Abstract

A super multi-view (SMV) technique is applied to near-eye displays to solve the vergence–accommodation conflict that causes visual fatigue. The proposed SMV near-eye display employs a high-speed spatial light modulator (SLM), a two-dimensional (2D) light source array, and an imaging optics for each eye. The imaging optics produces a virtual image of the SLM and real images of the light sources to generate a 2D array of viewpoints. The SMV images are generated using a time-multiplexing technique: the multiple light sources sequentially emit light while the SLM synchronously displays corresponding parallax images. A monocular experimental system was constructed using a ferroelectric liquid crystal display and an LED array. A full-parallax SMV image generation with 21 viewpoints was demonstrated and a comparison of full-parallax and horizontal parallax SMV images provided.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-projection of lenticular displays to construct a 256-view super multi-view display

Yasuhiro Takaki and Nichiyo Nago
Opt. Express 18(9) 8824-8835 (2010)

Super multi-view windshield display for long-distance image information presentation

Yasuhiro Takaki, Yohei Urano, Shinji Kashiwada, Hiroshi Ando, and Koji Nakamura
Opt. Express 19(2) 704-716 (2011)

Super multi-view display with a lower resolution flat-panel display

Yasuhiro Takaki, Kosuke Tanaka, and Junya Nakamura
Opt. Express 19(5) 4129-4139 (2011)

References

  • View by:
  • |
  • |
  • |

  1. I. E. Sutherland, “A head-mounted three dimensional display,” Proc. of Fall Joint Computer Conference, 757–764 (1968).
  2. S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23(4), 191–201 (2002).
    [Crossref]
  3. C. M. Schor, “A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses,” Optom. Vis. Sci. 69(4), 258–269 (1992).
    [Crossref] [PubMed]
  4. G. A. Koulieris, B. Bui, M. S. Banks, and G. Drettakis, “Accommodation and comfort in head-mounted displays,” ACM Trans. Graph. 36(4), 1 (2017).
    [Crossref]
  5. D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 220 (2013).
    [Crossref]
  6. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
    [Crossref] [PubMed]
  7. F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
    [Crossref]
  8. X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
    [Crossref] [PubMed]
  9. N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2183–2188 (2017).
    [Crossref] [PubMed]
  10. R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
    [Crossref]
  11. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
    [Crossref] [PubMed]
  12. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
    [Crossref]
  13. E. Murakami, Y. Oguro, and Y. Sakamoto, “Study on compact head-mounted display system using electro-holography for augmented reality,” IEICE Trans. Electron. E100C(11), 965–971 (2017).
  14. Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
    [Crossref]
  15. Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
    [Crossref]
  16. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
    [Crossref] [PubMed]
  17. Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
    [Crossref] [PubMed]
  18. T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
    [Crossref]
  19. H. Mizushina, J. Nakamura, Y. Takaki, and H. Ando, “Super multi-view 3D displays reduce conflict between accommodative and vergence responses,” J. Soc. Inf. Disp. 24(12), 747–756 (2016).
    [Crossref]
  20. J. Nakamura, K. Tanaka, and Y. Takaki, “Increase in depth of field of eyes using reduced-view super multi-view displays,” Appl. Phys. Express 6(2), 022501 (2013).
    [Crossref]
  21. T. Ueno and Y. Takaki, “Super multi-view near-eye display using time-multiplexing technique,” in 3D Image Acquisition and Display: Technology, Perception and Applications, OSA Technical Digest (online) (Optical Society of America, 2018), paper 3Tu2G.4.
  22. C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
    [Crossref]
  23. F. W. Campbell, “The depth of field of the human eye,” J. Mod. Opt. 4(4), 157–164 (1957).
  24. H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
    [Crossref] [PubMed]

2018 (1)

2017 (5)

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

G. A. Koulieris, B. Bui, M. S. Banks, and G. Drettakis, “Accommodation and comfort in head-mounted displays,” ACM Trans. Graph. 36(4), 1 (2017).
[Crossref]

N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2183–2188 (2017).
[Crossref] [PubMed]

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
[Crossref]

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

2016 (1)

H. Mizushina, J. Nakamura, Y. Takaki, and H. Ando, “Super multi-view 3D displays reduce conflict between accommodative and vergence responses,” J. Soc. Inf. Disp. 24(12), 747–756 (2016).
[Crossref]

2015 (1)

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

2014 (3)

2013 (2)

J. Nakamura, K. Tanaka, and Y. Takaki, “Increase in depth of field of eyes using reduced-view super multi-view displays,” Appl. Phys. Express 6(2), 022501 (2013).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 220 (2013).
[Crossref]

2011 (1)

2010 (1)

2008 (1)

T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
[Crossref]

2006 (1)

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

2005 (1)

Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
[Crossref]

2002 (1)

S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23(4), 191–201 (2002).
[Crossref]

1992 (1)

C. M. Schor, “A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses,” Optom. Vis. Sci. 69(4), 258–269 (1992).
[Crossref] [PubMed]

1957 (1)

F. W. Campbell, “The depth of field of the human eye,” J. Mod. Opt. 4(4), 157–164 (1957).

Ando, H.

