]
  21. D. O’Brien, R. Turnbull, H. L. Minh, G. Faulkner, O. Bouchet, P. Porcon, M. E. Tabach, E. Gueutier, M. Wolf, L. Grobe, and J. H. Li, “High-Speed Optical Wireless Demonstrators: Conclusions and Future Directions,” J. Lightwave Technol. 30(13), 2181–2187 (2012).
    [Crossref]
  22. T. L. Saaty, “How to make a decision: the analytic hierarchy process,” Interfaces 24(6), 19–43 (1990).
    [Crossref]
  23. Y. M. Wang, “A method based on standard and mean deviations for determining the weight coefficients of multiple attributes and its applications,” Appl. Statistics Management 22(3), 22–26 (2003).
  24. M. Lahby, L. Cherkaoui, and A. Adib, “Performance analysis of normalization techniques for network selection access in heterogeneous wireless networks,” in 2014 9th International Conference on Intelligent Systems: Theories and Applications (SITA-14) (2014), pp. 1–5.
  25. Manisha and N. P. Singh, “Optimal network selection using MADM algorithms,” in 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS) (2015), pp. 1–6.
  26. P. Chatzimisios, V. Vitsas, A. C. Bouconvalas, D. Kleftouns, and M. Tsoulfa, “Packet delay performance comparison of the IEEE 802.11 and IrDA AIr CSMA/CA protocols in high-speed wireless lans,” in Iasted International Conference on Internet and Multimedia Systems and Applications ACTA Press (2009), pp. 171–176.
  27. T. Sakurai and H. L. Vu, “MAC access delay of IEEE 802.11 DCF,” IEEE Trans. Wirel. Commun. 6(15), 1702–1710 (2007).
    [Crossref]
  28. “IEEE Standard for Information Technology - Telecommunications and information exchange between systems - Local and Metropolitan networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher Speed Physical Layer (PHY) Extension in the 2.4 GHz band,” (IEEE Std 802.11b-1999, 2000).
  29. P. Mahasukhon, M. Hempel, H. Sharif, T. Zhou, S. Ci, and H. H. Chen, “BER analysis of 802.11b networks under mobility,” in 2007 IEEE International Conference on Communications (2007), pp. 4722–4727.
    [Crossref]
  30. H. S. Mewara, M. K. Saini, and R. Kumar, “Throughput and delay analysis of access point in IEEE 802. 11b wireless LAN using opnet simulator,” Rev. Lat. Am. Enfermagem 17(1), 59–65 (2009).
    [PubMed]
  31. P. Chatzimisios and A. C. Boucouvalas, “Packet delay analysis of the advanced infrared (AIr) CSMA/CA MAC protocol in optical wireless LANs,” Int. J. Commun. Syst. 18(3), 307–331 (2005).
    [Crossref]
  32. “Advanced infrared physical layer specification (AIr-PHY) - Version 1.0” Infrared Data Association (1998).
  33. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
    [Crossref]
  34. H. L. Minh, D. O’Brien, G. Faulkner, L. B. Zeng, K. Lee, D. Jung, and Y. J. Oh, “80 Mbit/s Visible Light Communications using pre-equalized white LED,” in 2008 34th European Conference on Optical Communication (2008), Brussels, 2008, pp. 1–2.
  35. “IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Wireless Optical Communication Using Visible Light,” (IEEE Std 802.15.7–2011, 2011).
  36. H. L. Minh, Z. Ghassemlooy, D. O’Brien, and G. Faulkner, “Indoor gigabit optical wireless communications: Challenges and possibilities,” in 2010 12th International Conference on Transparent Optical Networks (2010), pp. 1–6.
  37. K. D. Langer and J. Grubor, “Recent developments in optical wireless communications using Infrared and visible light,” in 2007 9th International Conference on Transparent Optical Networks (2007), pp. 146–151.
  38. “TS 22.105 v8.2.0: Services and service capabilities (Release 8)” 3GPP, (2006).
  39. “Advanced Infrared (AIr) MAC Draft Protocol Specification–Version 1.0” Infrared Data Association, (1999).
  40. V. Vitsas and A. C. Boucouvalas, “Performance analysis of the collision avoidance procedure of the advanced infrared (AIr) CSMA/CA protocol for wireless LANs,” in Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367) (2002), pp. 1502–1506.
    [Crossref]
  41. T. Shang, T. Jiang, Y. T. Yang, P. Wang, and Y. Liu, “Multi-users network model and the corresponding networking scheme for indoor VLC systems,” Opt. Express 23(9), 11600–11618 (2015).
    [Crossref] [PubMed]

2016 (4)

