Abstract

A new type of fluorescence fiber optic temperature sensor based on the detection of fluorescence intensity ratio (FIR) is proposed. Benefited from the temperature-dependent characteristic of upconversion luminescence (UCL), it can be applied in fiber optic temperature sensors. Rare earth doped upconversion nanoparticles (UCNPs) NaYF4:Er3+,Yb3+ are embedded in a multi-mode quartz fiber through the technology of fiber fusion as the sensing unit of temperature sensors. A 980 nm laser is used to stimulate UCL in a temperature range from 40 °C to 100 °C. Experimental validation and spectral analysis are carried out to confirm the rationality of sensors’ design. Results show that FIR changes with the temperature in Boltzmann distribution law. The sensitivity of the temperature sensors can reach the value between 0.0087 and 0.0144 K−1.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Five-photon UV upconversion emissions of Er3+ for temperature sensing

Kezhi Zheng, Weiye Song, Guanghui He, Zhen Yuan, and Weiping Qin
Opt. Express 23(6) 7653-7658 (2015)

Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder

Leipeng Li, Longjiang Zheng, Wei Xu, Zhang Liang, Yuan Zhou, Zhiguo Zhang, and Wenwu Cao
Opt. Lett. 41(7) 1458-1461 (2016)

Valley-to-peak intensity ratio thermometry based on the red upconversion emission of Er3+

Leipeng Li, Wei Xu, Longjiang Zheng, Feng Qin, Yuan Zhou, Zhang Liang, Zhiguo Zhang, and Wenwu Cao
Opt. Express 24(12) 13244-13249 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1), 40–61 (2000).
    [Crossref]
  2. J. Castrellon, G. Paez, and M. Srtojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43(1), 219–222 (2002).
    [Crossref]
  3. A. H. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors (Basel) 8(9), 5673–5744 (2008).
    [Crossref] [PubMed]
  4. V. I. Busurin, A. S. Semenov, and N. P. Udalov, “Optical and fiber-optic sensors,” Sov. J. Quantum Electron. 15(5), 595–621 (1985).
    [Crossref]
  5. A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2(3), 291–317 (1996).
    [Crossref]
  6. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  7. P. V. Dos Santos, M. T. De Araujo, A. S. Gouveia Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ co-doped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
    [Crossref]
  8. V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sens. Actuators A Phys. 128(1), 14–17 (2006).
    [Crossref]
  9. W. Xu, X. Gao, L. Zheng, Z. Zhang, and W. Cao, “Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior,” Opt. Express 20(16), 18127–18137 (2012).
    [Crossref] [PubMed]
  10. K. Zheng, Z. Liu, C. Lv, and W. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(35), 5502–5507 (2013).
    [Crossref]
  11. X. Yu, F. Song, C. Zou, L. J. Luo, C. G. Ming, W. T. Wang, Z. Z. Cheng, L. Han, T. Q. Sun, and J. G. Tian, “Temperature dependence of luminescence behavior in Er3+/Yb3+ co-doped transparent phosphate glass ceramics,” Opt. Mater. 31(11), 1645–1649 (2009).
    [Crossref]
  12. S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ co-doped Gd2O3 nano-phosphor for optical thermometry,” Sens. Actuators A Phys. 149(1), 16–20 (2009).
    [Crossref]
  13. F. Huang, Y. Gao, J. Zhou, J. Xu, and Y. S. Wang, “Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing,” J. Alloys Compd. 639(1), 325–329 (2015).
    [Crossref]
  14. K. T. V. Grattan, R. K. Selli, and A. W. Palmer, “Ruby fluorescence wavelength division fiber‐optic temperature sensor,” Rev. Sci. Instrum. 58(7), 1231–1234 (1987).
    [Crossref]
  15. K. T. V. Grattan, R. K. Selli, and A. W. Palmer, “Ruby decay‐time fluorescence thermometer in a fiber‐optic configuration,” Rev. Sci. Instrum. 59(8), 1328–1335 (1988).
    [Crossref]
  16. H. Aizawa, N. Ohishi, S. Ogawa, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Fabrication of ruby sensor probe for the fiber-optic thermometer using fluorescence decay,” Rev. Sci. Instrum. 73(10), 3656–3658 (2002).
    [Crossref]
  17. H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Long afterglow phosphorescent sensor materials for fiber-optic thermometer,” Rev. Sci. Instrum. 74(3), 1344–1349 (2003).
    [Crossref]
  18. K. Morita, T. Katsumata, S. Komuro, and H. Aizawa, “Fiber-optic thermometry using thermal radiation from Tm end doped SiO2 fiber sensor,” Rev. Sci. Instrum. 85(4), 044902 (2014).
    [Crossref] [PubMed]
  19. X. N. Chai, J. Li, X. S. Wang, Y. X. Li, and X. Yao, “Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ codoped ZnWO4,” Opt. Express 24(20), 22438–22447 (2016).
    [Crossref] [PubMed]
  20. H. Q. Guo and S. Q. Tao, “An active core fiber-optic temperature sensor using an Eu(III)-doped sol-gel silica fiber as a temperature indicator,” IEEE Sens. J. 7(6), 953–954 (2007).
    [Crossref]
  21. P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. Oliva, J. L. Santos, and F. Farahi, “Luminescence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(1), 201–225 (2005).
    [Crossref]
  22. G. Liu, M. Han, and W. Hou, “High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity,” Opt. Express 23(6), 7237–7247 (2015).
    [Crossref] [PubMed]
  23. I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
    [Crossref] [PubMed]
  24. Y. Jiang, Z. Fang, Y. Du, E. Lewis, G. Farrell, and P. Wang, “Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids,” Opt. Express 26(1), 356–366 (2018).
    [Crossref] [PubMed]
  25. J. Mandal, S. Pal, T. Sun, K. T. V. Grattan, A. T. Augousti, and S. A. Wade, “Bragg grating-based fiber-optic laser probe for temperature sensing,” IEEE Photonics Technol. Lett. 16(1), 218–220 (2004).
    [Crossref]
  26. M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
    [Crossref] [PubMed]
  27. D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Temperature sensitivity and stability of NaYF4: Yb3+,Er3+ core-only and core-shell upconversion nanoparticles,” J. Alloys Compd. 617(1), 1–6 (2014).
    [Crossref]
  28. Z. H. Feng, L. Lin, Z. Z. Wang, and Z. Q. Zheng, “Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic,” Opt. Commun. 399(1), 40–44 (2017).
    [Crossref]
  29. W. Yu, W. Xu, H. Song, and S. Zhang, “Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase,” Dalton Trans. 43(16), 6139–6147 (2014).
    [Crossref] [PubMed]
  30. S. Ye, P. Xiao, H. Z. Liao, S. Li, and D. P. Wang, “Fast synthesis of sub-10 nm β-NaYF4: Yb3+, Er3+@NaYF4 core-shell upconversion nanocrystals mediated by oleate ligands,” Mater. Res. Bull. 103(1), 279–284 (2018).
    [Crossref]

