Abstract

We fabricated terahertz (THz) wave generation devices using electro-optic (EO) polymer slab waveguides and cyclo-olefin polymer (COP) clads with very small absorption loss of the THz waves based on a novel device fabrication procedure involving bonding of the poled EO polymer layer to the COP substrates. We demonstrated THz wave generation from the EO polymer slab devices using a 1.55 µm-band femtosecond fiber laser and evaluated the THz wave generation properties of the devices. Our results will lead to the development of compact, highly efficient, and ultrabroadband THz devices using EO polymers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation and detection of terahertz radiation with multilayered electro-optic polymer films

Alexander M. Sinyukov and L. Michael Hayden
Opt. Lett. 27(1) 55-57 (2002)

Modeling a broadband terahertz system based on an electro-optic polymer emitter-sensor pair

Xuemei Zheng, Colin V. McLaughlin, Megan R. Leahy-Hoppa, Alexander M. Sinyukov, and L. Michael Hayden
J. Opt. Soc. Am. B 23(7) 1338-1347 (2006)

Mesoporous sol-gel silica cladding for hybrid TiO2/electro-optic polymer waveguide modulators

Yasufumi Enami, Yasuhisa Kayaba, Jingdong Luo, and Alex K.-Y. Jen
Opt. Express 22(13) 16418-16423 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, and A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
    [Crossref] [PubMed]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
    [Crossref]
  4. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  5. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
    [Crossref]
  6. S. Fan, H. Takeuchi, T. Ouchi, K. Takeya, and K. Kawase, “Broadband terahertz wave generation from a MgO:LiNbO3 ridge waveguide pumped by a 1.5 μm femtosecond fiber laser,” Opt. Lett. 38(10), 1654–1656 (2013).
    [Crossref] [PubMed]
  7. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
    [Crossref]
  8. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23(9), 1822–1835 (2006).
    [Crossref]
  9. M. Stillhart, A. Schneider, and P. Günter, “Optical properties of 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate crystals at terahertz frequencies,” J. Opt. Soc. Am. B 25(11), 1914–1919 (2008).
    [Crossref]
  10. C. Vicario, B. Monoszlai, and C. P. Hauri, “GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal,” Phys. Rev. Lett. 112(21), 213901 (2014).
    [Crossref]
  11. X. Zheng, C. V. McLaughlin, P. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron. 2(1), 58 (2007).
    [Crossref]
  12. C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K.-Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008).
    [Crossref]
  13. E. Matsubara, M. Nagai, and M. Ashida, “Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses,” Appl. Phys. Lett. 101(1), 011105 (2012).
    [Crossref]
  14. G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
    [Crossref]
  15. P. D. Cunningham and L. M. Hayden, “Optical properties of DAST in the THz range,” Opt. Express 18(23), 23620–23625 (2010).
    [Crossref] [PubMed]
  16. F. D. J. Brunner, O.-P. Kwon, S.-J. Kwon, M. Jazbinšek, A. Schneider, and P. Günter, “A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection,” Opt. Express 16(21), 16496–16508 (2008).
    [Crossref] [PubMed]
  17. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
    [Crossref] [PubMed]
  18. T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino-benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys. 139(2-3), 699–705 (2013).
    [Crossref]
  19. T. Yamada, H. Miki, I. Aoki, and A. Otomo, “Effect of two methoxy groups bound to an amino-benzene donor unit for thienyl-di-vinylene bridged EO chromophores,” Opt. Mater. 35(12), 2194–2200 (2013).
    [Crossref]
  20. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
    [Crossref]
  21. F. Qiu and S. Yokoyama, “Efficiently poled electro-optic polymer modulators,” Opt. Express 24(17), 19020–19025 (2016).
    [Crossref] [PubMed]
  22. Y. Hirano, Y. Motoyama, K. Tanaka, K. Machida, T. Yamada, A. Otomo, and H. Kikuchi, “Demonstration of an optical phased array using electro-optic polymer phase shifters,” Jpn. J. Appl. Phys. 57(3S2), 03EH09 (2018).
    [Crossref]
  23. X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
    [Crossref]
  24. I.-C. Benea-Chelmus, T. Zhu, F. F. Settembrini, C. Bonzon, E. Mavrona, D. L. Elder, W. Heni, J. Leuthold, L. R. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photonics 5(4), 1398–1403 (2018).
    [Crossref]
  25. L. R. Dalton, P. Günter, M. Jazbinsek, O.-P. Kwon, and P. A. Sullivan, Organic Electro-Optics and Photonics (Cambridge University, 2015), Chap. 10.
  26. T. Yamada, T. Kaji, I. Aoki, C. Yamada, M. Mizuno, S. Saito, Y. Tominari, S. Tanaka, and A. Otomo, “Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers,” Jpn. J. Appl. Phys. 55(3S2), 03DC11 (2016).
    [Crossref]
  27. F. A. Vallejo and L. M. Hayden, “Simplified model for optical rectification of broadband terahertz pulses in lossy waveguides including a new generalized expression for the coherence length,” Opt. Express 21(20), 24398–24412 (2013).
    [Crossref] [PubMed]
  28. J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, L. R. Dalton, C. H. Zhang, and W. H. Steier, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40(11), 2464–2473 (2001).
    [Crossref]
  29. B. Cai, H. Chen, G. Xu, H. Zhao, and O. Sugihara, “Ultra-broadband THz antireflective coating with polymer composites,” Polymers (Basel) 9(11), 574 (2017).
    [Crossref]
  30. H. Shinohara, J. Mizuno, and S. Shoji, “Studies on low-temperature direct bonding of VUV, VUV/O3 and O2 plasma pretreated cyclo-olefin polymer,” Sens. Actuators A Phys. 165(1), 124–131 (2011).
    [Crossref]
  31. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer US, 2008).
  32. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
    [Crossref]
  33. T. Yamada and A. Otomo, “Transmission ellipsometric method without an aperture for simple and reliable evaluation of electro-optic properties,” Opt. Express 21(24), 29240–29248 (2013).
    [Crossref] [PubMed]
  34. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

