Abstract

Chemical mapping was demonstrated with a mid-infrared (MIR) microspectroscopy setup based on a supercontinuum source (SC) emitting in the spectral range from 1.55 to 4.5 µm and a MEMS-based Fabry-Pérot filter spectrometer. Diffraction limited spatial resolution in reflection geometry was achieved. A multilayer film consisting of different polymers and mixtures thereof was measured and results were compared to those gained with a conventional FTIR microscope equipped with a thermal MIR source. Results show that compared to thermal sources, the application of the SC source results in higher signal-to-noise ratios together with better spatial resolution and faster scanning. Furthermore, diffraction limited imaging of red blood cells was demonstrated for the first time in the MIR spectral region in reflection mode. The distinctive characteristics of the MIR spectral region in conjunction with the high brightness, spatial coherence and broadband nature of supercontinuum radiation show the potential for improving infrared microscopy significantly.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced mid-infrared multi-bounce ATR spectroscopy for online detection of hydrogen peroxide using a supercontinuum laser

Christoph Gasser, Jakob Kilgus, Michael Harasek, Bernhard Lendl, and Markus Brandstetter
Opt. Express 26(9) 12169-12179 (2018)

Laser-based mid-infrared reflectance imaging of biological tissues

Bujin Guo, Y. Wang, C. Peng, H. L. Zhang, G. P. Luo, H. Q. Le, C. Gmachl, D. L. Sivco, M. L. Peabody, and A.Y. Cho
Opt. Express 12(1) 208-219 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Katok, A. J. Sommer, and P. L. Lang, “Infrared Microspectroscopy,” Appl. Spectrosc. Rev. 25(3-4), 173–211 (1989).
    [Crossref]
  2. H. Sreedhar, V. K. Varma, P. L. Nguyen, B. Davidson, S. Akkina, G. Guzman, S. Setty, A. Kajdacsy-Balla, and M. J. Walsh, “High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology,” J. Vis. Exp. 95, 52332 (2015).
    [Crossref] [PubMed]
  3. M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
    [Crossref] [PubMed]
  4. J. Doherty, G. Cinque, and P. Gardner, “Single-cell analysis using Fourier transform infrared microspectroscopy,” Appl. Spectrosc. Rev. 52(6), 560–587 (2017).
    [Crossref]
  5. O. Old, G. Lloyd, M. Isabelle, L. M. Almond, C. Kendall, K. Baxter, N. Shepherd, A. Shore, N. Stone, and H. Barr, “Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy,” J. Gastroenterol. 53(2), 227–235 (2018).
    [Crossref] [PubMed]
  6. C. Kuepper, F. Großerueschkamp, A. Kallenbach-Thieltges, A. Mosig, A. Tannapfel, and K. Gerwert, “Label-free classification of colon cancer grading using infrared spectral histopathology,” Faraday Discuss. 187, 105–118 (2016).
    [Crossref] [PubMed]
  7. M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
    [Crossref] [PubMed]
  8. S. De Bruyne, M. M. Speeckaert, and J. R. Delanghe, “Applications of mid-infrared spectroscopy in the clinical laboratory setting,” Crit. Rev. Clin. Lab. Sci. 55(1), 1–20 (2018).
    [Crossref] [PubMed]
  9. R. Salzer and H. W. Siesler, Infrared and Raman Spectroscopic Imaging. (Wiley-VCH, 2014).
  10. G. L. Carr, M. Hanfland, and G. P. Williams, “Midinfrared beamline at the National Synchrotron Light Source port U2B,” Rev. Sci. Instrum. 66(2), 1643–1645 (1995).
    [Crossref]
  11. M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
    [Crossref] [PubMed]
  12. B. Guo, Y. Wang, C. Peng, H. Zhang, G. Luo, H. Le, C. Gmachl, D. Sivco, M. Peabody, and A. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12(1), 208–219 (2004).
    [Crossref] [PubMed]
  13. D. T. D. Childs, R. A. Hogg, D. G. Revin, I. U. Rehman, J. W. Cockburn, and S. J. Matcher, “Sensitivity Advantage of QCL Tunable-Laser Mid-Infrared Spectroscopy Over FTIR Spectroscopy,” Appl. Spectrosc. Rev. 50(10), 822–839 (2015).
    [Crossref]
  14. J. A. Kimber and S. G. Kazarian, “Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers,” Anal. Bioanal. Chem. 409(25), 5813–5820 (2017).
    [Crossref] [PubMed]
  15. K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87(1), 485–493 (2015).
    [Crossref] [PubMed]
  16. A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
    [Crossref] [PubMed]
  17. C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections,” Sci. Rep. 8(1), 7717 (2018).
    [Crossref] [PubMed]
  18. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
    [Crossref]
  19. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
    [Crossref] [PubMed]
  20. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
    [Crossref] [PubMed]
  21. J. Kilgus, P. Müller, P. M. Moselund, and M. Brandstetter, “Application of supercontinuum radiation for mid-infrared spectroscopy,” in Proceedings of SPIE-The International Society for Optical Engineering (2016), 9899.
  22. J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-Infrared Standoff Spectroscopy Using a Supercontinuum Laser with Compact Fabry-Pérot Filter Spectrometers,” Appl. Spectrosc. 72(4), 634–642 (2018).
    [Crossref] [PubMed]
  23. C. Gasser, J. Kilgus, M. Harasek, B. Lendl, and M. Brandstetter, “Enhanced mid-infrared multi-bounce ATR spectroscopy for online detection of hydrogen peroxide using a supercontinuum laser,” Opt. Express 26(9), 12169–12179 (2018).
    [Crossref] [PubMed]
  24. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
    [Crossref] [PubMed]
  25. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999-1002 (2018).
  26. F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica 5(4), 378 (2018).
    [Crossref]
  27. P. M. Moselund, L. Huot, and C. D. Brooks, “All-fiber mid-IR supercontinuum: a powerful new tool for IR-spectroscopy,” in R. R. Alfano and S. G. Demos, eds. (2016), p. 97030B.
  28. P. Moselund, C. Petersen, L. Leick, J. Seidelin Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly Stable, All-fiber, High Power ZBLAN Supercontinuum Source Reaching 4.75 µm used for Nanosecond mid-IR Spectroscopy,” in Advanced Solid-State Lasers Congress (OSA, 2013), paper JTh5A.9.
    [Crossref]
  29. M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared Orange: Connecting Hyperspectral Data with Machine Learning,” Synchrotron Radiat. News 30(4), 40–45 (2017).
    [Crossref]
  30. C. Rodarmel and J. Shan, “Principal Component Analysis for Hyperspectral Image Classification,” (2002).
  31. G. L. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum. 72(3), 1613 (2001).
    [Crossref]
  32. P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
    [Crossref] [PubMed]
  33. J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (J. Wiley, 2002).
  34. A. J. Sommer, C. Marcott, G. M. Story, and L. G. Tisinger, “Attenuated Total Internal Reflection Infrared Mapping Microspectroscopy Using an Imaging Microscope,” Appl. Spectrosc. 55(3), 252-256 (2001).
  35. L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
    [Crossref] [PubMed]
  36. K.-Z. Liu, M.-H. Shi, and H. H. Mantsch, “Molecular and chemical characterization of blood cells by infrared spectroscopy: a new optical tool in hematology,” Blood Cells Mol. Dis. 35(3), 404–412 (2005).
    [Crossref] [PubMed]
  37. B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst (Lond.) 139(19), 4769–4774 (2014).
    [Crossref] [PubMed]
  38. N. W. C. J. van de Donk, H. M. Lokhorst, K. C. Anderson, and P. G. Richardson, “How I treat plasma cell leukemia,” Blood 120(12), 2376–2389 (2012).
    [Crossref] [PubMed]
  39. J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
    [Crossref] [PubMed]
  40. M. Farries, J. Ward, I. Lindsay, J. Nallala, and P. Moselund, “Fast hyper-spectral imaging of cytological samples in the mid-infrared wavelength region,” in R. R. Alfano and S. G. Demos, eds. (International Society for Optics and Photonics, 2017), 10060, p. 100600Y.