2018 (2)

Y. Jiang, Z. Fang, Y. Du, E. Lewis, G. Farrell, and P. Wang, “Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids,” Opt. Express 26(1), 356–366 (2018).
[Crossref] [PubMed]

S. Ye, P. Xiao, H. Z. Liao, S. Li, and D. P. Wang, “Fast synthesis of sub-10 nm β-NaYF4: Yb3+, Er3+@NaYF4 core-shell upconversion nanocrystals mediated by oleate ligands,” Mater. Res. Bull. 103(1), 279–284 (2018).
[Crossref]

2017 (1)

Z. H. Feng, L. Lin, Z. Z. Wang, and Z. Q. Zheng, “Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic,” Opt. Commun. 399(1), 40–44 (2017).
[Crossref]

2016 (2)

2015 (2)

G. Liu, M. Han, and W. Hou, “High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity,” Opt. Express 23(6), 7237–7247 (2015).
[Crossref] [PubMed]

F. Huang, Y. Gao, J. Zhou, J. Xu, and Y. S. Wang, “Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing,” J. Alloys Compd. 639(1), 325–329 (2015).
[Crossref]

2014 (3)

K. Morita, T. Katsumata, S. Komuro, and H. Aizawa, “Fiber-optic thermometry using thermal radiation from Tm end doped SiO2 fiber sensor,” Rev. Sci. Instrum. 85(4), 044902 (2014).
[Crossref] [PubMed]

W. Yu, W. Xu, H. Song, and S. Zhang, “Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase,” Dalton Trans. 43(16), 6139–6147 (2014).
[Crossref] [PubMed]

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Temperature sensitivity and stability of NaYF4: Yb3+,Er3+ core-only and core-shell upconversion nanoparticles,” J. Alloys Compd. 617(1), 1–6 (2014).
[Crossref]

2013 (1)

K. Zheng, Z. Liu, C. Lv, and W. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(35), 5502–5507 (2013).
[Crossref]

2012 (1)

2011 (1)

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

2009 (2)

X. Yu, F. Song, C. Zou, L. J. Luo, C. G. Ming, W. T. Wang, Z. Z. Cheng, L. Han, T. Q. Sun, and J. G. Tian, “Temperature dependence of luminescence behavior in Er3+/Yb3+ co-doped transparent phosphate glass ceramics,” Opt. Mater. 31(11), 1645–1649 (2009).
[Crossref]

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ co-doped Gd2O3 nano-phosphor for optical thermometry,” Sens. Actuators A Phys. 149(1), 16–20 (2009).
[Crossref]

2008 (1)

A. H. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors (Basel) 8(9), 5673–5744 (2008).
[Crossref] [PubMed]

2007 (1)

H. Q. Guo and S. Q. Tao, “An active core fiber-optic temperature sensor using an Eu(III)-doped sol-gel silica fiber as a temperature indicator,” IEEE Sens. J. 7(6), 953–954 (2007).
[Crossref]

2006 (1)

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sens. Actuators A Phys. 128(1), 14–17 (2006).
[Crossref]

2005 (1)