2018 (2)

Y. Hirano, Y. Motoyama, K. Tanaka, K. Machida, T. Yamada, A. Otomo, and H. Kikuchi, “Demonstration of an optical phased array using electro-optic polymer phase shifters,” Jpn. J. Appl. Phys. 57(3S2), 03EH09 (2018).
[Crossref]

I.-C. Benea-Chelmus, T. Zhu, F. F. Settembrini, C. Bonzon, E. Mavrona, D. L. Elder, W. Heni, J. Leuthold, L. R. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photonics 5(4), 1398–1403 (2018).
[Crossref]

2017 (1)

B. Cai, H. Chen, G. Xu, H. Zhao, and O. Sugihara, “Ultra-broadband THz antireflective coating with polymer composites,” Polymers (Basel) 9(11), 574 (2017).
[Crossref]

2016 (3)

T. Yamada, T. Kaji, I. Aoki, C. Yamada, M. Mizuno, S. Saito, Y. Tominari, S. Tanaka, and A. Otomo, “Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers,” Jpn. J. Appl. Phys. 55(3S2), 03DC11 (2016).
[Crossref]

F. Qiu and S. Yokoyama, “Efficiently poled electro-optic polymer modulators,” Opt. Express 24(17), 19020–19025 (2016).
[Crossref] [PubMed]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

2014 (2)

2013 (5)

2012 (1)

E. Matsubara, M. Nagai, and M. Ashida, “Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses,” Appl. Phys. Lett. 101(1), 011105 (2012).
[Crossref]

2011 (3)

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

H. Shinohara, J. Mizuno, and S. Shoji, “Studies on low-temperature direct bonding of VUV, VUV/O3 and O2 plasma pretreated cyclo-olefin polymer,” Sens. Actuators A Phys. 165(1), 124–131 (2011).
[Crossref]

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

2010 (2)

P. D. Cunningham and L. M. Hayden, “Optical properties of DAST in the THz range,” Opt. Express 18(23), 23620–23625 (2010).
[Crossref] [PubMed]

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

2009 (1)

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, and A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (4)

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

X. Zheng, C. V. McLaughlin, P. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron. 2(1), 58 (2007).
[Crossref]

2006 (1)

2001 (1)

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, L. R. Dalton, C. H. Zhang, and W. H. Steier, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40(11), 2464–2473 (2001).
[Crossref]

1999 (1)

G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
[Crossref]

1996 (1)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Aoki, I.