2018 (8)

O. Old, G. Lloyd, M. Isabelle, L. M. Almond, C. Kendall, K. Baxter, N. Shepherd, A. Shore, N. Stone, and H. Barr, “Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy,” J. Gastroenterol. 53(2), 227–235 (2018).
[Crossref] [PubMed]

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref] [PubMed]

S. De Bruyne, M. M. Speeckaert, and J. R. Delanghe, “Applications of mid-infrared spectroscopy in the clinical laboratory setting,” Crit. Rev. Clin. Lab. Sci. 55(1), 1–20 (2018).
[Crossref] [PubMed]

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999-1002 (2018).

F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica 5(4), 378 (2018).
[Crossref]

J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-Infrared Standoff Spectroscopy Using a Supercontinuum Laser with Compact Fabry-Pérot Filter Spectrometers,” Appl. Spectrosc. 72(4), 634–642 (2018).
[Crossref] [PubMed]

C. Gasser, J. Kilgus, M. Harasek, B. Lendl, and M. Brandstetter, “Enhanced mid-infrared multi-bounce ATR spectroscopy for online detection of hydrogen peroxide using a supercontinuum laser,” Opt. Express 26(9), 12169–12179 (2018).
[Crossref] [PubMed]

2017 (4)

A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
[Crossref] [PubMed]

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared Orange: Connecting Hyperspectral Data with Machine Learning,” Synchrotron Radiat. News 30(4), 40–45 (2017).
[Crossref]

J. A. Kimber and S. G. Kazarian, “Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers,” Anal. Bioanal. Chem. 409(25), 5813–5820 (2017).
[Crossref] [PubMed]

J. Doherty, G. Cinque, and P. Gardner, “Single-cell analysis using Fourier transform infrared microspectroscopy,” Appl. Spectrosc. Rev. 52(6), 560–587 (2017).
[Crossref]

2016 (4)

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

C. Kuepper, F. Großerueschkamp, A. Kallenbach-Thieltges, A. Mosig, A. Tannapfel, and K. Gerwert, “Label-free classification of colon cancer grading using infrared spectral histopathology,” Faraday Discuss. 187, 105–118 (2016).
[Crossref] [PubMed]

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

2015 (3)

H. Sreedhar, V. K. Varma, P. L. Nguyen, B. Davidson, S. Akkina, G. Guzman, S. Setty, A. Kajdacsy-Balla, and M. J. Walsh, “High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology,” J. Vis. Exp. 95, 52332 (2015).
[Crossref] [PubMed]

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

D. T. D. Childs, R. A. Hogg, D. G. Revin, I. U. Rehman, J. W. Cockburn, and S. J. Matcher, “Sensitivity Advantage of QCL Tunable-Laser Mid-Infrared Spectroscopy Over FTIR Spectroscopy,” Appl. Spectrosc. Rev. 50(10), 822–839 (2015).
[Crossref]

2014 (2)

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst (Lond.) 139(19), 4769–4774 (2014).
[Crossref] [PubMed]

2012 (2)