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Netw. 30(6), 77–83 (2016).
[Crossref]

I. C. Lu, C. H. Yeh, D. Z. Hsu, and C. W. Chow, “Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication,” IEEE Photonics J. 8(3), 1–6 (2016).
[Crossref]

L. Li, Y. X. Zhang, B. Fan, and H. Tian, “Mobility-aware load balancing scheme in hybrid VLC-LTE networks,” IEEE Commun. Lett. 20(11), 2276–2279 (2016).
[Crossref]

2015 (2)

2014 (2)

J. Kim and H. Park, “A coding scheme for visible light communication with wide dimming range,” IEEE Photonics Technol. Lett. 26(5), 465–468 (2014).
[Crossref]

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63(4), 1770–1778 (2014).
[Crossref]

2012 (2)

D. O’Brien, R. Turnbull, H. L. Minh, G. Faulkner, O. Bouchet, P. Porcon, M. E. Tabach, E. Gueutier, M. Wolf, L. Grobe, and J. H. Li, “High-Speed Optical Wireless Demonstrators: Conclusions and Future Directions,” J. Lightwave Technol. 30(13), 2181–2187 (2012).
[Crossref]

J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length-based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks,” IEEE/ACM Trans. Netw. 20(3), 825–836 (2012).
[Crossref]

2009 (1)

H. S. Mewara, M. K. Saini, and R. Kumar, “Throughput and delay analysis of access point in IEEE 802. 11b wireless LAN using opnet simulator,” Rev. Lat. Am. Enfermagem 17(1), 59–65 (2009).
[PubMed]

2007 (1)

T. Sakurai and H. L. Vu, “MAC access delay of IEEE 802.11 DCF,” IEEE Trans. Wirel. Commun. 6(15), 1702–1710 (2007).
[Crossref]

2005 (2)

P. Chatzimisios and A. C. Boucouvalas, “Packet delay analysis of the advanced infrared (AIr) CSMA/CA MAC protocol in optical wireless LANs,” Int. J. Commun. Syst. 18(3), 307–331 (2005).
[Crossref]

Q. Y. Song and A. Jamalipour, “Network selection in an integrated wireless LAN and UMTS environment using mathematical modeling and computing techniques,” IEEE Wirel. Commun. 12(3), 42–48 (2005).
[Crossref]

2003 (1)

Y. M. Wang, “A method based on standard and mean deviations for determining the weight coefficients of multiple attributes and its applications,” Appl. Statistics Management 22(3), 22–26 (2003).

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

1990 (1)

T. L. Saaty, “How to make a decision: the analytic hierarchy process,” Interfaces 24(6), 19–43 (1990).
[Crossref]

Ayyash, M.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Bao, X.

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63(4), 1770–1778 (2014).
[Crossref]

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Bouchet, O.

Bouconvalas, A. C.

P. Chatzimisios, V. Vitsas, A. C. Bouconvalas, D. Kleftouns, and M. Tsoulfa, “Packet delay performance comparison of the IEEE 802.11 and IrDA AIr CSMA/CA protocols in high-speed wireless lans,” in Iasted International Conference on Internet and Multimedia Systems and Applications ACTA Press (2009), pp. 171–176.

Boucouvalas, A. C.

P. Chatzimisios and A. C. Boucouvalas, “Packet delay analysis of the advanced infrared (AIr) CSMA/CA MAC protocol in optical wireless LANs,” Int. J. Commun. Syst. 18(3), 307–331 (2005).
[Crossref]

V. Vitsas and A. C. Boucouvalas, “Performance analysis of the collision avoidance procedure of the advanced infrared (AIr) CSMA/CA protocol for wireless LANs,” in Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367) (2002), pp. 1502–1506.
[Crossref]

Chatzimisios, P.

P. Chatzimisios and A. C. Boucouvalas, “Packet delay analysis of the advanced infrared (AIr) CSMA/CA MAC protocol in optical wireless LANs,” Int. J. Commun. Syst. 18(3), 307–331 (2005).
[Crossref]

P. Chatzimisios, V. Vitsas, A. C. Bouconvalas, D. Kleftouns, and M. Tsoulfa, “Packet delay performance comparison of the IEEE 802.11 and IrDA AIr CSMA/CA protocols in high-speed wireless lans,” in Iasted International Conference on Internet and Multimedia Systems and Applications ACTA Press (2009), pp. 171–176.

Chen, H. H.

P. Mahasukhon, M. Hempel, H. Sharif, T. Zhou, S. Ci, and H. H. Chen, “BER analysis of 802.11b networks under mobility,” in 2007 IEEE International Conference on Communications (2007), pp. 4722–4727.
[Crossref]

Chow, C. W.