T. Yamada, T. Kaji, I. Aoki, C. Yamada, M. Mizuno, S. Saito, Y. Tominari, S. Tanaka, and A. Otomo, “Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers,” Jpn. J. Appl. Phys. 55(3S2), 03DC11 (2016).
[Crossref]

T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino-benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys. 139(2-3), 699–705 (2013).
[Crossref]

T. Yamada, H. Miki, I. Aoki, and A. Otomo, “Effect of two methoxy groups bound to an amino-benzene donor unit for thienyl-di-vinylene bridged EO chromophores,” Opt. Mater. 35(12), 2194–2200 (2013).
[Crossref]

Ashida, M.

E. Matsubara, M. Nagai, and M. Ashida, “Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses,” Appl. Phys. Lett. 101(1), 011105 (2012).
[Crossref]

Bale, D. H.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Baron, P.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Benea-Chelmus, I.-C.

I.-C. Benea-Chelmus, T. Zhu, F. F. Settembrini, C. Bonzon, E. Mavrona, D. L. Elder, W. Heni, J. Leuthold, L. R. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photonics 5(4), 1398–1403 (2018).
[Crossref]

Blanchard, F.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Bonzon, C.

I.-C. Benea-Chelmus, T. Zhu, F. F. Settembrini, C. Bonzon, E. Mavrona, D. L. Elder, W. Heni, J. Leuthold, L. R. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photonics 5(4), 1398–1403 (2018).
[Crossref]

Brunner, F. D. J.

Burnett, A. D.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, and A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[Crossref] [PubMed]

Cai, B.

B. Cai, H. Chen, G. Xu, H. Zhao, and O. Sugihara, “Ultra-broadband THz antireflective coating with polymer composites,” Polymers (Basel) 9(11), 574 (2017).
[Crossref]

Chen, H.

B. Cai, H. Chen, G. Xu, H. Zhao, and O. Sugihara, “Ultra-broadband THz antireflective coating with polymer composites,” Polymers (Basel) 9(11), 574 (2017).
[Crossref]

Chen, R. T.

Cunningham, J. E.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, and A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[Crossref] [PubMed]

Cunningham, P.

X. Zheng, C. V. McLaughlin, P. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron. 2(1), 58 (2007).
[Crossref]

Cunningham, P. D.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

P. D. Cunningham and L. M. Hayden, “Optical properties of DAST in the THz range,” Opt. Express 18(23), 23620–23625 (2010).
[Crossref] [PubMed]

Dalton, L. R.

I.-C. Benea-Chelmus, T. Zhu, F. F. Settembrini, C. Bonzon, E. Mavrona, D. L. Elder, W. Heni, J. Leuthold, L. R. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photonics 5(4), 1398–1403 (2018).
[Crossref]

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, L. R. Dalton, C. H. Zhang, and W. H. Steier, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40(11), 2464–2473 (2001).
[Crossref]

Davies, A. G.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, and A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[Crossref] [PubMed]

Derose, C. T.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Doi, A.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Edwards, H. G. M.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, and A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[Crossref] [PubMed]

Elder, D. L.

I.-C. Benea-Chelmus, T. Zhu, F. F. Settembrini, C. Bonzon, E. Mavrona, D. L. Elder, W. Heni, J. Leuthold, L. R. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photonics 5(4), 1398–1403 (2018).
[Crossref]

Enami, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Faist, J.

I.-C. Benea-Chelmus, T. Zhu, F. F. Settembrini, C. Bonzon, E. Mavrona, D. L. Elder, W. Heni, J. Leuthold, L. R. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photonics 5(4), 1398–1403 (2018).
[Crossref]

Fan, S.