N. W. C. J. van de Donk, H. M. Lokhorst, K. C. Anderson, and P. G. Richardson, “How I treat plasma cell leukemia,” Blood 120(12), 2376–2389 (2012).
[Crossref] [PubMed]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref] [PubMed]

2011 (1)

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

2008 (1)

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[Crossref]

2006 (2)

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
[Crossref] [PubMed]

L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
[Crossref] [PubMed]

2005 (1)

K.-Z. Liu, M.-H. Shi, and H. H. Mantsch, “Molecular and chemical characterization of blood cells by infrared spectroscopy: a new optical tool in hematology,” Blood Cells Mol. Dis. 35(3), 404–412 (2005).
[Crossref] [PubMed]

2004 (1)

2001 (2)

A. J. Sommer, C. Marcott, G. M. Story, and L. G. Tisinger, “Attenuated Total Internal Reflection Infrared Mapping Microspectroscopy Using an Imaging Microscope,” Appl. Spectrosc. 55(3), 252-256 (2001).

G. L. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum. 72(3), 1613 (2001).
[Crossref]

1995 (1)

G. L. Carr, M. Hanfland, and G. P. Williams, “Midinfrared beamline at the National Synchrotron Light Source port U2B,” Rev. Sci. Instrum. 66(2), 1643–1645 (1995).
[Crossref]

1989 (1)

J. E. Katok, A. J. Sommer, and P. L. Lang, “Infrared Microspectroscopy,” Appl. Spectrosc. Rev. 25(3-4), 173–211 (1989).
[Crossref]

Agger, C.

Akkina, S.

H. Sreedhar, V. K. Varma, P. L. Nguyen, B. Davidson, S. Akkina, G. Guzman, S. Setty, A. Kajdacsy-Balla, and M. J. Walsh, “High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology,” J. Vis. Exp. 95, 52332 (2015).
[Crossref] [PubMed]

Almond, L. M.

O. Old, G. Lloyd, M. Isabelle, L. M. Almond, C. Kendall, K. Baxter, N. Shepherd, A. Shore, N. Stone, and H. Barr, “Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy,” J. Gastroenterol. 53(2), 227–235 (2018).
[Crossref] [PubMed]

Anderson, K. C.

N. W. C. J. van de Donk, H. M. Lokhorst, K. C. Anderson, and P. G. Richardson, “How I treat plasma cell leukemia,” Blood 120(12), 2376–2389 (2012).
[Crossref] [PubMed]

Baker, M. J.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref] [PubMed]

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Bambery, K. R.

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst (Lond.) 139(19), 4769–4774 (2014).
[Crossref] [PubMed]

Bang, O.

Barr, H.

O. Old, G. Lloyd, M. Isabelle, L. M. Almond, C. Kendall, K. Baxter, N. Shepherd, A. Shore, N. Stone, and H. Barr, “Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy,” J. Gastroenterol. 53(2), 227–235 (2018).
[Crossref] [PubMed]

Baxter, K.

O. Old, G. Lloyd, M. Isabelle, L. M. Almond, C. Kendall, K. Baxter, N. Shepherd, A. Shore, N. Stone, and H. Barr, “Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy,” J. Gastroenterol. 53(2), 227–235 (2018).
[Crossref] [PubMed]

Bhargava, R.

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Birarda, G.

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared Orange: Connecting Hyperspectral Data with Machine Learning,” Synchrotron Radiat. News 30(4), 40–45 (2017).
[Crossref]

Borondics, F.

F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica 5(4), 378 (2018).
[Crossref]

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared Orange: Connecting Hyperspectral Data with Machine Learning,” Synchrotron Radiat. News 30(4), 40–45 (2017).
[Crossref]

Brandstetter, M.

J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-Infrared Standoff Spectroscopy Using a Supercontinuum Laser with Compact Fabry-Pérot Filter Spectrometers,” Appl. Spectrosc. 72(4), 634–642 (2018).
[Crossref] [PubMed]

C. Gasser, J. Kilgus, M. Harasek, B. Lendl, and M. Brandstetter, “Enhanced mid-infrared multi-bounce ATR spectroscopy for online detection of hydrogen peroxide using a supercontinuum laser,” Opt. Express 26(9), 12169–12179 (2018).
[Crossref] [PubMed]

A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
[Crossref] [PubMed]

J. Kilgus, P. Müller, P. M. Moselund, and M. Brandstetter, “Application of supercontinuum radiation for mid-infrared spectroscopy,” in Proceedings of SPIE-The International Society for Optical Engineering (2016), 9899.

Byrne, H. J.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref] [PubMed]

Carr, G. L.

G. L. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum. 72(3), 1613 (2001).
[Crossref]

G. L. Carr, M. Hanfland, and G. P. Williams, “Midinfrared beamline at the National Synchrotron Light Source port U2B,” Rev. Sci. Instrum. 66(2), 1643–1645 (1995).
[Crossref]

Chalmers, J.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref] [PubMed]

Cheng, T.

Childs, D. T. D.

D. T. D. Childs, R. A. Hogg, D. G. Revin, I. U. Rehman, J. W. Cockburn, and S. J. Matcher, “Sensitivity Advantage of QCL Tunable-Laser Mid-Infrared Spectroscopy Over FTIR Spectroscopy,” Appl. Spectrosc. Rev. 50(10), 822–839 (2015).
[Crossref]

Cho, A.

Cinque, G.

J. Doherty, G. Cinque, and P. Gardner, “Single-cell analysis using Fourier transform infrared microspectroscopy,” Appl. Spectrosc. Rev. 52(6), 560–587 (2017).
[Crossref]

Cockburn, J. W.