I. C. Lu, C. H. Yeh, D. Z. Hsu, and C. W. Chow, “Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication,” IEEE Photonics J. 8(3), 1–6 (2016).
[Crossref]

Ci, S.

P. Mahasukhon, M. Hempel, H. Sharif, T. Zhou, S. Ci, and H. H. Chen, “BER analysis of 802.11b networks under mobility,” in 2007 IEEE International Conference on Communications (2007), pp. 4722–4727.
[Crossref]

Elgala, H.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Fan, B.

L. Li, Y. X. Zhang, B. Fan, and H. Tian, “Mobility-aware load balancing scheme in hybrid VLC-LTE networks,” IEEE Commun. Lett. 20(11), 2276–2279 (2016).
[Crossref]

Faulkner, G.

Feng, L.

L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Netw. 30(6), 77–83 (2016).
[Crossref]

Freund, R.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Grobe, L.

Gueutier, E.

Guo, W.

W. Guo, Q. Li, H. Y. Yu, and J. H. Liu, “A parallel transmission MAC protocol in hybrid VLC-RF network,” J. Commun. 10(1), 80–85 (2015).
[Crossref]

Hempel, M.

P. Mahasukhon, M. Hempel, H. Sharif, T. Zhou, S. Ci, and H. H. Chen, “BER analysis of 802.11b networks under mobility,” in 2007 IEEE International Conference on Communications (2007), pp. 4722–4727.
[Crossref]

Hilt, J.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Hsu, D. Z.

I. C. Lu, C. H. Yeh, D. Z. Hsu, and C. W. Chow, “Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication,” IEEE Photonics J. 8(3), 1–6 (2016).
[Crossref]

Hu, B.

B. Hu, N. Li, and J. Zhang, “IASS: An intelligence access selection scheme for heterogeneous networks,” 2015 International Conference on Information Networking (ICOIN) (2015), pp. 531–536.
[Crossref]

Hu, R. Q.

L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Netw. 30(6), 77–83 (2016).
[Crossref]

Jamalipour, A.

Q. Y. Song and A. Jamalipour, “Network selection in an integrated wireless LAN and UMTS environment using mathematical modeling and computing techniques,” IEEE Wirel. Commun. 12(3), 42–48 (2005).
[Crossref]

Jiang, T.

Jungnickel, V.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Khreishah, A.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Kim, J.

J. Kim and H. Park, “A coding scheme for visible light communication with wide dimming range,” IEEE Photonics Technol. Lett. 26(5), 465–468 (2014).
[Crossref]

Kleftouns, D.

P. Chatzimisios, V. Vitsas, A. C. Bouconvalas, D. Kleftouns, and M. Tsoulfa, “Packet delay performance comparison of the IEEE 802.11 and IrDA AIr CSMA/CA protocols in high-speed wireless lans,” in Iasted International Conference on Internet and Multimedia Systems and Applications ACTA Press (2009), pp. 171–176.

Kumar, R.

H. S. Mewara, M. K. Saini, and R. Kumar, “Throughput and delay analysis of access point in IEEE 802. 11b wireless LAN using opnet simulator,” Rev. Lat. Am. Enfermagem 17(1), 59–65 (2009).
[PubMed]

Li, H. W.

H. Ma, X. Li, H. W. Li, P. Y. Zhang, S. X. Luo, and C. Yuan, “Dynamic optimization of IEEE 802.11 CSMA/CA based on the number of competing stations,” in 2004 IEEE International Conference on Communications (2004), pp. 191–195.
[Crossref]

Li, J. H.

Li, L.

L. Li, Y. X. Zhang, B. Fan, and H. Tian, “Mobility-aware load balancing scheme in hybrid VLC-LTE networks,” IEEE Commun. Lett. 20(11), 2276–2279 (2016).
[Crossref]

Li, N.

B. Hu, N. Li, and J. Zhang, “IASS: An intelligence access selection scheme for heterogeneous networks,” 2015 International Conference on Information Networking (ICOIN) (2015), pp. 531–536.
[Crossref]

Li, Q.

W. Guo, Q. Li, H. Y. Yu, and J. H. Liu, “A parallel transmission MAC protocol in hybrid VLC-RF network,” J. Commun. 10(1), 80–85 (2015).
[Crossref]

Li, X.

H. Ma, X. Li, H. W. Li, P. Y. Zhang, S. X. Luo, and C. Yuan, “Dynamic optimization of IEEE 802.11 CSMA/CA based on the number of competing stations,” in 2004 IEEE International Conference on Communications (2004), pp. 191–195.
[Crossref]

Li, Z.