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. Oliva, J. L. Santos, and F. Farahi, “Luminescence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(1), 201–225 (2005).
[Crossref]

2004 (1)

J. Mandal, S. Pal, T. Sun, K. T. V. Grattan, A. T. Augousti, and S. A. Wade, “Bragg grating-based fiber-optic laser probe for temperature sensing,” IEEE Photonics Technol. Lett. 16(1), 218–220 (2004).
[Crossref]

2003 (2)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Long afterglow phosphorescent sensor materials for fiber-optic thermometer,” Rev. Sci. Instrum. 74(3), 1344–1349 (2003).
[Crossref]

2002 (2)

H. Aizawa, N. Ohishi, S. Ogawa, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Fabrication of ruby sensor probe for the fiber-optic thermometer using fluorescence decay,” Rev. Sci. Instrum. 73(10), 3656–3658 (2002).
[Crossref]

J. Castrellon, G. Paez, and M. Srtojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43(1), 219–222 (2002).
[Crossref]

2000 (1)

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1), 40–61 (2000).
[Crossref]

1998 (1)

P. V. Dos Santos, M. T. De Araujo, A. S. Gouveia Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ co-doped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

1996 (1)

A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2(3), 291–317 (1996).
[Crossref]

1988 (1)

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, “Ruby decay‐time fluorescence thermometer in a fiber‐optic configuration,” Rev. Sci. Instrum. 59(8), 1328–1335 (1988).
[Crossref]

1987 (1)

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, “Ruby fluorescence wavelength division fiber‐optic temperature sensor,” Rev. Sci. Instrum. 58(7), 1231–1234 (1987).
[Crossref]

1985 (1)

V. I. Busurin, A. S. Semenov, and N. P. Udalov, “Optical and fiber-optic sensors,” Sov. J. Quantum Electron. 15(5), 595–621 (1985).
[Crossref]

Aizawa, H.

K. Morita, T. Katsumata, S. Komuro, and H. Aizawa, “Fiber-optic thermometry using thermal radiation from Tm end doped SiO2 fiber sensor,” Rev. Sci. Instrum. 85(4), 044902 (2014).
[Crossref] [PubMed]

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Long afterglow phosphorescent sensor materials for fiber-optic thermometer,” Rev. Sci. Instrum. 74(3), 1344–1349 (2003).
[Crossref]

H. Aizawa, N. Ohishi, S. Ogawa, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Fabrication of ruby sensor probe for the fiber-optic thermometer using fluorescence decay,” Rev. Sci. Instrum. 73(10), 3656–3658 (2002).
[Crossref]

Augousti, A. T.

J. Mandal, S. Pal, T. Sun, K. T. V. Grattan, A. T. Augousti, and S. A. Wade, “Bragg grating-based fiber-optic laser probe for temperature sensing,” IEEE Photonics Technol. Lett. 16(1), 218–220 (2004).
[Crossref]

Busurin, V. I.

V. I. Busurin, A. S. Semenov, and N. P. Udalov, “Optical and fiber-optic sensors,” Sov. J. Quantum Electron. 15(5), 595–621 (1985).
[Crossref]

Caldas, P.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. Oliva, J. L. Santos, and F. Farahi, “Luminescence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(1), 201–225 (2005).
[Crossref]

Cao, W.

Castrellon, J.

J. Castrellon, G. Paez, and M. Srtojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43(1), 219–222 (2002).
[Crossref]

Chai, X. N.

Cheng, Z. Z.

X. Yu, F. Song, C. Zou, L. J. Luo, C. G. Ming, W. T. Wang, Z. Z. Cheng, L. Han, T. Q. Sun, and J. G. Tian, “Temperature dependence of luminescence behavior in Er3+/Yb3+ co-doped transparent phosphate glass ceramics,” Opt. Mater. 31(11), 1645–1649 (2009).
[Crossref]

Cruz-Garcia, M. A.

De Araujo, M. T.

P. V. Dos Santos, M. T. De Araujo, A. S. Gouveia Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ co-doped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Dong, Y.

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Temperature sensitivity and stability of NaYF4: Yb3+,Er3+ core-only and core-shell upconversion nanoparticles,” J. Alloys Compd. 617(1), 1–6 (2014).
[Crossref]

Dos Santos, P. V.

P. V. Dos Santos, M. T. De Araujo, A. S. Gouveia Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ co-doped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Du, Y.

Fang, Z.

Farahi, F.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. Oliva, J. L. Santos, and F. Farahi, “Luminescence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(1), 201–225 (2005).
[Crossref]

Farrell, G.

Feng, Z. H.

Z. H. Feng, L. Lin, Z. Z. Wang, and Z. Q. Zheng, “Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic,” Opt. Commun. 399(1), 40–44 (2017).
[Crossref]

Gao, X.

Gao, Y.

F. Huang, Y. Gao, J. Zhou, J. Xu, and Y. S. Wang, “Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing,” J. Alloys Compd. 639(1), 325–329 (2015).
[Crossref]

Gouveia Neto, A. S.