D. T. D. Childs, R. A. Hogg, D. G. Revin, I. U. Rehman, J. W. Cockburn, and S. J. Matcher, “Sensitivity Advantage of QCL Tunable-Laser Mid-Infrared Spectroscopy Over FTIR Spectroscopy,” Appl. Spectrosc. Rev. 50(10), 822–839 (2015).
[Crossref]

Davidson, B.

H. Sreedhar, V. K. Varma, P. L. Nguyen, B. Davidson, S. Akkina, G. Guzman, S. Setty, A. Kajdacsy-Balla, and M. J. Walsh, “High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology,” J. Vis. Exp. 95, 52332 (2015).
[Crossref] [PubMed]

De Bruyne, S.

S. De Bruyne, M. M. Speeckaert, and J. R. Delanghe, “Applications of mid-infrared spectroscopy in the clinical laboratory setting,” Crit. Rev. Clin. Lab. Sci. 55(1), 1–20 (2018).
[Crossref] [PubMed]

Delanghe, J. R.

S. De Bruyne, M. M. Speeckaert, and J. R. Delanghe, “Applications of mid-infrared spectroscopy in the clinical laboratory setting,” Crit. Rev. Clin. Lab. Sci. 55(1), 1–20 (2018).
[Crossref] [PubMed]

Demšar, J.

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared Orange: Connecting Hyperspectral Data with Machine Learning,” Synchrotron Radiat. News 30(4), 40–45 (2017).
[Crossref]

Dixon, M. W. A.

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst (Lond.) 139(19), 4769–4774 (2014).
[Crossref] [PubMed]

Doherty, J.

J. Doherty, G. Cinque, and P. Gardner, “Single-cell analysis using Fourier transform infrared microspectroscopy,” Appl. Spectrosc. Rev. 52(6), 560–587 (2017).
[Crossref]

Dumas, P.

F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica 5(4), 378 (2018).
[Crossref]

L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
[Crossref] [PubMed]

Dupont, S.

Duswald, K.

Elder, A. D.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[Crossref]

Farries, M.

Février, S.

Frank, J. H.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[Crossref]

Gaponov, D.

Gardner, P.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref] [PubMed]

J. Doherty, G. Cinque, and P. Gardner, “Single-cell analysis using Fourier transform infrared microspectroscopy,” Appl. Spectrosc. Rev. 52(6), 560–587 (2017).
[Crossref]

Gasser, C.

Gerwert, K.

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

C. Kuepper, F. Großerueschkamp, A. Kallenbach-Thieltges, A. Mosig, A. Tannapfel, and K. Gerwert, “Label-free classification of colon cancer grading using infrared spectral histopathology,” Faraday Discuss. 187, 105–118 (2016).
[Crossref] [PubMed]

Gmachl, C.

Goodacre, R.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref] [PubMed]

Großerueschkamp, F.

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

C. Kuepper, F. Großerueschkamp, A. Kallenbach-Thieltges, A. Mosig, A. Tannapfel, and K. Gerwert, “Label-free classification of colon cancer grading using infrared spectral histopathology,” Faraday Discuss. 187, 105–118 (2016).
[Crossref] [PubMed]

Guo, B.

Guzman, G.

H. Sreedhar, V. K. Varma, P. L. Nguyen, B. Davidson, S. Akkina, G. Guzman, S. Setty, A. Kajdacsy-Balla, and M. J. Walsh, “High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology,” J. Vis. Exp. 95, 52332 (2015).
[Crossref] [PubMed]

Hanfland, M.

G. L. Carr, M. Hanfland, and G. P. Williams, “Midinfrared beamline at the National Synchrotron Light Source port U2B,” Rev. Sci. Instrum. 66(2), 1643–1645 (1995).
[Crossref]

Harasek, M.

Henderson, A.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref] [PubMed]

Hideur, A.

Hirschmugl, C. J.

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst (Lond.) 139(19), 4769–4774 (2014).
[Crossref] [PubMed]

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Hogg, R. A.

D. T. D. Childs, R. A. Hogg, D. G. Revin, I. U. Rehman, J. W. Cockburn, and S. J. Matcher, “Sensitivity Advantage of QCL Tunable-Laser Mid-Infrared Spectroscopy Over FTIR Spectroscopy,” Appl. Spectrosc. Rev. 50(10), 822–839 (2015).
[Crossref]

Hughes, C.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Hult, J.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[Crossref]

Hussain, S. R.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Isabelle, M.

O. Old, G. Lloyd, M. Isabelle, L. M. Almond, C. Kendall, K. Baxter, N. Shepherd, A. Shore, N. Stone, and H. Barr, “Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy,” J. Gastroenterol. 53(2), 227–235 (2018).
[Crossref] [PubMed]

Jossent, M.

Juette, H.

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

Jung, J.

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

Kajdacsy-Balla, A.

H. Sreedhar, V. K. Varma, P. L. Nguyen, B. Davidson, S. Akkina, G. Guzman, S. Setty, A. Kajdacsy-Balla, and M. J. Walsh, “High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology,” J. Vis. Exp. 95, 52332 (2015).
[Crossref] [PubMed]

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Kallenbach-Thieltges, A.

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

C. Kuepper, F. Großerueschkamp, A. Kallenbach-Thieltges, A. Mosig, A. Tannapfel, and K. Gerwert, “Label-free classification of colon cancer grading using infrared spectral histopathology,” Faraday Discuss. 187, 105–118 (2016).
[Crossref] [PubMed]

Kaminski, C. F.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[Crossref]

Katok, J. E.