Z. Li, C. Zhang, D. Sun, H. Yang, and J. Song, “A real-time high-speed visible light communication system based on RGB-LEDs,” in 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (2017), pp. 1–4.
[Crossref]

Little, T.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Liu, J. H.

W. Guo, Q. Li, H. Y. Yu, and J. H. Liu, “A parallel transmission MAC protocol in hybrid VLC-RF network,” J. Commun. 10(1), 80–85 (2015).
[Crossref]

Liu, Y.

Lu, I. C.

I. C. Lu, C. H. Yeh, D. Z. Hsu, and C. W. Chow, “Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication,” IEEE Photonics J. 8(3), 1–6 (2016).
[Crossref]

Luo, S. X.

H. Ma, X. Li, H. W. Li, P. Y. Zhang, S. X. Luo, and C. Yuan, “Dynamic optimization of IEEE 802.11 CSMA/CA based on the number of competing stations,” in 2004 IEEE International Conference on Communications (2004), pp. 191–195.
[Crossref]

Ma, H.

H. Ma, X. Li, H. W. Li, P. Y. Zhang, S. X. Luo, and C. Yuan, “Dynamic optimization of IEEE 802.11 CSMA/CA based on the number of competing stations,” in 2004 IEEE International Conference on Communications (2004), pp. 191–195.
[Crossref]

Mahasukhon, P.

P. Mahasukhon, M. Hempel, H. Sharif, T. Zhou, S. Ci, and H. H. Chen, “BER analysis of 802.11b networks under mobility,” in 2007 IEEE International Conference on Communications (2007), pp. 4722–4727.
[Crossref]

Mai, V. V.

V. V. Mai, T. C. Thang, and A. T. Pham, “CSMA/CA-based uplink MAC protocol design and analysis for hybrid VLC/Wifi networks,” in 2017 IEEE International Conference on Communications Workshops (ICC Workshops) (2017), pp. 457–462.
[Crossref]

Mewara, H. S.

H. S. Mewara, M. K. Saini, and R. Kumar, “Throughput and delay analysis of access point in IEEE 802. 11b wireless LAN using opnet simulator,” Rev. Lat. Am. Enfermagem 17(1), 59–65 (2009).
[PubMed]

Minh, H. L.

Ni, J.

J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length-based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks,” IEEE/ACM Trans. Netw. 20(3), 825–836 (2012).
[Crossref]

O’Brien, D.

Ou, Y.

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63(4), 1770–1778 (2014).
[Crossref]

Park, H.

J. Kim and H. Park, “A coding scheme for visible light communication with wide dimming range,” IEEE Photonics Technol. Lett. 26(5), 465–468 (2014).
[Crossref]

Pham, A. T.

V. V. Mai, T. C. Thang, and A. T. Pham, “CSMA/CA-based uplink MAC protocol design and analysis for hybrid VLC/Wifi networks,” in 2017 IEEE International Conference on Communications Workshops (ICC Workshops) (2017), pp. 457–462.
[Crossref]

Porcon, P.

Qian, Y.

L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Netw. 30(6), 77–83 (2016).
[Crossref]

Rahaim, M.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Saaty, T. L.

T. L. Saaty, “How to make a decision: the analytic hierarchy process,” Interfaces 24(6), 19–43 (1990).
[Crossref]

Saini, M. K.

H. S. Mewara, M. K. Saini, and R. Kumar, “Throughput and delay analysis of access point in IEEE 802. 11b wireless LAN using opnet simulator,” Rev. Lat. Am. Enfermagem 17(1), 59–65 (2009).
[PubMed]

Sakurai, T.

T. Sakurai and H. L. Vu, “MAC access delay of IEEE 802.11 DCF,” IEEE Trans. Wirel. Commun. 6(15), 1702–1710 (2007).
[Crossref]

Schulz, D.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Shang, T.

Shao, S.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Sharif, H.

P. Mahasukhon, M. Hempel, H. Sharif, T. Zhou, S. Ci, and H. H. Chen, “BER analysis of 802.11b networks under mobility,” in 2007 IEEE International Conference on Communications (2007), pp. 4722–4727.
[Crossref]

Song, J.

Z. Li, C. Zhang, D. Sun, H. Yang, and J. Song, “A real-time high-speed visible light communication system based on RGB-LEDs,” in 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (2017), pp. 1–4.
[Crossref]

Song, Q. Y.

Q. Y. Song and A. Jamalipour, “Network selection in an integrated wireless LAN and UMTS environment using mathematical modeling and computing techniques,” IEEE Wirel. Commun. 12(3), 42–48 (2005).
[Crossref]

Song, T.