P. V. Dos Santos, M. T. De Araujo, A. S. Gouveia Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ co-doped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Grattan, K. T. V.

J. Mandal, S. Pal, T. Sun, K. T. V. Grattan, A. T. Augousti, and S. A. Wade, “Bragg grating-based fiber-optic laser probe for temperature sensing,” IEEE Photonics Technol. Lett. 16(1), 218–220 (2004).
[Crossref]

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1), 40–61 (2000).
[Crossref]

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, “Ruby decay‐time fluorescence thermometer in a fiber‐optic configuration,” Rev. Sci. Instrum. 59(8), 1328–1335 (1988).
[Crossref]

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, “Ruby fluorescence wavelength division fiber‐optic temperature sensor,” Rev. Sci. Instrum. 58(7), 1231–1234 (1987).
[Crossref]

Guo, H. Q.

H. Q. Guo and S. Q. Tao, “An active core fiber-optic temperature sensor using an Eu(III)-doped sol-gel silica fiber as a temperature indicator,” IEEE Sens. J. 7(6), 953–954 (2007).
[Crossref]

Haase, M.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Han, L.

X. Yu, F. Song, C. Zou, L. J. Luo, C. G. Ming, W. T. Wang, Z. Z. Cheng, L. Han, T. Q. Sun, and J. G. Tian, “Temperature dependence of luminescence behavior in Er3+/Yb3+ co-doped transparent phosphate glass ceramics,” Opt. Mater. 31(11), 1645–1649 (2009).
[Crossref]

Han, M.

Hernández-Romano, I.

Hou, W.

Huang, F.

F. Huang, Y. Gao, J. Zhou, J. Xu, and Y. S. Wang, “Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing,” J. Alloys Compd. 639(1), 325–329 (2015).
[Crossref]

Jiang, J. Q.

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Temperature sensitivity and stability of NaYF4: Yb3+,Er3+ core-only and core-shell upconversion nanoparticles,” J. Alloys Compd. 617(1), 1–6 (2014).
[Crossref]

Jiang, Y.

Jorge, P. A. S.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. Oliva, J. L. Santos, and F. Farahi, “Luminescence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(1), 201–225 (2005).
[Crossref]

Katsumata, T.

K. Morita, T. Katsumata, S. Komuro, and H. Aizawa, “Fiber-optic thermometry using thermal radiation from Tm end doped SiO2 fiber sensor,” Rev. Sci. Instrum. 85(4), 044902 (2014).
[Crossref] [PubMed]

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Long afterglow phosphorescent sensor materials for fiber-optic thermometer,” Rev. Sci. Instrum. 74(3), 1344–1349 (2003).
[Crossref]

H. Aizawa, N. Ohishi, S. Ogawa, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Fabrication of ruby sensor probe for the fiber-optic thermometer using fluorescence decay,” Rev. Sci. Instrum. 73(10), 3656–3658 (2002).
[Crossref]

Kersey, A. D.

A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2(3), 291–317 (1996).
[Crossref]

Khalid, A. H.

A. H. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors (Basel) 8(9), 5673–5744 (2008).
[Crossref] [PubMed]

Komuro, S.

K. Morita, T. Katsumata, S. Komuro, and H. Aizawa, “Fiber-optic thermometry using thermal radiation from Tm end doped SiO2 fiber sensor,” Rev. Sci. Instrum. 85(4), 044902 (2014).
[Crossref] [PubMed]

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Long afterglow phosphorescent sensor materials for fiber-optic thermometer,” Rev. Sci. Instrum. 74(3), 1344–1349 (2003).
[Crossref]

H. Aizawa, N. Ohishi, S. Ogawa, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Fabrication of ruby sensor probe for the fiber-optic thermometer using fluorescence decay,” Rev. Sci. Instrum. 73(10), 3656–3658 (2002).
[Crossref]

Kontis, K.

A. H. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors (Basel) 8(9), 5673–5744 (2008).
[Crossref] [PubMed]

Kumar, K.

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ co-doped Gd2O3 nano-phosphor for optical thermometry,” Sens. Actuators A Phys. 149(1), 16–20 (2009).
[Crossref]

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Lewis, E.

Li, D. D.

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Temperature sensitivity and stability of NaYF4: Yb3+,Er3+ core-only and core-shell upconversion nanoparticles,” J. Alloys Compd. 617(1), 1–6 (2014).
[Crossref]

Li, J.

Li, S.

S. Ye, P. Xiao, H. Z. Liao, S. Li, and D. P. Wang, “Fast synthesis of sub-10 nm β-NaYF4: Yb3+, Er3+@NaYF4 core-shell upconversion nanocrystals mediated by oleate ligands,” Mater. Res. Bull. 103(1), 279–284 (2018).
[Crossref]

Li, Y. X.

Liao, H. Z.

S. Ye, P. Xiao, H. Z. Liao, S. Li, and D. P. Wang, “Fast synthesis of sub-10 nm β-NaYF4: Yb3+, Er3+@NaYF4 core-shell upconversion nanocrystals mediated by oleate ligands,” Mater. Res. Bull. 103(1), 279–284 (2018).
[Crossref]

Lin, L.