J. E. Katok, A. J. Sommer, and P. L. Lang, “Infrared Microspectroscopy,” Appl. Spectrosc. Rev. 25(3-4), 173–211 (1989).
[Crossref]

Kazarian, S. G.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref] [PubMed]

J. A. Kimber and S. G. Kazarian, “Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers,” Anal. Bioanal. Chem. 409(25), 5813–5820 (2017).
[Crossref] [PubMed]

Kazyoba, P. E.

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

Keiding, S. R.

Kendall, C.

O. Old, G. Lloyd, M. Isabelle, L. M. Almond, C. Kendall, K. Baxter, N. Shepherd, A. Shore, N. Stone, and H. Barr, “Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy,” J. Gastroenterol. 53(2), 227–235 (2018).
[Crossref] [PubMed]

Kenkel, S.

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Kilgus, J.

Kim, D.-J.

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

Kim, K.

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

Kimber, J. A.

J. A. Kimber and S. G. Kazarian, “Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers,” Anal. Bioanal. Chem. 409(25), 5813–5820 (2017).
[Crossref] [PubMed]

Kuepper, C.

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

C. Kuepper, F. Großerueschkamp, A. Kallenbach-Thieltges, A. Mosig, A. Tannapfel, and K. Gerwert, “Label-free classification of colon cancer grading using infrared spectral histopathology,” Faraday Discuss. 187, 105–118 (2016).
[Crossref] [PubMed]

Lang, P. L.

J. E. Katok, A. J. Sommer, and P. L. Lang, “Infrared Microspectroscopy,” Appl. Spectrosc. Rev. 25(3-4), 173–211 (1989).
[Crossref]

Langer, G.

Lasch, P.

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
[Crossref] [PubMed]

Lavoute, L.

Le, H.

Lee, K.

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

Leick, L.

P. Moselund, C. Petersen, L. Leick, J. Seidelin Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly Stable, All-fiber, High Power ZBLAN Supercontinuum Source Reaching 4.75 µm used for Nanosecond mid-IR Spectroscopy,” in Advanced Solid-State Lasers Congress (OSA, 2013), paper JTh5A.9.
[Crossref]

Lendl, B.

Liu, J.

Liu, J.-N.

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Liu, K.

Liu, K.-Z.

K.-Z. Liu, M.-H. Shi, and H. H. Mantsch, “Molecular and chemical characterization of blood cells by infrared spectroscopy: a new optical tool in hematology,” Blood Cells Mol. Dis. 35(3), 404–412 (2005).
[Crossref] [PubMed]

Lloyd, G.

O. Old, G. Lloyd, M. Isabelle, L. M. Almond, C. Kendall, K. Baxter, N. Shepherd, A. Shore, N. Stone, and H. Barr, “Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy,” J. Gastroenterol. 53(2), 227–235 (2018).
[Crossref] [PubMed]

Lloyd, G. R.

Lokhorst, H. M.

N. W. C. J. van de Donk, H. M. Lokhorst, K. C. Anderson, and P. G. Richardson, “How I treat plasma cell leukemia,” Blood 120(12), 2376–2389 (2012).
[Crossref] [PubMed]

Lovergne, L.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Lukaszewski, R. A.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Luo, G.

Macias, V.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Mantsch, H. H.

K.-Z. Liu, M.-H. Shi, and H. H. Mantsch, “Molecular and chemical characterization of blood cells by infrared spectroscopy: a new optical tool in hematology,” Blood Cells Mol. Dis. 35(3), 404–412 (2005).
[Crossref] [PubMed]

Marcott, C.

Martin, F. L.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref] [PubMed]

Massaga, J. J.

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

Matcher, S. J.

D. T. D. Childs, R. A. Hogg, D. G. Revin, I. U. Rehman, J. W. Cockburn, and S. J. Matcher, “Sensitivity Advantage of QCL Tunable-Laser Mid-Infrared Spectroscopy Over FTIR Spectroscopy,” Appl. Spectrosc. Rev. 50(10), 822–839 (2015).
[Crossref]

Matemba, L. E.

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

Matsumoto, M.

Mattson, E.

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst (Lond.) 139(19), 4769–4774 (2014).
[Crossref] [PubMed]

Mattson, E. C.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Miller, L. M.

L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
[Crossref] [PubMed]

Moger, J.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref] [PubMed]

Moselund, P.

P. Moselund, C. Petersen, L. Leick, J. Seidelin Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly Stable, All-fiber, High Power ZBLAN Supercontinuum Source Reaching 4.75 µm used for Nanosecond mid-IR Spectroscopy,” in Advanced Solid-State Lasers Congress (OSA, 2013), paper JTh5A.9.
[Crossref]

Moselund, P. M.

J. Kilgus, P. Müller, P. M. Moselund, and M. Brandstetter, “Application of supercontinuum radiation for mid-infrared spectroscopy,” in Proceedings of SPIE-The International Society for Optical Engineering (2016), 9899.

Mosig, A.

C. Kuepper, F. Großerueschkamp, A. Kallenbach-Thieltges, A. Mosig, A. Tannapfel, and K. Gerwert, “Label-free classification of colon cancer grading using infrared spectral histopathology,” Faraday Discuss. 187, 105–118 (2016).
[Crossref] [PubMed]

Müller, P.

J. Kilgus, P. Müller, P. M. Moselund, and M. Brandstetter, “Application of supercontinuum radiation for mid-infrared spectroscopy,” in Proceedings of SPIE-The International Society for Optical Engineering (2016), 9899.

Nagasaka, K.

Nallala, J.

Napier, B.

Nasse, M. J.

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst (Lond.) 139(19), 4769–4774 (2014).
[Crossref] [PubMed]

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Naumann, D.