Fan, W.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, and A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[Crossref] [PubMed]

Fukunaga, K.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Gallot, G.

G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
[Crossref]

Greenlee, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Grischkowsky, D.

G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
[Crossref]

Grote, J. G.

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, L. R. Dalton, C. H. Zhang, and W. H. Steier, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40(11), 2464–2473 (2001).
[Crossref]

Günter, P.

Hargreaves, M. D.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, and A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[Crossref] [PubMed]

Hauri, C. P.

C. Vicario, B. Monoszlai, and C. P. Hauri, “GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal,” Phys. Rev. Lett. 112(21), 213901 (2014).
[Crossref]

Hayden, L. M.

F. A. Vallejo and L. M. Hayden, “Simplified model for optical rectification of broadband terahertz pulses in lossy waveguides including a new generalized expression for the coherence length,” Opt. Express 21(20), 24398–24412 (2013).
[Crossref] [PubMed]

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

P. D. Cunningham and L. M. Hayden, “Optical properties of DAST in the THz range,” Opt. Express 18(23), 23620–23625 (2010).
[Crossref] [PubMed]

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K.-Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008).
[Crossref]

X. Zheng, C. V. McLaughlin, P. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron. 2(1), 58 (2007).
[Crossref]

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Heni, W.

I.-C. Benea-Chelmus, T. Zhu, F. F. Settembrini, C. Bonzon, E. Mavrona, D. L. Elder, W. Heni, J. Leuthold, L. R. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photonics 5(4), 1398–1403 (2018).
[Crossref]

Hirano, Y.

Y. Hirano, Y. Motoyama, K. Tanaka, K. Machida, T. Yamada, A. Otomo, and H. Kikuchi, “Demonstration of an optical phased array using electro-optic polymer phase shifters,” Jpn. J. Appl. Phys. 57(3S2), 03EH09 (2018).
[Crossref]

Hirori, H.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Hopkins, F. K.

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, L. R. Dalton, C. H. Zhang, and W. H. Steier, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40(11), 2464–2473 (2001).
[Crossref]

Hosako, I.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Hosseini, A.

Huang, S.

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K.-Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008).
[Crossref]

Jazbinšek, M.

Jen, A. K.-Y.

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
[Crossref]

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K.-Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008).
[Crossref]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Jeon, T.-I.

G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
[Crossref]

Kaji, T.

T. Yamada, T. Kaji, I. Aoki, C. Yamada, M. Mizuno, S. Saito, Y. Tominari, S. Tanaka, and A. Otomo, “Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers,” Jpn. J. Appl. Phys. 55(3S2), 03DC11 (2016).
[Crossref]

Kasai, Y.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Kawase, K.

Khan, R. U. A.

Kikuchi, H.

Y. Hirano, Y. Motoyama, K. Tanaka, K. Machida, T. Yamada, A. Otomo, and H. Kikuchi, “Demonstration of an optical phased array using electro-optic polymer phase shifters,” Jpn. J. Appl. Phys. 57(3S2), 03EH09 (2018).
[Crossref]

Kim, T. D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Kim, T.-D.

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K.-Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008).
[Crossref]

Kwon, O.-P.

Kwon, S.-J.

Leuthold, J.

I.-C. Benea-Chelmus, T. Zhu, F. F. Settembrini, C. Bonzon, E. Mavrona, D. L. Elder, W. Heni, J. Leuthold, L. R. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photonics 5(4), 1398–1403 (2018).
[Crossref]

Linfield, E. H.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, and A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[Crossref] [PubMed]

Loychik, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Luo, J.

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
[Crossref]

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K.-Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008).
[Crossref]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Machida, K.

Y. Hirano, Y. Motoyama, K. Tanaka, K. Machida, T. Yamada, A. Otomo, and H. Kikuchi, “Demonstration of an optical phased array using electro-optic polymer phase shifters,” Jpn. J. Appl. Phys. 57(3S2), 03EH09 (2018).
[Crossref]

Mathine, D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Matsubara, E.