Z. H. Feng, L. Lin, Z. Z. Wang, and Z. Q. Zheng, “Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic,” Opt. Commun. 399(1), 40–44 (2017).
[Crossref]

Liu, G.

Liu, Z.

K. Zheng, Z. Liu, C. Lv, and W. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(35), 5502–5507 (2013).
[Crossref]

López-Figueroa, E. O.

Luo, L. J.

X. Yu, F. Song, C. Zou, L. J. Luo, C. G. Ming, W. T. Wang, Z. Z. Cheng, L. Han, T. Q. Sun, and J. G. Tian, “Temperature dependence of luminescence behavior in Er3+/Yb3+ co-doped transparent phosphate glass ceramics,” Opt. Mater. 31(11), 1645–1649 (2009).
[Crossref]

Lv, C.

K. Zheng, Z. Liu, C. Lv, and W. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(35), 5502–5507 (2013).
[Crossref]

Mandal, J.

J. Mandal, S. Pal, T. Sun, K. T. V. Grattan, A. T. Augousti, and S. A. Wade, “Bragg grating-based fiber-optic laser probe for temperature sensing,” IEEE Photonics Technol. Lett. 16(1), 218–220 (2004).
[Crossref]

Matsunaga, K.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Long afterglow phosphorescent sensor materials for fiber-optic thermometer,” Rev. Sci. Instrum. 74(3), 1344–1349 (2003).
[Crossref]

Medeiros Neto, J. A.

P. V. Dos Santos, M. T. De Araujo, A. S. Gouveia Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ co-doped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Ming, C. G.

X. Yu, F. Song, C. Zou, L. J. Luo, C. G. Ming, W. T. Wang, Z. Z. Cheng, L. Han, T. Q. Sun, and J. G. Tian, “Temperature dependence of luminescence behavior in Er3+/Yb3+ co-doped transparent phosphate glass ceramics,” Opt. Mater. 31(11), 1645–1649 (2009).
[Crossref]

Monzón-Hernández, D.

Moreno-Hernández, C.

Morikawa, T.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Long afterglow phosphorescent sensor materials for fiber-optic thermometer,” Rev. Sci. Instrum. 74(3), 1344–1349 (2003).
[Crossref]

H. Aizawa, N. Ohishi, S. Ogawa, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Fabrication of ruby sensor probe for the fiber-optic thermometer using fluorescence decay,” Rev. Sci. Instrum. 73(10), 3656–3658 (2002).
[Crossref]

Morita, K.

K. Morita, T. Katsumata, S. Komuro, and H. Aizawa, “Fiber-optic thermometry using thermal radiation from Tm end doped SiO2 fiber sensor,” Rev. Sci. Instrum. 85(4), 044902 (2014).
[Crossref] [PubMed]

Ogawa, S.

H. Aizawa, N. Ohishi, S. Ogawa, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Fabrication of ruby sensor probe for the fiber-optic thermometer using fluorescence decay,” Rev. Sci. Instrum. 73(10), 3656–3658 (2002).
[Crossref]

Ohishi, N.

H. Aizawa, N. Ohishi, S. Ogawa, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Fabrication of ruby sensor probe for the fiber-optic thermometer using fluorescence decay,” Rev. Sci. Instrum. 73(10), 3656–3658 (2002).
[Crossref]

Oliva, A.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. Oliva, J. L. Santos, and F. Farahi, “Luminescence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(1), 201–225 (2005).
[Crossref]

Paez, G.

J. Castrellon, G. Paez, and M. Srtojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43(1), 219–222 (2002).
[Crossref]

Pal, S.

J. Mandal, S. Pal, T. Sun, K. T. V. Grattan, A. T. Augousti, and S. A. Wade, “Bragg grating-based fiber-optic laser probe for temperature sensing,” IEEE Photonics Technol. Lett. 16(1), 218–220 (2004).
[Crossref]

Palmer, A. W.

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, “Ruby decay‐time fluorescence thermometer in a fiber‐optic configuration,” Rev. Sci. Instrum. 59(8), 1328–1335 (1988).
[Crossref]

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, “Ruby fluorescence wavelength division fiber‐optic temperature sensor,” Rev. Sci. Instrum. 58(7), 1231–1234 (1987).
[Crossref]

Paredes-Gallardo, O. E.

Qin, W.

K. Zheng, Z. Liu, C. Lv, and W. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(35), 5502–5507 (2013).
[Crossref]

Rai, D. K.

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sens. Actuators A Phys. 128(1), 14–17 (2006).
[Crossref]

Rai, S. B.

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ co-doped Gd2O3 nano-phosphor for optical thermometry,” Sens. Actuators A Phys. 149(1), 16–20 (2009).
[Crossref]

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sens. Actuators A Phys. 128(1), 14–17 (2006).
[Crossref]

Rai, V. K.