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63(4), 1770–1778 (2014).
[Crossref]

Srikant, R.

J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length-based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks,” IEEE/ACM Trans. Netw. 20(3), 825–836 (2012).
[Crossref]

Sun, D.

Z. Li, C. Zhang, D. Sun, H. Yang, and J. Song, “A real-time high-speed visible light communication system based on RGB-LEDs,” in 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (2017), pp. 1–4.
[Crossref]

Tabach, M. E.

Tan, B.

J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length-based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks,” IEEE/ACM Trans. Netw. 20(3), 825–836 (2012).
[Crossref]

Thang, T. C.

V. V. Mai, T. C. Thang, and A. T. Pham, “CSMA/CA-based uplink MAC protocol design and analysis for hybrid VLC/Wifi networks,” in 2017 IEEE International Conference on Communications Workshops (ICC Workshops) (2017), pp. 457–462.
[Crossref]

Tian, H.

L. Li, Y. X. Zhang, B. Fan, and H. Tian, “Mobility-aware load balancing scheme in hybrid VLC-LTE networks,” IEEE Commun. Lett. 20(11), 2276–2279 (2016).
[Crossref]

Tsoulfa, M.

P. Chatzimisios, V. Vitsas, A. C. Bouconvalas, D. Kleftouns, and M. Tsoulfa, “Packet delay performance comparison of the IEEE 802.11 and IrDA AIr CSMA/CA protocols in high-speed wireless lans,” in Iasted International Conference on Internet and Multimedia Systems and Applications ACTA Press (2009), pp. 171–176.

Turnbull, R.

Vitsas, V.

V. Vitsas and A. C. Boucouvalas, “Performance analysis of the collision avoidance procedure of the advanced infrared (AIr) CSMA/CA protocol for wireless LANs,” in Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367) (2002), pp. 1502–1506.
[Crossref]

P. Chatzimisios, V. Vitsas, A. C. Bouconvalas, D. Kleftouns, and M. Tsoulfa, “Packet delay performance comparison of the IEEE 802.11 and IrDA AIr CSMA/CA protocols in high-speed wireless lans,” in Iasted International Conference on Internet and Multimedia Systems and Applications ACTA Press (2009), pp. 171–176.

Vu, H. L.

T. Sakurai and H. L. Vu, “MAC access delay of IEEE 802.11 DCF,” IEEE Trans. Wirel. Commun. 6(15), 1702–1710 (2007).
[Crossref]

Wang, J.

L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Netw. 30(6), 77–83 (2016).
[Crossref]

Wang, P.

Wang, Y. M.

Y. M. Wang, “A method based on standard and mean deviations for determining the weight coefficients of multiple attributes and its applications,” Appl. Statistics Management 22(3), 22–26 (2003).

Wolf, M.

Xu, P.

L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Netw. 30(6), 77–83 (2016).
[Crossref]

Yang, H.

Z. Li, C. Zhang, D. Sun, H. Yang, and J. Song, “A real-time high-speed visible light communication system based on RGB-LEDs,” in 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (2017), pp. 1–4.
[Crossref]

Yang, Y. T.

Yeh, C. H.

I. C. Lu, C. H. Yeh, D. Z. Hsu, and C. W. Chow, “Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication,” IEEE Photonics J. 8(3), 1–6 (2016).
[Crossref]

Yu, H. Y.

W. Guo, Q. Li, H. Y. Yu, and J. H. Liu, “A parallel transmission MAC protocol in hybrid VLC-RF network,” J. Commun. 10(1), 80–85 (2015).
[Crossref]

Yuan, C.

H. Ma, X. Li, H. W. Li, P. Y. Zhang, S. X. Luo, and C. Yuan, “Dynamic optimization of IEEE 802.11 CSMA/CA based on the number of competing stations,” in 2004 IEEE International Conference on Communications (2004), pp. 191–195.
[Crossref]

Zhang, C.

Z. Li, C. Zhang, D. Sun, H. Yang, and J. Song, “A real-time high-speed visible light communication system based on RGB-LEDs,” in 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (2017), pp. 1–4.
[Crossref]

Zhang, J.

B. Hu, N. Li, and J. Zhang, “IASS: An intelligence access selection scheme for heterogeneous networks,” 2015 International Conference on Information Networking (ICOIN) (2015), pp. 531–536.
[Crossref]

Zhang, P. Y.

H. Ma, X. Li, H. W. Li, P. Y. Zhang, S. X. Luo, and C. Yuan, “Dynamic optimization of IEEE 802.11 CSMA/CA based on the number of competing stations,” in 2004 IEEE International Conference on Communications (2004), pp. 191–195.
[Crossref]

Zhang, Y. X.