E. Matsubara, M. Nagai, and M. Ashida, “Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses,” Appl. Phys. Lett. 101(1), 011105 (2012).
[Crossref]

Mavrona, E.

I.-C. Benea-Chelmus, T. Zhu, F. F. Settembrini, C. Bonzon, E. Mavrona, D. L. Elder, W. Heni, J. Leuthold, L. R. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photonics 5(4), 1398–1403 (2018).
[Crossref]

McGowan, R. W.

G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
[Crossref]

McLaughlin, C. V.

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K.-Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008).
[Crossref]

X. Zheng, C. V. McLaughlin, P. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron. 2(1), 58 (2007).
[Crossref]

Mendrok, J.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Miki, H.

T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino-benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys. 139(2-3), 699–705 (2013).
[Crossref]

T. Yamada, H. Miki, I. Aoki, and A. Otomo, “Effect of two methoxy groups bound to an amino-benzene donor unit for thienyl-di-vinylene bridged EO chromophores,” Opt. Mater. 35(12), 2194–2200 (2013).
[Crossref]

Mizuno, J.

H. Shinohara, J. Mizuno, and S. Shoji, “Studies on low-temperature direct bonding of VUV, VUV/O3 and O2 plasma pretreated cyclo-olefin polymer,” Sens. Actuators A Phys. 165(1), 124–131 (2011).
[Crossref]

Mizuno, M.

T. Yamada, T. Kaji, I. Aoki, C. Yamada, M. Mizuno, S. Saito, Y. Tominari, S. Tanaka, and A. Otomo, “Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers,” Jpn. J. Appl. Phys. 55(3S2), 03DC11 (2016).
[Crossref]

Monoszlai, B.

C. Vicario, B. Monoszlai, and C. P. Hauri, “GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal,” Phys. Rev. Lett. 112(21), 213901 (2014).
[Crossref]

Motoyama, Y.

Y. Hirano, Y. Motoyama, K. Tanaka, K. Machida, T. Yamada, A. Otomo, and H. Kikuchi, “Demonstration of an optical phased array using electro-optic polymer phase shifters,” Jpn. J. Appl. Phys. 57(3S2), 03EH09 (2018).
[Crossref]

Munshi, T.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, and A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[Crossref] [PubMed]

Nagai, M.

E. Matsubara, M. Nagai, and M. Ashida, “Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses,” Appl. Phys. Lett. 101(1), 011105 (2012).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Neis, M.

Nelson, R. L.

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, L. R. Dalton, C. H. Zhang, and W. H. Steier, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40(11), 2464–2473 (2001).
[Crossref]

Norwood, R. A.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Ochiai, S.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Otomo, A.

Y. Hirano, Y. Motoyama, K. Tanaka, K. Machida, T. Yamada, A. Otomo, and H. Kikuchi, “Demonstration of an optical phased array using electro-optic polymer phase shifters,” Jpn. J. Appl. Phys. 57(3S2), 03EH09 (2018).
[Crossref]

T. Yamada, T. Kaji, I. Aoki, C. Yamada, M. Mizuno, S. Saito, Y. Tominari, S. Tanaka, and A. Otomo, “Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers,” Jpn. J. Appl. Phys. 55(3S2), 03DC11 (2016).
[Crossref]

T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino-benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys. 139(2-3), 699–705 (2013).
[Crossref]

T. Yamada, H. Miki, I. Aoki, and A. Otomo, “Effect of two methoxy groups bound to an amino-benzene donor unit for thienyl-di-vinylene bridged EO chromophores,” Opt. Mater. 35(12), 2194–2200 (2013).
[Crossref]

T. Yamada and A. Otomo, “Transmission ellipsometric method without an aperture for simple and reliable evaluation of electro-optic properties,” Opt. Express 21(24), 29240–29248 (2013).
[Crossref] [PubMed]

Ouchi, T.

Patrashin, M.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Peyghambarian, N.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Polishak, B.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K.-Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008).
[Crossref]

Qiu, F.

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Ruiz, B.

Saito, S.