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sens. Actuators A Phys. 128(1), 14–17 (2006).
[Crossref]

Rosa, C. C.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. Oliva, J. L. Santos, and F. Farahi, “Luminescence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(1), 201–225 (2005).
[Crossref]

Santos, J. L.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. Oliva, J. L. Santos, and F. Farahi, “Luminescence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(1), 201–225 (2005).
[Crossref]

Schäfer, H.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Selli, R. K.

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, “Ruby decay‐time fluorescence thermometer in a fiber‐optic configuration,” Rev. Sci. Instrum. 59(8), 1328–1335 (1988).
[Crossref]

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, “Ruby fluorescence wavelength division fiber‐optic temperature sensor,” Rev. Sci. Instrum. 58(7), 1231–1234 (1987).
[Crossref]

Semenov, A. S.

V. I. Busurin, A. S. Semenov, and N. P. Udalov, “Optical and fiber-optic sensors,” Sov. J. Quantum Electron. 15(5), 595–621 (1985).
[Crossref]

Shao, Q. Y.

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Temperature sensitivity and stability of NaYF4: Yb3+,Er3+ core-only and core-shell upconversion nanoparticles,” J. Alloys Compd. 617(1), 1–6 (2014).
[Crossref]

Silva, J. C. G. E. D.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. Oliva, J. L. Santos, and F. Farahi, “Luminescence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(1), 201–225 (2005).
[Crossref]

Singh, S. K.

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ co-doped Gd2O3 nano-phosphor for optical thermometry,” Sens. Actuators A Phys. 149(1), 16–20 (2009).
[Crossref]

Sombra, A. S. B.

P. V. Dos Santos, M. T. De Araujo, A. S. Gouveia Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ co-doped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Song, F.

X. Yu, F. Song, C. Zou, L. J. Luo, C. G. Ming, W. T. Wang, Z. Z. Cheng, L. Han, T. Q. Sun, and J. G. Tian, “Temperature dependence of luminescence behavior in Er3+/Yb3+ co-doped transparent phosphate glass ceramics,” Opt. Mater. 31(11), 1645–1649 (2009).
[Crossref]

Song, H.

W. Yu, W. Xu, H. Song, and S. Zhang, “Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase,” Dalton Trans. 43(16), 6139–6147 (2014).
[Crossref] [PubMed]

Srtojnik, M.

J. Castrellon, G. Paez, and M. Srtojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43(1), 219–222 (2002).
[Crossref]

Sun, T.

J. Mandal, S. Pal, T. Sun, K. T. V. Grattan, A. T. Augousti, and S. A. Wade, “Bragg grating-based fiber-optic laser probe for temperature sensing,” IEEE Photonics Technol. Lett. 16(1), 218–220 (2004).
[Crossref]

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1), 40–61 (2000).
[Crossref]

Sun, T. Q.

X. Yu, F. Song, C. Zou, L. J. Luo, C. G. Ming, W. T. Wang, Z. Z. Cheng, L. Han, T. Q. Sun, and J. G. Tian, “Temperature dependence of luminescence behavior in Er3+/Yb3+ co-doped transparent phosphate glass ceramics,” Opt. Mater. 31(11), 1645–1649 (2009).
[Crossref]

Takahashi, J.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Long afterglow phosphorescent sensor materials for fiber-optic thermometer,” Rev. Sci. Instrum. 74(3), 1344–1349 (2003).
[Crossref]

Tao, S. Q.

H. Q. Guo and S. Q. Tao, “An active core fiber-optic temperature sensor using an Eu(III)-doped sol-gel silica fiber as a temperature indicator,” IEEE Sens. J. 7(6), 953–954 (2007).
[Crossref]

Tian, J. G.

X. Yu, F. Song, C. Zou, L. J. Luo, C. G. Ming, W. T. Wang, Z. Z. Cheng, L. Han, T. Q. Sun, and J. G. Tian, “Temperature dependence of luminescence behavior in Er3+/Yb3+ co-doped transparent phosphate glass ceramics,” Opt. Mater. 31(11), 1645–1649 (2009).
[Crossref]

Toba, E.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Long afterglow phosphorescent sensor materials for fiber-optic thermometer,” Rev. Sci. Instrum. 74(3), 1344–1349 (2003).
[Crossref]

H. Aizawa, N. Ohishi, S. Ogawa, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Fabrication of ruby sensor probe for the fiber-optic thermometer using fluorescence decay,” Rev. Sci. Instrum. 73(10), 3656–3658 (2002).
[Crossref]

Torres-Cisneros, M.

Udalov, N. P.

V. I. Busurin, A. S. Semenov, and N. P. Udalov, “Optical and fiber-optic sensors,” Sov. J. Quantum Electron. 15(5), 595–621 (1985).
[Crossref]

Villatoro, J.

Wade, S. A.

J. Mandal, S. Pal, T. Sun, K. T. V. Grattan, A. T. Augousti, and S. A. Wade, “Bragg grating-based fiber-optic laser probe for temperature sensing,” IEEE Photonics Technol. Lett. 16(1), 218–220 (2004).
[Crossref]

Wang, D. P.