H. Mizushina, J. Nakamura, Y. Takaki, and H. Ando, “Super multi-view 3D displays reduce conflict between accommodative and vergence responses,” J. Soc. Inf. Disp. 24(12), 747–756 (2016).
[Crossref]

Bang, K.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Banks, M. S.

G. A. Koulieris, B. Bui, M. S. Banks, and G. Drettakis, “Accommodation and comfort in head-mounted displays,” ACM Trans. Graph. 36(4), 1 (2017).
[Crossref]

Bui, B.

G. A. Koulieris, B. Bui, M. S. Banks, and G. Drettakis, “Accommodation and comfort in head-mounted displays,” ACM Trans. Graph. 36(4), 1 (2017).
[Crossref]

Campbell, F. W.

F. W. Campbell, “The depth of field of the human eye,” J. Mod. Opt. 4(4), 157–164 (1957).

Chen, K.

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

Cooper, E. A.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
[Crossref]

N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2183–2188 (2017).
[Crossref] [PubMed]

Drettakis, G.

G. A. Koulieris, B. Bui, M. S. Banks, and G. Drettakis, “Accommodation and comfort in head-mounted displays,” ACM Trans. Graph. 36(4), 1 (2017).
[Crossref]

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Hahn, J.

Hu, X.

Hua, H.

Huang, F. C.

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

Huang, H.

Ide, S.

S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23(4), 191–201 (2002).
[Crossref]

Jang, C.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Javidi, B.

Kanebako, T.

T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
[Crossref]

Kim, H.

Kim, J.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Kim, M.

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Konrad, R.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
[Crossref]

N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2183–2188 (2017).
[Crossref] [PubMed]

Koulieris, G. A.

G. A. Koulieris, B. Bui, M. S. Banks, and G. Drettakis, “Accommodation and comfort in head-mounted displays,” ACM Trans. Graph. 36(4), 1 (2017).
[Crossref]

Lanman, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 220 (2013).
[Crossref]

Lee, B.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Lee, S.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Luebke, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 220 (2013).
[Crossref]

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Mitsuhashi, T.

S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23(4), 191–201 (2002).
[Crossref]

Mizushina, H.

H. Mizushina, J. Nakamura, Y. Takaki, and H. Ando, “Super multi-view 3D displays reduce conflict between accommodative and vergence responses,” J. Soc. Inf. Disp. 24(12), 747–756 (2016).
[Crossref]

Molner, K.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
[Crossref]

Moon, E.

Moon, S.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Nago, N.

Nakamura, J.

H. Mizushina, J. Nakamura, Y. Takaki, and H. Ando, “Super multi-view 3D displays reduce conflict between accommodative and vergence responses,” J. Soc. Inf. Disp. 24(12), 747–756 (2016).
[Crossref]

J. Nakamura, K. Tanaka, and Y. Takaki, “Increase in depth of field of eyes using reduced-view super multi-view displays,” Appl. Phys. Express 6(2), 022501 (2013).
[Crossref]

Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
[Crossref] [PubMed]

Padmanaban, N.

N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2183–2188 (2017).
[Crossref] [PubMed]

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
[Crossref]

Roh, J.

Schor, C. M.

C. M. Schor, “A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses,” Optom. Vis. Sci. 69(4), 258–269 (1992).
[Crossref] [PubMed]

Stramer, T.

N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2183–2188 (2017).
[Crossref] [PubMed]

Sutherland, I. E.

I. E. Sutherland, “A head-mounted three dimensional display,” Proc. of Fall Joint Computer Conference, 757–764 (1968).

Takaki, Y.

H. Mizushina, J. Nakamura, Y. Takaki, and H. Ando, “Super multi-view 3D displays reduce conflict between accommodative and vergence responses,” J. Soc. Inf. Disp. 24(12), 747–756 (2016).
[Crossref]

J. Nakamura, K. Tanaka, and Y. Takaki, “Increase in depth of field of eyes using reduced-view super multi-view displays,” Appl. Phys. Express 6(2), 022501 (2013).
[Crossref]

Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
[Crossref] [PubMed]

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
[Crossref] [PubMed]

T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
[Crossref]

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
[Crossref]

Tanaka, K.

J. Nakamura, K. Tanaka, and Y. Takaki, “Increase in depth of field of eyes using reduced-view super multi-view displays,” Appl. Phys. Express 6(2), 022501 (2013).
[Crossref]

Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
[Crossref] [PubMed]

Thwaites, H.