T. Yamada, T. Kaji, I. Aoki, C. Yamada, M. Mizuno, S. Saito, Y. Tominari, S. Tanaka, and A. Otomo, “Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers,” Jpn. J. Appl. Phys. 55(3S2), 03DC11 (2016).
[Crossref]

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Schneider, A.

Sekine, N.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Seta, T.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Settembrini, F. F.

I.-C. Benea-Chelmus, T. Zhu, F. F. Settembrini, C. Bonzon, E. Mavrona, D. L. Elder, W. Heni, J. Leuthold, L. R. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photonics 5(4), 1398–1403 (2018).
[Crossref]

Shinohara, H.

H. Shinohara, J. Mizuno, and S. Shoji, “Studies on low-temperature direct bonding of VUV, VUV/O3 and O2 plasma pretreated cyclo-olefin polymer,” Sens. Actuators A Phys. 165(1), 124–131 (2011).
[Crossref]

Shoji, S.

H. Shinohara, J. Mizuno, and S. Shoji, “Studies on low-temperature direct bonding of VUV, VUV/O3 and O2 plasma pretreated cyclo-olefin polymer,” Sens. Actuators A Phys. 165(1), 124–131 (2011).
[Crossref]

Steier, W. H.

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, L. R. Dalton, C. H. Zhang, and W. H. Steier, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40(11), 2464–2473 (2001).
[Crossref]

Stillhart, M.

Subbaraman, H.

Sugihara, O.

B. Cai, H. Chen, G. Xu, H. Zhao, and O. Sugihara, “Ultra-broadband THz antireflective coating with polymer composites,” Polymers (Basel) 9(11), 574 (2017).
[Crossref]

Sullivan, P. A.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Takeuchi, H.

Takeya, K.

Tanaka, K.

Y. Hirano, Y. Motoyama, K. Tanaka, K. Machida, T. Yamada, A. Otomo, and H. Kikuchi, “Demonstration of an optical phased array using electro-optic polymer phase shifters,” Jpn. J. Appl. Phys. 57(3S2), 03EH09 (2018).
[Crossref]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Tanaka, S.

T. Yamada, T. Kaji, I. Aoki, C. Yamada, M. Mizuno, S. Saito, Y. Tominari, S. Tanaka, and A. Otomo, “Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers,” Jpn. J. Appl. Phys. 55(3S2), 03DC11 (2016).
[Crossref]

Tian, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Tominari, Y.

T. Yamada, T. Kaji, I. Aoki, C. Yamada, M. Mizuno, S. Saito, Y. Tominari, S. Tanaka, and A. Otomo, “Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers,” Jpn. J. Appl. Phys. 55(3S2), 03DC11 (2016).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Twieg, R. J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Upadhya, P. C.

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, and A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[Crossref] [PubMed]

Valdes, N. N.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Vallejo, F. A.

F. A. Vallejo and L. M. Hayden, “Simplified model for optical rectification of broadband terahertz pulses in lossy waveguides including a new generalized expression for the coherence length,” Opt. Express 21(20), 24398–24412 (2013).
[Crossref] [PubMed]

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Vicario, C.

C. Vicario, B. Monoszlai, and C. P. Hauri, “GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal,” Phys. Rev. Lett. 112(21), 213901 (2014).
[Crossref]

Wang, S.

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Williams, J. C.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Xu, G.

B. Cai, H. Chen, G. Xu, H. Zhao, and O. Sugihara, “Ultra-broadband THz antireflective coating with polymer composites,” Polymers (Basel) 9(11), 574 (2017).
[Crossref]

Yamada, C.

T. Yamada, T. Kaji, I. Aoki, C. Yamada, M. Mizuno, S. Saito, Y. Tominari, S. Tanaka, and A. Otomo, “Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers,” Jpn. J. Appl. Phys. 55(3S2), 03DC11 (2016).
[Crossref]

T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino-benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys. 139(2-3), 699–705 (2013).
[Crossref]

Yamada, T.