S. Ye, P. Xiao, H. Z. Liao, S. Li, and D. P. Wang, “Fast synthesis of sub-10 nm β-NaYF4: Yb3+, Er3+@NaYF4 core-shell upconversion nanocrystals mediated by oleate ligands,” Mater. Res. Bull. 103(1), 279–284 (2018).
[Crossref]

Wang, P.

Wang, W. T.

X. Yu, F. Song, C. Zou, L. J. Luo, C. G. Ming, W. T. Wang, Z. Z. Cheng, L. Han, T. Q. Sun, and J. G. Tian, “Temperature dependence of luminescence behavior in Er3+/Yb3+ co-doped transparent phosphate glass ceramics,” Opt. Mater. 31(11), 1645–1649 (2009).
[Crossref]

Wang, X. S.

Wang, Y. S.

F. Huang, Y. Gao, J. Zhou, J. Xu, and Y. S. Wang, “Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing,” J. Alloys Compd. 639(1), 325–329 (2015).
[Crossref]

Wang, Z. Z.

Z. H. Feng, L. Lin, Z. Z. Wang, and Z. Q. Zheng, “Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic,” Opt. Commun. 399(1), 40–44 (2017).
[Crossref]

Xiao, P.

S. Ye, P. Xiao, H. Z. Liao, S. Li, and D. P. Wang, “Fast synthesis of sub-10 nm β-NaYF4: Yb3+, Er3+@NaYF4 core-shell upconversion nanocrystals mediated by oleate ligands,” Mater. Res. Bull. 103(1), 279–284 (2018).
[Crossref]

Xu, J.

F. Huang, Y. Gao, J. Zhou, J. Xu, and Y. S. Wang, “Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing,” J. Alloys Compd. 639(1), 325–329 (2015).
[Crossref]

Xu, W.

W. Yu, W. Xu, H. Song, and S. Zhang, “Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase,” Dalton Trans. 43(16), 6139–6147 (2014).
[Crossref] [PubMed]

W. Xu, X. Gao, L. Zheng, Z. Zhang, and W. Cao, “Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior,” Opt. Express 20(16), 18127–18137 (2012).
[Crossref] [PubMed]

Yao, X.

Ye, S.

S. Ye, P. Xiao, H. Z. Liao, S. Li, and D. P. Wang, “Fast synthesis of sub-10 nm β-NaYF4: Yb3+, Er3+@NaYF4 core-shell upconversion nanocrystals mediated by oleate ligands,” Mater. Res. Bull. 103(1), 279–284 (2018).
[Crossref]

Yu, W.

W. Yu, W. Xu, H. Song, and S. Zhang, “Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase,” Dalton Trans. 43(16), 6139–6147 (2014).
[Crossref] [PubMed]

Yu, X.

X. Yu, F. Song, C. Zou, L. J. Luo, C. G. Ming, W. T. Wang, Z. Z. Cheng, L. Han, T. Q. Sun, and J. G. Tian, “Temperature dependence of luminescence behavior in Er3+/Yb3+ co-doped transparent phosphate glass ceramics,” Opt. Mater. 31(11), 1645–1649 (2009).
[Crossref]

Zhang, S.

W. Yu, W. Xu, H. Song, and S. Zhang, “Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase,” Dalton Trans. 43(16), 6139–6147 (2014).
[Crossref] [PubMed]

Zhang, Z.

Zheng, K.

K. Zheng, Z. Liu, C. Lv, and W. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(35), 5502–5507 (2013).
[Crossref]

Zheng, L.

Zheng, Z. Q.

Z. H. Feng, L. Lin, Z. Z. Wang, and Z. Q. Zheng, “Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic,” Opt. Commun. 399(1), 40–44 (2017).
[Crossref]

Zhou, J.

F. Huang, Y. Gao, J. Zhou, J. Xu, and Y. S. Wang, “Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing,” J. Alloys Compd. 639(1), 325–329 (2015).
[Crossref]

Zou, C.

X. Yu, F. Song, C. Zou, L. J. Luo, C. G. Ming, W. T. Wang, Z. Z. Cheng, L. Han, T. Q. Sun, and J. G. Tian, “Temperature dependence of luminescence behavior in Er3+/Yb3+ co-doped transparent phosphate glass ceramics,” Opt. Mater. 31(11), 1645–1649 (2009).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. V. Dos Santos, M. T. De Araujo, A. S. Gouveia Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ co-doped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Dalton Trans. (1)

W. Yu, W. Xu, H. Song, and S. Zhang, “Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase,” Dalton Trans. 43(16), 6139–6147 (2014).
[Crossref] [PubMed]

Fiber Integr. Opt. (1)

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. Oliva, J. L. Santos, and F. Farahi, “Luminescence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(1), 201–225 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Mandal, S. Pal, T. Sun, K. T. V. Grattan, A. T. Augousti, and S. A. Wade, “Bragg grating-based fiber-optic laser probe for temperature sensing,” IEEE Photonics Technol. Lett. 16(1), 218–220 (2004).
[Crossref]

IEEE Sens. J. (1)

H. Q. Guo and S. Q. Tao, “An active core fiber-optic temperature sensor using an Eu(III)-doped sol-gel silica fiber as a temperature indicator,” IEEE Sens. J. 7(6), 953–954 (2007).
[Crossref]