L. Li, Y. X. Zhang, B. Fan, and H. Tian, “Mobility-aware load balancing scheme in hybrid VLC-LTE networks,” IEEE Commun. Lett. 20(11), 2276–2279 (2016).
[Crossref]

Zhou, T.

P. Mahasukhon, M. Hempel, H. Sharif, T. Zhou, S. Ci, and H. H. Chen, “BER analysis of 802.11b networks under mobility,” in 2007 IEEE International Conference on Communications (2007), pp. 4722–4727.
[Crossref]

Zhu, X.

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63(4), 1770–1778 (2014).
[Crossref]

Appl. Statistics Management (1)

Y. M. Wang, “A method based on standard and mean deviations for determining the weight coefficients of multiple attributes and its applications,” Appl. Statistics Management 22(3), 22–26 (2003).

IEEE Commun. Lett. (1)

L. Li, Y. X. Zhang, B. Fan, and H. Tian, “Mobility-aware load balancing scheme in hybrid VLC-LTE networks,” IEEE Commun. Lett. 20(11), 2276–2279 (2016).
[Crossref]

IEEE Commun. Mag. (1)

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

IEEE Netw. (1)

L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: architectures and key technologies,” IEEE Netw. 30(6), 77–83 (2016).
[Crossref]

IEEE Photonics J. (1)

I. C. Lu, C. H. Yeh, D. Z. Hsu, and C. W. Chow, “Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication,” IEEE Photonics J. 8(3), 1–6 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Kim and H. Park, “A coding scheme for visible light communication with wide dimming range,” IEEE Photonics Technol. Lett. 26(5), 465–468 (2014).
[Crossref]

IEEE Trans. Vehicular Technol. (1)

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63(4), 1770–1778 (2014).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

T. Sakurai and H. L. Vu, “MAC access delay of IEEE 802.11 DCF,” IEEE Trans. Wirel. Commun. 6(15), 1702–1710 (2007).
[Crossref]

IEEE Wirel. Commun. (1)

Q. Y. Song and A. Jamalipour, “Network selection in an integrated wireless LAN and UMTS environment using mathematical modeling and computing techniques,” IEEE Wirel. Commun. 12(3), 42–48 (2005).
[Crossref]

IEEE/ACM Trans. Netw. (1)

J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length-based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks,” IEEE/ACM Trans. Netw. 20(3), 825–836 (2012).
[Crossref]

Int. J. Commun. Syst. (1)

P. Chatzimisios and A. C. Boucouvalas, “Packet delay analysis of the advanced infrared (AIr) CSMA/CA MAC protocol in optical wireless LANs,” Int. J. Commun. Syst. 18(3), 307–331 (2005).
[Crossref]

Interfaces (1)

T. L. Saaty, “How to make a decision: the analytic hierarchy process,” Interfaces 24(6), 19–43 (1990).
[Crossref]

J. Commun. (1)

W. Guo, Q. Li, H. Y. Yu, and J. H. Liu, “A parallel transmission MAC protocol in hybrid VLC-RF network,” J. Commun. 10(1), 80–85 (2015).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (1)

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Rev. Lat. Am. Enfermagem (1)

H. S. Mewara, M. K. Saini, and R. Kumar, “Throughput and delay analysis of access point in IEEE 802. 11b wireless LAN using opnet simulator,” Rev. Lat. Am. Enfermagem 17(1), 59–65 (2009).
[PubMed]

Other (24)

“Advanced infrared physical layer specification (AIr-PHY) - Version 1.0” Infrared Data Association (1998).

“IEEE Standard for Information Technology - Telecommunications and information exchange between systems - Local and Metropolitan networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher Speed Physical Layer (PHY) Extension in the 2.4 GHz band,” (IEEE Std 802.11b-1999, 2000).

P. Mahasukhon, M. Hempel, H. Sharif, T. Zhou, S. Ci, and H. H. Chen, “BER analysis of 802.11b networks under mobility,” in 2007 IEEE International Conference on Communications (2007), pp. 4722–4727.
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. B. Zeng, K. Lee, D. Jung, and Y. J. Oh, “80 Mbit/s Visible Light Communications using pre-equalized white LED,” in 2008 34th European Conference on Optical Communication (2008), Brussels, 2008, pp. 1–2.

“IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Wireless Optical Communication Using Visible Light,” (IEEE Std 802.15.7–2011, 2011).