Y. Hirano, Y. Motoyama, K. Tanaka, K. Machida, T. Yamada, A. Otomo, and H. Kikuchi, “Demonstration of an optical phased array using electro-optic polymer phase shifters,” Jpn. J. Appl. Phys. 57(3S2), 03EH09 (2018).
[Crossref]

T. Yamada, T. Kaji, I. Aoki, C. Yamada, M. Mizuno, S. Saito, Y. Tominari, S. Tanaka, and A. Otomo, “Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers,” Jpn. J. Appl. Phys. 55(3S2), 03DC11 (2016).
[Crossref]

T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino-benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys. 139(2-3), 699–705 (2013).
[Crossref]

T. Yamada, H. Miki, I. Aoki, and A. Otomo, “Effect of two methoxy groups bound to an amino-benzene donor unit for thienyl-di-vinylene bridged EO chromophores,” Opt. Mater. 35(12), 2194–2200 (2013).
[Crossref]

T. Yamada and A. Otomo, “Transmission ellipsometric method without an aperture for simple and reliable evaluation of electro-optic properties,” Opt. Express 21(24), 29240–29248 (2013).
[Crossref] [PubMed]

Yasuda, H.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Yokoyama, S.

Zetts, J. S.

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, L. R. Dalton, C. H. Zhang, and W. H. Steier, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40(11), 2464–2473 (2001).
[Crossref]

Zhan, Q.

Zhang, C. H.

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, L. R. Dalton, C. H. Zhang, and W. H. Steier, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40(11), 2464–2473 (2001).
[Crossref]

Zhang, J.

G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
[Crossref]

Zhang, X.

Zhao, H.

B. Cai, H. Chen, G. Xu, H. Zhao, and O. Sugihara, “Ultra-broadband THz antireflective coating with polymer composites,” Polymers (Basel) 9(11), 574 (2017).
[Crossref]

Zheng, X.

X. Zheng, C. V. McLaughlin, P. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron. 2(1), 58 (2007).
[Crossref]

Zhou, X.-H.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Zhu, T.

I.-C. Benea-Chelmus, T. Zhu, F. F. Settembrini, C. Bonzon, E. Mavrona, D. L. Elder, W. Heni, J. Leuthold, L. R. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photonics 5(4), 1398–1403 (2018).
[Crossref]

ACS Photonics (1)

I.-C. Benea-Chelmus, T. Zhu, F. F. Settembrini, C. Bonzon, E. Mavrona, D. L. Elder, W. Heni, J. Leuthold, L. R. Dalton, and J. Faist, “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photonics 5(4), 1398–1403 (2018).
[Crossref]

Analyst (Lond.) (1)

A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. M. Edwards, E. H. Linfield, and A. G. Davies, “Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis,” Analyst (Lond.) 134(8), 1658–1668 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K.-Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008).
[Crossref]

E. Matsubara, M. Nagai, and M. Ashida, “Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses,” Appl. Phys. Lett. 101(1), 011105 (2012).
[Crossref]

G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
[Crossref]

Chem. Rev. (1)

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (1)

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Nanoelectron. Optoelectron. (1)

X. Zheng, C. V. McLaughlin, P. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron. 2(1), 58 (2007).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (2)

Y. Hirano, Y. Motoyama, K. Tanaka, K. Machida, T. Yamada, A. Otomo, and H. Kikuchi, “Demonstration of an optical phased array using electro-optic polymer phase shifters,” Jpn. J. Appl. Phys. 57(3S2), 03EH09 (2018).
[Crossref]

T. Yamada, T. Kaji, I. Aoki, C. Yamada, M. Mizuno, S. Saito, Y. Tominari, S. Tanaka, and A. Otomo, “Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers,” Jpn. J. Appl. Phys. 55(3S2), 03DC11 (2016).
[Crossref]

Mater. Chem. Phys. (1)

T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino-benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys. 139(2-3), 699–705 (2013).
[Crossref]

Nat. Photonics (3)

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Opt. Eng. (1)

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, L. R. Dalton, C. H. Zhang, and W. H. Steier, “Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,” Opt. Eng. 40(11), 2464–2473 (2001).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. (1)