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
[Crossref] [PubMed]

Nguyen, P. L.

H. Sreedhar, V. K. Varma, P. L. Nguyen, B. Davidson, S. Akkina, G. Guzman, S. Setty, A. Kajdacsy-Balla, and M. J. Walsh, “High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology,” J. Vis. Exp. 95, 52332 (2015).
[Crossref] [PubMed]

Ohishi, Y.

Old, O.

O. Old, G. Lloyd, M. Isabelle, L. M. Almond, C. Kendall, K. Baxter, N. Shepherd, A. Shore, N. Stone, and H. Barr, “Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy,” J. Gastroenterol. 53(2), 227–235 (2018).
[Crossref] [PubMed]

Park, Y.

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

Peabody, M.

Pedersen, C.

P. Moselund, C. Petersen, L. Leick, J. Seidelin Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly Stable, All-fiber, High Power ZBLAN Supercontinuum Source Reaching 4.75 µm used for Nanosecond mid-IR Spectroscopy,” in Advanced Solid-State Lasers Congress (OSA, 2013), paper JTh5A.9.
[Crossref]

Peng, C.

Petersen, C.

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref] [PubMed]

P. Moselund, C. Petersen, L. Leick, J. Seidelin Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly Stable, All-fiber, High Power ZBLAN Supercontinuum Source Reaching 4.75 µm used for Nanosecond mid-IR Spectroscopy,” in Advanced Solid-State Lasers Congress (OSA, 2013), paper JTh5A.9.
[Crossref]

Petersen, C. R.

Prtljaga, N.

Read, S.

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared Orange: Connecting Hyperspectral Data with Machine Learning,” Synchrotron Radiat. News 30(4), 40–45 (2017).
[Crossref]

Rehman, I. U.

D. T. D. Childs, R. A. Hogg, D. G. Revin, I. U. Rehman, J. W. Cockburn, and S. J. Matcher, “Sensitivity Advantage of QCL Tunable-Laser Mid-Infrared Spectroscopy Over FTIR Spectroscopy,” Appl. Spectrosc. Rev. 50(10), 822–839 (2015).
[Crossref]

Reininger, R.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Revin, D. G.

D. T. D. Childs, R. A. Hogg, D. G. Revin, I. U. Rehman, J. W. Cockburn, and S. J. Matcher, “Sensitivity Advantage of QCL Tunable-Laser Mid-Infrared Spectroscopy Over FTIR Spectroscopy,” Appl. Spectrosc. Rev. 50(10), 822–839 (2015).
[Crossref]

Richardson, P. G.

N. W. C. J. van de Donk, H. M. Lokhorst, K. C. Anderson, and P. G. Richardson, “How I treat plasma cell leukemia,” Blood 120(12), 2376–2389 (2012).
[Crossref] [PubMed]

Rodarmel, C.

C. Rodarmel and J. Shan, “Principal Component Analysis for Hyperspectral Image Classification,” (2002).

Rosendahl, S. M.

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared Orange: Connecting Hyperspectral Data with Machine Learning,” Synchrotron Radiat. News 30(4), 40–45 (2017).
[Crossref]

Sandt, C.

F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica 5(4), 378 (2018).
[Crossref]

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared Orange: Connecting Hyperspectral Data with Machine Learning,” Synchrotron Radiat. News 30(4), 40–45 (2017).
[Crossref]

Schwaighofer, A.

A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
[Crossref] [PubMed]

Seidelin Dam, J.

P. Moselund, C. Petersen, L. Leick, J. Seidelin Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly Stable, All-fiber, High Power ZBLAN Supercontinuum Source Reaching 4.75 µm used for Nanosecond mid-IR Spectroscopy,” in Advanced Solid-State Lasers Congress (OSA, 2013), paper JTh5A.9.
[Crossref]

Setty, S.

H. Sreedhar, V. K. Varma, P. L. Nguyen, B. Davidson, S. Akkina, G. Guzman, S. Setty, A. Kajdacsy-Balla, and M. J. Walsh, “High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology,” J. Vis. Exp. 95, 52332 (2015).
[Crossref] [PubMed]

Shan, J.

C. Rodarmel and J. Shan, “Principal Component Analysis for Hyperspectral Image Classification,” (2002).

Shepherd, N.

O. Old, G. Lloyd, M. Isabelle, L. M. Almond, C. Kendall, K. Baxter, N. Shepherd, A. Shore, N. Stone, and H. Barr, “Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy,” J. Gastroenterol. 53(2), 227–235 (2018).
[Crossref] [PubMed]

Shi, H.

Shi, M.-H.

K.-Z. Liu, M.-H. Shi, and H. H. Mantsch, “Molecular and chemical characterization of blood cells by infrared spectroscopy: a new optical tool in hematology,” Blood Cells Mol. Dis. 35(3), 404–412 (2005).
[Crossref] [PubMed]

Shore, A.

O. Old, G. Lloyd, M. Isabelle, L. M. Almond, C. Kendall, K. Baxter, N. Shepherd, A. Shore, N. Stone, and H. Barr, “Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy,” J. Gastroenterol. 53(2), 227–235 (2018).
[Crossref] [PubMed]

Sivco, D.

Sockalingum, G. D.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Sommer, A. J.

Speeckaert, M. M.

S. De Bruyne, M. M. Speeckaert, and J. R. Delanghe, “Applications of mid-infrared spectroscopy in the clinical laboratory setting,” Crit. Rev. Clin. Lab. Sci. 55(1), 1–20 (2018).
[Crossref] [PubMed]

Sreedhar, H.