H. L. Minh, Z. Ghassemlooy, D. O’Brien, and G. Faulkner, “Indoor gigabit optical wireless communications: Challenges and possibilities,” in 2010 12th International Conference on Transparent Optical Networks (2010), pp. 1–6.

K. D. Langer and J. Grubor, “Recent developments in optical wireless communications using Infrared and visible light,” in 2007 9th International Conference on Transparent Optical Networks (2007), pp. 146–151.

“TS 22.105 v8.2.0: Services and service capabilities (Release 8)” 3GPP, (2006).

“Advanced Infrared (AIr) MAC Draft Protocol Specification–Version 1.0” Infrared Data Association, (1999).

V. Vitsas and A. C. Boucouvalas, “Performance analysis of the collision avoidance procedure of the advanced infrared (AIr) CSMA/CA protocol for wireless LANs,” in Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367) (2002), pp. 1502–1506.
[Crossref]

V. V. Mai, T. C. Thang, and A. T. Pham, “CSMA/CA-based uplink MAC protocol design and analysis for hybrid VLC/Wifi networks,” in 2017 IEEE International Conference on Communications Workshops (ICC Workshops) (2017), pp. 457–462.
[Crossref]

M. Lahby, L. Cherkaoui, and A. Adib, “Performance analysis of normalization techniques for network selection access in heterogeneous wireless networks,” in 2014 9th International Conference on Intelligent Systems: Theories and Applications (SITA-14) (2014), pp. 1–5.

Manisha and N. P. Singh, “Optimal network selection using MADM algorithms,” in 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS) (2015), pp. 1–6.

P. Chatzimisios, V. Vitsas, A. C. Bouconvalas, D. Kleftouns, and M. Tsoulfa, “Packet delay performance comparison of the IEEE 802.11 and IrDA AIr CSMA/CA protocols in high-speed wireless lans,” in Iasted International Conference on Internet and Multimedia Systems and Applications ACTA Press (2009), pp. 171–176.

H. Ma, X. Li, H. W. Li, P. Y. Zhang, S. X. Luo, and C. Yuan, “Dynamic optimization of IEEE 802.11 CSMA/CA based on the number of competing stations,” in 2004 IEEE International Conference on Communications (2004), pp. 191–195.
[Crossref]

G. Bianchi, L. Fratta, and M. Oliveri, “Performance evaluation and enhancement of the CSMA/CA MAC protocol for 802.11 wireless LANs,” Personal, Indoor and Mobile Radio Communications, 1996. PIMRC'96., Seventh IEEE International Symposium on (1996), pp. 392–396.

R. K. Goyal and S. Kaushal, “Effect of utility based functions on fuzzy-AHP based network selection in heterogenous wireless networks,” 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS) (2015), pp. 1–5.

B. Hu, N. Li, and J. Zhang, “IASS: An intelligence access selection scheme for heterogeneous networks,” 2015 International Conference on Information Networking (ICOIN) (2015), pp. 531–536.
[Crossref]

N. N. Sui, D. M. Zhang, W. Zhong, and C. Wang, “Network selection for heterogeneous wireless networks based on multiple attribute decision making and evolutionary game theory,” 2016 25th Wireless and Optical Communication Conference (WOCC) (2016), pp. 1–5.

A. Sgora, D. D. Vergados, and P. Chatzimisios, “An access network selection algorithm for heterogeneous wireless environments,” in The IEEE symposium on Computers and Communications (2010), pp. 890–892.

I. Stefan and H. Haas, “Hybrid visible light and radio frequency communication systems,” in 2014 IEEE 80th Vehicular Technology Conference (2014), pp. 1–5.

M. B. Rahaim, A. M. Vegni, and T. D. C. Little, “A hybrid radio frequency and broadcast visible light communication system,” in 2011 IEEE GLOBECOM Workshops (2011), pp. 792–796.

Z. Li, C. Zhang, D. Sun, H. Yang, and J. Song, “A real-time high-speed visible light communication system based on RGB-LEDs,” in 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (2017), pp. 1–4.
[Crossref]

J. Vucic and K. D. Langer, “High-speed visible light communications: state-of-the-art,” in OFC/NFOEC (2012), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Indoor VLC-based hybrid network model.
Fig. 2
Fig. 2 Flowchart of our multi-user access method.
Fig. 3
Fig. 3 Weights for conversational service.
Fig. 4
Fig. 4 The comprehensive weights for different service.
Fig. 5
Fig. 5 Network selection under the same conversational requirement through three methods.
Fig. 6
Fig. 6 Comparison of network selection under different application requirements through the proposed network selection method
Fig. 7
Fig. 7 Comparison of collision probability for different networks.
Fig. 8
Fig. 8 Comparison of access delay for different networks.
Fig. 9
Fig. 9 Comparison of access success ratio for different networks.