Infrared Phys. Technol. (1)

J. Castrellon, G. Paez, and M. Srtojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43(1), 219–222 (2002).
[Crossref]

J. Alloys Compd. (2)

F. Huang, Y. Gao, J. Zhou, J. Xu, and Y. S. Wang, “Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing,” J. Alloys Compd. 639(1), 325–329 (2015).
[Crossref]

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Temperature sensitivity and stability of NaYF4: Yb3+,Er3+ core-only and core-shell upconversion nanoparticles,” J. Alloys Compd. 617(1), 1–6 (2014).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

K. Zheng, Z. Liu, C. Lv, and W. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(35), 5502–5507 (2013).
[Crossref]

Mater. Res. Bull. (1)

S. Ye, P. Xiao, H. Z. Liao, S. Li, and D. P. Wang, “Fast synthesis of sub-10 nm β-NaYF4: Yb3+, Er3+@NaYF4 core-shell upconversion nanocrystals mediated by oleate ligands,” Mater. Res. Bull. 103(1), 279–284 (2018).
[Crossref]

Opt. Commun. (1)

Z. H. Feng, L. Lin, Z. Z. Wang, and Z. Q. Zheng, “Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic,” Opt. Commun. 399(1), 40–44 (2017).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (2)

A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2(3), 291–317 (1996).
[Crossref]

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Opt. Mater. (1)

X. Yu, F. Song, C. Zou, L. J. Luo, C. G. Ming, W. T. Wang, Z. Z. Cheng, L. Han, T. Q. Sun, and J. G. Tian, “Temperature dependence of luminescence behavior in Er3+/Yb3+ co-doped transparent phosphate glass ceramics,” Opt. Mater. 31(11), 1645–1649 (2009).
[Crossref]

Rev. Sci. Instrum. (5)

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, “Ruby fluorescence wavelength division fiber‐optic temperature sensor,” Rev. Sci. Instrum. 58(7), 1231–1234 (1987).
[Crossref]

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, “Ruby decay‐time fluorescence thermometer in a fiber‐optic configuration,” Rev. Sci. Instrum. 59(8), 1328–1335 (1988).
[Crossref]

H. Aizawa, N. Ohishi, S. Ogawa, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Fabrication of ruby sensor probe for the fiber-optic thermometer using fluorescence decay,” Rev. Sci. Instrum. 73(10), 3656–3658 (2002).
[Crossref]

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, “Long afterglow phosphorescent sensor materials for fiber-optic thermometer,” Rev. Sci. Instrum. 74(3), 1344–1349 (2003).
[Crossref]

K. Morita, T. Katsumata, S. Komuro, and H. Aizawa, “Fiber-optic thermometry using thermal radiation from Tm end doped SiO2 fiber sensor,” Rev. Sci. Instrum. 85(4), 044902 (2014).
[Crossref] [PubMed]

Sens. Actuators A Phys. (3)

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ co-doped Gd2O3 nano-phosphor for optical thermometry,” Sens. Actuators A Phys. 149(1), 16–20 (2009).
[Crossref]

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1), 40–61 (2000).
[Crossref]

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sens. Actuators A Phys. 128(1), 14–17 (2006).
[Crossref]

Sensors (Basel) (1)

A. H. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors (Basel) 8(9), 5673–5744 (2008).
[Crossref] [PubMed]

Sov. J. Quantum Electron. (1)

V. I. Busurin, A. S. Semenov, and N. P. Udalov, “Optical and fiber-optic sensors,” Sov. J. Quantum Electron. 15(5), 595–621 (1985).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 UCL spectrum of NaYF4:Er3+,Yb3+ under a 980 nm excitation. Inset: schematic energy levels of Yb3+ and Er3+ involved in the upconversion process.
Fig. 2
Fig. 2 (a) NaYF4:Er3+,Yb3+ UCNPs, (b) image of fiber end face before fusion, (c) image of fiber end face after fusion in X axis, and (d) image of fiber end face after fusion in Y axis.
Fig. 3
Fig. 3 Experimental setup. (a) structure of temperature measurement system, (b) practical measurement system, (c) image of the sensor’s sensing unit in the temperature chamber.
Fig. 4
Fig. 4 Original gathering UCL spectra in the temperature range from 40 °C to 100 °C.
Fig. 5
Fig. 5 Temperature-dependent characteristics. (a) log plot of the intensity ratio RHS(I525/I545), (b) RHS(I525/I545) as a function of the temperature.
Fig. 6
Fig. 6 Reproducibility of the sensor's FIR for UCL spectra. (a) on time duration, (b)on heating cycle.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R HS = R HS (0) e ΔE kT ln R HS =ln R HS (0) ΔE k 1 T
y=1393x+3.925
S R = d R HS dT = R HS ΔE k T 2 = R HS (0)e ΔE k T 2 ΔE k T 2
d S R dT = d 2 R HS d T 2 = R HS ΔE k T 3 ( ΔE kT 2)