H. Sreedhar, V. K. Varma, P. L. Nguyen, B. Davidson, S. Akkina, G. Guzman, S. Setty, A. Kajdacsy-Balla, and M. J. Walsh, “High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology,” J. Vis. Exp. 95, 52332 (2015).
[Crossref] [PubMed]

Stone, N.

O. Old, G. Lloyd, M. Isabelle, L. M. Almond, C. Kendall, K. Baxter, N. Shepherd, A. Shore, N. Stone, and H. Barr, “Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy,” J. Gastroenterol. 53(2), 227–235 (2018).
[Crossref] [PubMed]

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref] [PubMed]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999-1002 (2018).

Story, G. M.

Sulé-Suso, J.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref] [PubMed]

Suzuki, T.

Tan, F.

Tannapfel, A.

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

C. Kuepper, F. Großerueschkamp, A. Kallenbach-Thieltges, A. Mosig, A. Tannapfel, and K. Gerwert, “Label-free classification of colon cancer grading using infrared spectral histopathology,” Faraday Discuss. 187, 105–118 (2016).
[Crossref] [PubMed]

Tezuka, H.

Thiéfin, G.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Thøgersen, J.

Tidemand-Lichtenberg, P.

P. Moselund, C. Petersen, L. Leick, J. Seidelin Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly Stable, All-fiber, High Power ZBLAN Supercontinuum Source Reaching 4.75 µm used for Nanosecond mid-IR Spectroscopy,” in Advanced Solid-State Lasers Congress (OSA, 2013), paper JTh5A.9.
[Crossref]

Tilley, L.

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst (Lond.) 139(19), 4769–4774 (2014).
[Crossref] [PubMed]

Tisinger, L. G.

Toplak, M.

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared Orange: Connecting Hyperspectral Data with Machine Learning,” Synchrotron Radiat. News 30(4), 40–45 (2017).
[Crossref]

Tuan, T. H.

Untereiner, V.

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Vaccari, L.

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared Orange: Connecting Hyperspectral Data with Machine Learning,” Synchrotron Radiat. News 30(4), 40–45 (2017).
[Crossref]

van de Donk, N. W. C. J.

N. W. C. J. van de Donk, H. M. Lokhorst, K. C. Anderson, and P. G. Richardson, “How I treat plasma cell leukemia,” Blood 120(12), 2376–2389 (2012).
[Crossref] [PubMed]

Varma, V. K.

H. Sreedhar, V. K. Varma, P. L. Nguyen, B. Davidson, S. Akkina, G. Guzman, S. Setty, A. Kajdacsy-Balla, and M. J. Walsh, “High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology,” J. Vis. Exp. 95, 52332 (2015).
[Crossref] [PubMed]

Walsh, M. J.

H. Sreedhar, V. K. Varma, P. L. Nguyen, B. Davidson, S. Akkina, G. Guzman, S. Setty, A. Kajdacsy-Balla, and M. J. Walsh, “High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology,” J. Vis. Exp. 95, 52332 (2015).
[Crossref] [PubMed]

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Wang, P.

Wang, Y.

Ward, J.

Watt, R. S.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[Crossref]

Williams, G. P.

G. L. Carr, M. Hanfland, and G. P. Williams, “Midinfrared beamline at the National Synchrotron Light Source port U2B,” Rev. Sci. Instrum. 66(2), 1643–1645 (1995).
[Crossref]

Wood, B. R.

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst (Lond.) 139(19), 4769–4774 (2014).
[Crossref] [PubMed]

Xue, X.

Yeh, K.

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Yoon, J.

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

Zhang, H.

Anal. Bioanal. Chem. (1)

J. A. Kimber and S. G. Kazarian, “Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers,” Anal. Bioanal. Chem. 409(25), 5813–5820 (2017).
[Crossref] [PubMed]

Anal. Chem. (1)

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Analyst (Lond.) (2)

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref] [PubMed]

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst (Lond.) 139(19), 4769–4774 (2014).
[Crossref] [PubMed]

Appl. Phys. B (1)

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[Crossref]

Appl. Spectrosc. (2)

Appl. Spectrosc. Rev. (3)

J. E. Katok, A. J. Sommer, and P. L. Lang, “Infrared Microspectroscopy,” Appl. Spectrosc. Rev. 25(3-4), 173–211 (1989).
[Crossref]

J. Doherty, G. Cinque, and P. Gardner, “Single-cell analysis using Fourier transform infrared microspectroscopy,” Appl. Spectrosc. Rev. 52(6), 560–587 (2017).
[Crossref]

D. T. D. Childs, R. A. Hogg, D. G. Revin, I. U. Rehman, J. W. Cockburn, and S. J. Matcher, “Sensitivity Advantage of QCL Tunable-Laser Mid-Infrared Spectroscopy Over FTIR Spectroscopy,” Appl. Spectrosc. Rev. 50(10), 822–839 (2015).
[Crossref]

Biochim. Biophys. Acta (2)

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
[Crossref] [PubMed]

L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
[Crossref] [PubMed]

Blood (1)

N. W. C. J. van de Donk, H. M. Lokhorst, K. C. Anderson, and P. G. Richardson, “How I treat plasma cell leukemia,” Blood 120(12), 2376–2389 (2012).
[Crossref] [PubMed]

Blood Cells Mol. Dis. (1)

K.-Z. Liu, M.-H. Shi, and H. H. Mantsch, “Molecular and chemical characterization of blood cells by infrared spectroscopy: a new optical tool in hematology,” Blood Cells Mol. Dis. 35(3), 404–412 (2005).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
[Crossref] [PubMed]