Tables (9)

Tables Icon

Table 1 Scale of importance in Satty Rule.

Tables Icon

Table 2 The value of Random Consistency Index.

Tables Icon

Table 3 Network parameters of candidate networks.

Tables Icon

Table 4 Preference values of the judgment matrix for conversational service.

Tables Icon

Table 5 Preference values of the judgment matrix for video stream service.

Tables Icon

Table 6 Preference values of the judgment matrix for background service.

Tables Icon

Table 7 AIr MAC and PHY parameters.

Tables Icon

Table 8 802.11b MAC and PHY parameters.

Tables Icon

Table 9 VLC MAC and PHY parameters.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

A=[ x11 x12 ... ... x1n x21 x22 ... ... x2n ... ... ... xij ... ... ... xji ... ... xn1 xn2 ... ... xnn ] x ji = 1 x ij , x ij 0
A w 0 = λ max w 0
w j = w j 0 i=1 n w j 0
CR= CI RI = λ max n ( n1 )RI
CI= λ max n n1
S=[ s 11 s 11 ... ... s 11 s 21 s 22 ... ... s 2n ... ... s ki ... ... ... ... ... ... ... s m1 s m2 ... ... s mn ]
s ki = b ki min{ b ki | (1km) } max{ b ki | (1kn) }min{ b ki | (1km) }
s ki = max{ b ki | (1km) } b ki max{ b ki | (1km) }min{ b ki | (1km) }
w j = j=1 n ( s ij 1 m i=1 m s ij ) 2 j=1 n j=1 n ( s ij 1 m i=1 m s ij ) 2 , i=1,2...m , j=1,2...n
{ min F = i=1 m { ( j=1 n α s ij w j j=1 n β s ij w j ) 2 } i=1 m j=1 n s ij ( α w j +β w j ) s. t. α+β=1 ,0α1, 0β1
L(α,β,λ)= i=1 m { ( j=1 n α s ij w j j=1 n β s ij w j ) 2 } i=1 m j=1 n s ij ( α w j +β w j )+λ(α+β1)
{ L α = i=1 m [2α ( j=1 n s ij w j ) 2 2β( j=1 n s ij w j )( j=1 n s ij w j )] i=1 m j=1 n s ij w j +λ=0 L β = i=1 m [2β ( j=1 n s ij w j ) 2 2α( j=1 n s ij w j )( j=1 n s ij w j )] i=1 m j=1 n s ij w j +λ=0 L λ = α+β1=0
α= i=1 m [ ( j=1 n s ij w j )( j=1 n s ij w j + j=1 n s ij w j ) ] 1 2 i=1 m j=1 n s ij ( w j w j ) i=1 m [ j=1 n s ij ( w j + w j ) ] 2
β= i=1 m [ ( j=1 n s ij w j )( j=1 n s ij w j + j=1 n s ij w j ) ]+ 1 2 i=1 m j=1 n s ij ( w j w j ) i=1 m [ j=1 n s ij ( w j + w j ) ] 2
w j =α w j +β w j
V i = j=1 n w j s ij
G i = V i k=1 m V k
T MWAD =NAV+BOT+DIFS
BOT=Randow(CW)slotTime
T MAAD (Net_Current) T MAAD (Net_i)ΔT
p 1 =1 (1 τ 1 ) n 1 1
τ 1 = 2 (C W min +1)+4 p 1 ( (1 p 1 ) m+1 +(2m+1) p 1 m+1 (m+1) p 1 m ( (1 p 1 ) m+1 p 1 m+1 )(12 p 1 ) )
p 2 =1 (1 τ 2 ) n 2 1
τ 2 = 2(12 p 2 ) (12 p 2 )(C W min +1)+ p 2 C W min (1 (2 p 2 ) m )
p hybrid = i=1 n 1 p 1 (i) + j=1 n 2 p 2 (j) n
T WAD = t end t start
T Access = T WAD + T trans
T trans_uplink_IR =CA S IR +RT S IR +SIF S VLC +CT S VLC +TA T IR + Payload Rate IR +EOB IR +SIFS VLC +ACK VLC
T trans_uplink_WiFi =DIF S WiFi +RT S WiFi +SIF S VLC +CT S VLC +SIF S WiFi + Payload Rate WiFi +SIFS VLC +ACK VLC
T Access_hybrid = i=1 n 1 { T WAD (i)+ T trans_uplink_IR (i) }+ j=1 n 2 { T WAD (j)+ T trans_uplink_WiFi (j) } n
p sucess = n n n