S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23(4), 191–201 (2002).
[Crossref]

Wetzstein, G.

N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2183–2188 (2017).
[Crossref] [PubMed]

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
[Crossref]

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

Yano, S.

S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23(4), 191–201 (2002).
[Crossref]

ACM Trans. Graph. (6)

G. A. Koulieris, B. Bui, M. S. Banks, and G. Drettakis, “Accommodation and comfort in head-mounted displays,” ACM Trans. Graph. 36(4), 1 (2017).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 220 (2013).
[Crossref]

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(4), 88 (2017).
[Crossref]

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Appl. Phys. Express (1)

J. Nakamura, K. Tanaka, and Y. Takaki, “Increase in depth of field of eyes using reduced-view super multi-view displays,” Appl. Phys. Express 6(2), 022501 (2013).
[Crossref]

Displays (1)

S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23(4), 191–201 (2002).
[Crossref]

J. Mod. Opt. (1)

F. W. Campbell, “The depth of field of the human eye,” J. Mod. Opt. 4(4), 157–164 (1957).

J. Soc. Inf. Disp. (1)

H. Mizushina, J. Nakamura, Y. Takaki, and H. Ando, “Super multi-view 3D displays reduce conflict between accommodative and vergence responses,” J. Soc. Inf. Disp. 24(12), 747–756 (2016).
[Crossref]

Opt. Express (6)

Optom. Vis. Sci. (1)

C. M. Schor, “A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses,” Optom. Vis. Sci. 69(4), 258–269 (1992).
[Crossref] [PubMed]

Proc. IEEE (1)

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2183–2188 (2017).
[Crossref] [PubMed]

Proc. SPIE (2)

Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
[Crossref]

T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
[Crossref]

Other (3)

I. E. Sutherland, “A head-mounted three dimensional display,” Proc. of Fall Joint Computer Conference, 757–764 (1968).

E. Murakami, Y. Oguro, and Y. Sakamoto, “Study on compact head-mounted display system using electro-holography for augmented reality,” IEICE Trans. Electron. E100C(11), 965–971 (2017).

T. Ueno and Y. Takaki, “Super multi-view near-eye display using time-multiplexing technique,” in 3D Image Acquisition and Display: Technology, Perception and Applications, OSA Technical Digest (online) (Optical Society of America, 2018), paper 3Tu2G.4.

Supplementary Material (1)

NameDescription
» Visualization 1       3D images produced by the experimental system

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 SMV display technique: eyes focused at (a) display screen, and (b) 3D image.
Fig. 2
Fig. 2 Schematic diagram of a SMV near-eye display.
Fig. 3
Fig. 3 Experimental system.
Fig. 4
Fig. 4 FLCOS SLM used for the experimental system.
Fig. 5
Fig. 5 Constructed experimental system.
Fig. 6
Fig. 6 Evaluation of the intensity distributions of all viewpoints.
Fig. 7
Fig. 7 Evaluation of the image distortion of the experimental system.
Fig. 8
Fig. 8 Retinal images for a viewpoint interval of 2 mm: focuses are at (a) −150 mm, (b) −120 mm, (c) −90 mm, (d) −60 mm, (e) −30 mm, (f) 0 mm, (g) + 30 mm, (h) + 60 mm, and (i) + 90 mm.
Fig. 9
Fig. 9 Retinal images for a viewpoint interval of 4 mm when almost 2 × 2 viewpoints were contained in the camera entrance pupil: focuses are at (a) −150 mm, (b) −120 mm, (c) −90 mm, (d) −60 mm, (e) −30 mm, (f) 0 mm, (g) + 30 mm, (h) + 60 mm, and (i) + 90 mm.
Fig. 10
Fig. 10 Retinal images for a viewpoint interval of 4 mm when almost 1 × 2 viewpoints were contained in the camera entrance pupil: focuses are at (a) −150 mm, (b) −120 mm, (c) −90 mm, (d) −60 mm, (e) −30 mm, (f) 0 mm, (g) + 30 mm, (h) + 60 mm, and (i) + 90 mm.
Fig. 11
Fig. 11 3D images produced by the prototype system: focuses are at (a) −120 mm (teapot), and (b) + 80 mm (dragon) (see Visualization 1).
Fig. 12
Fig. 12 Retinal images for the horizontal parallax mode with a viewpoint interval of 2 mm: focuses were at (a) −150 mm, (b) −120 mm, (c) −90 mm, (d) −60 mm, (e) −30 mm, (f) 0 mm, (g) + 30 mm, (h) + 60 mm, and (i) + 90 mm.
Fig. 13
Fig. 13 Comparison of retinal images generated by (a) full-parallax mode and (b) horizontal parallax mode at a focus of −150 mm.

Metrics