M. J. Baker, S. R. Hussain, L. Lovergne, V. Untereiner, C. Hughes, R. A. Lukaszewski, G. Thiéfin, and G. D. Sockalingum, “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem. Soc. Rev. 45(7), 1803–1818 (2016).
[Crossref] [PubMed]

Crit. Rev. Clin. Lab. Sci. (1)

S. De Bruyne, M. M. Speeckaert, and J. R. Delanghe, “Applications of mid-infrared spectroscopy in the clinical laboratory setting,” Crit. Rev. Clin. Lab. Sci. 55(1), 1–20 (2018).
[Crossref] [PubMed]

Faraday Discuss. (1)

C. Kuepper, F. Großerueschkamp, A. Kallenbach-Thieltges, A. Mosig, A. Tannapfel, and K. Gerwert, “Label-free classification of colon cancer grading using infrared spectral histopathology,” Faraday Discuss. 187, 105–118 (2016).
[Crossref] [PubMed]

J. Gastroenterol. (1)

O. Old, G. Lloyd, M. Isabelle, L. M. Almond, C. Kendall, K. Baxter, N. Shepherd, A. Shore, N. Stone, and H. Barr, “Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy,” J. Gastroenterol. 53(2), 227–235 (2018).
[Crossref] [PubMed]

J. Vis. Exp. (1)

H. Sreedhar, V. K. Varma, P. L. Nguyen, B. Davidson, S. Akkina, G. Guzman, S. Setty, A. Kajdacsy-Balla, and M. J. Walsh, “High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology,” J. Vis. Exp. 95, 52332 (2015).
[Crossref] [PubMed]

Nat. Methods (1)

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Rev. Sci. Instrum. (2)

G. L. Carr, M. Hanfland, and G. P. Williams, “Midinfrared beamline at the National Synchrotron Light Source port U2B,” Rev. Sci. Instrum. 66(2), 1643–1645 (1995).
[Crossref]

G. L. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum. 72(3), 1613 (2001).
[Crossref]

Sci. Rep. (2)

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

Synchrotron Radiat. News (1)

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared Orange: Connecting Hyperspectral Data with Machine Learning,” Synchrotron Radiat. News 30(4), 40–45 (2017).
[Crossref]

Other (7)

C. Rodarmel and J. Shan, “Principal Component Analysis for Hyperspectral Image Classification,” (2002).

J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (J. Wiley, 2002).

M. Farries, J. Ward, I. Lindsay, J. Nallala, and P. Moselund, “Fast hyper-spectral imaging of cytological samples in the mid-infrared wavelength region,” in R. R. Alfano and S. G. Demos, eds. (International Society for Optics and Photonics, 2017), 10060, p. 100600Y.

P. M. Moselund, L. Huot, and C. D. Brooks, “All-fiber mid-IR supercontinuum: a powerful new tool for IR-spectroscopy,” in R. R. Alfano and S. G. Demos, eds. (2016), p. 97030B.

P. Moselund, C. Petersen, L. Leick, J. Seidelin Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly Stable, All-fiber, High Power ZBLAN Supercontinuum Source Reaching 4.75 µm used for Nanosecond mid-IR Spectroscopy,” in Advanced Solid-State Lasers Congress (OSA, 2013), paper JTh5A.9.
[Crossref]

J. Kilgus, P. Müller, P. M. Moselund, and M. Brandstetter, “Application of supercontinuum radiation for mid-infrared spectroscopy,” in Proceedings of SPIE-The International Society for Optical Engineering (2016), 9899.

R. Salzer and H. W. Siesler, Infrared and Raman Spectroscopic Imaging. (Wiley-VCH, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the optical configuration: SCL, Supercontinuum Laser; ZBLAN, step-index fiber made of heavy metal fluoride glasses; PM, parabolic mirror; BS, beam splitter; RO, reflective objective; CH, chopper; FPFS, Fabry-Pérot filterspectrometer.
Fig. 2
Fig. 2 (a) The edge spread function (ESF) was generated by fitting the collected data (measured by the LFP) by line-scanning an edge of a bar of the resolution test target. The line spread function (LSF) was determined by calculating the derivative of the ESF; (b) top: microscope image taken in the visible spectral range of the corroded USAF test target (group 7, element 4). The arrows indicate damaged areas of the bars of the target; bottom: SCL microscope image (coupled to the XFP); intensity profiles of the marked line are plotted in (c) for the minimum and maximum wavelength, 3.1 and 3.7 µm, respectively, and for the global intensity.
Fig. 3
Fig. 3 Comparison of the achieved SNR for reflection measurements with different aperture sizes in the spectral range from 2700 to 3200 cm−1. SNR levels were calculated from 100%-lines that were recorded using an empty glass slide as specimen. The measurement time for the FTIR microscope was 20 s whereas for the SCL microscope it was 2 s. The inset shows the 100%-lines of the SCL microscope from which the SNR value was calculated, indicated by the red dotted line.
Fig. 4
Fig. 4 Absorption spectra of the three different components of the polymer multilayer film recorded with the FTIR microscope.
Fig. 5
Fig. 5 The figure consists of 3 different recordings of the multilayer polymer film cross section: at the top the line-scan (7 µm steps) of the cross section of the sample recorded with the FTIR microscope equipped with a thermal emitter (TE), in the middle an image of the sample taken by a visible (VIS) light microscope in transmission and at the bottom the line-scan (1 µm steps) recorded by the SCL microscope.
Fig. 6
Fig. 6 (a) visible light microscopic picture of the sample; (b) PCA-denoised image recorded by the SCL microscope; (c) absorption spectrum of a single red blood cell recorded by the SCL microscope.

Metrics