T. Yamada, H. Miki, I. Aoki, and A. Otomo, “Effect of two methoxy groups bound to an amino-benzene donor unit for thienyl-di-vinylene bridged EO chromophores,” Opt. Mater. 35(12), 2194–2200 (2013).
[Crossref]

Phys. Rev. Lett. (1)

C. Vicario, B. Monoszlai, and C. P. Hauri, “GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal,” Phys. Rev. Lett. 112(21), 213901 (2014).
[Crossref]

Polymers (Basel) (1)

B. Cai, H. Chen, G. Xu, H. Zhao, and O. Sugihara, “Ultra-broadband THz antireflective coating with polymer composites,” Polymers (Basel) 9(11), 574 (2017).
[Crossref]

Proc. IEEE (1)

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Sens. Actuators A Phys. (1)

H. Shinohara, J. Mizuno, and S. Shoji, “Studies on low-temperature direct bonding of VUV, VUV/O3 and O2 plasma pretreated cyclo-olefin polymer,” Sens. Actuators A Phys. 165(1), 124–131 (2011).
[Crossref]

Other (3)

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer US, 2008).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

L. R. Dalton, P. Günter, M. Jazbinsek, O.-P. Kwon, and P. A. Sullivan, Organic Electro-Optics and Photonics (Cambridge University, 2015), Chap. 10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of the electro-optic (EO) polymer slab device fabrication processes: (a) sputtering an indium-doped zinc oxide (IZO) electrode on an EO polymer film, (b) poling of the EO polymer film, (c) removal of the IZO electrode, (d, e) transfer of the poled EO polymer film to a cyclo-olefin polymer (COP) substrate, and (f) bonding of another COP substrate. The arrows on the EO polymer layer indicate the direction of the poled EO chromophores.
Fig. 2
Fig. 2 Schematic illustration of the experimental setup used for terahertz (THz) time-domain spectroscopy (THz-TDS). A pump beam was focused onto the EO polymer slab waveguide device using two orthogonally arranged cylindrical lenses (f = 100 mm and f = 12 mm). The double arrows show the polarization directions for the optical pulses. The inset shows the infrared optical microscope image of the end face of the EO polymer slab with a 1.56 μm pump.
Fig. 3
Fig. 3 (a) Absorption coefficients and (b) refractive indices of the COP (ZEONEX 480R) in the THz region.
Fig. 4
Fig. 4 (a) Schematic illustration, (b) photograph, and (c) scanning electron microscope (SEM) image (reflected electron image) for the EO polymer slab waveguide device. (d) Chemical structure of the EO polymer. (e) Effective refractive indices of the transverse magnetic (TM) modes versus the EO polymer slab thickness (d) at a wavelength of 1.55 µm. (f) Coherence lengths (lc) for THz wave generation for the fundamental mode with an EO polymer slab thickness of 4.5 µm.
Fig. 5
Fig. 5 (a) Temporal waveform for a THz pulse generated from an EO polymer slab waveguide with a length (l) of 0.5 mm at a pump power of 20 mW. (b) Fourier-transformed spectrum of the THz pulse. The inset shows the spectrum on a linear scale. (c) Peak-to-peak THz amplitudes for the THz pulses generated from the EO polymer slab waveguide versus pump power. The error bars indicate the maximum and minimum values for three measurements.
Fig. 6
Fig. 6 (a) Temporal waveforms of THz pulses generated from EO polymer slab waveguides with lengths (l) of 0.125, 0.25, 0.5, 0.75, and 1 mm at a pump power of 15 mW. (b) Peak-to-peak THz amplitudes of the THz pulses for different device lengths. (c) Fourier-transformed spectra of the THz pulses for different device lengths. The arrow indicates the position of an absorption peak due to water vapor. (d) Calculated THz spectra for different device lengths.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

l c (ϖ)= πc ω| n THz (ϖ) n g | ,
E THz (ϖ) χ (2) (ϖ)ϖ I 0 (ω) l gen (ϖ,l),
l gen (ϖ,l)=sinc( πl 2 l c (ϖ) )l.

Metrics