Abstract

We propose and numerically characterize the optical characteristics of a novel photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor in the visible to near infrared (500–2000 nm) region for refractive index (RI) sensing. The finite element method (FEM) is used to design and study the influence of different geometric parameters on the sensing performance of the sensor. The chemically stable plasmonic material gold (Au) is used to produce excitation between the core and plasmonic mode. On a pure silica (SiO2) substrate, a rectangular structured core is used to facilitate the coupling strength between the core and the surface plasmon polariton (SPP) mode and thus improves the sensing performance. By tuning the geometric parameters, simulation results show a maximum wavelength sensitivity of 58000 nm/RIU (Refractive Index Unit) for the x polarization and 62000 nm/RIU for the y polarization for analyte refractive indices ranging from 1.33 to 1.43. Moreover, we characterize the amplitude sensitivity of the sensor that shows a maximum sensitivity of 1415 RIU−1 and 1293 RIU−1 for the x and y polarizations, respectively. To our knowledge, this is the highest sensitivity for an SPR in published literature, and facilitates future development of sensors for accurate and precise analyte measurement. The sensor also attains a maximum figure of merit (FOM) of 1140 and fine RI resolution of 1.6 × 10−6. Owing to strong coupling strength, high sensitivity, high FOM and improved sensing resolution, the proposed sensor is suited for real-time, inexpensive and accurate detection of biomedical and biological analytes, biomolecules, and organic chemicals.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly amplitude-sensitive photonic-crystal-fiber-based plasmonic sensor

Firoz Haider, Rifat Ahmmed Aoni, Rajib Ahmed, and Andrey E. Miroshnichenko
J. Opt. Soc. Am. B 35(11) 2816-2821 (2018)

Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications

Dora Juan Juan Hu and Ho Pui Ho
Adv. Opt. Photon. 9(2) 257-314 (2017)

Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber

Tiesheng Wu, Yu Shao, Ying Wang, Shaoqing Cao, Weiping Cao, Feng Zhang, Changrui Liao, Jun He, Yijian Huang, Maoxiang Hou, and Yiping Wang
Opt. Express 25(17) 20313-20322 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Kretchmann and Z. H. Raether, “Radiative decay of non radiative surface plasmon excited by light,” Z. Naturforsch. A. Phys. Sci. 23, 2135–2136, (1968).
  2. L. G. Carrascosa, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. 50(27), 3585–3588 (2014).
    [Crossref]
  3. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. & Actuators B 54, 3–15 (1999).
    [Crossref]
  4. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
    [Crossref] [PubMed]
  5. B. Lee, S. Roh, and J. Park, “Current status of micro and nano-structured optical fiber sensors,” Optical Fiber Technol. 15, 209–221 (2009).
    [Crossref]
  6. C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Exp. 25(13), 14227–14237 (2017).
    [Crossref]
  7. G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators B Chem. 29(1), 31–36, (1995).
    [Crossref]
  8. J. N. Dash and R. Jha, “Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
    [Crossref]
  9. R. Jha and G. Badenes, “Effect of fiber core dopant concentration on the performance of surface plasmon resonance-based fiber optic sensor,” Sensor. Actuat. A-Phys. 150(2), 212–217 (2009).
    [Crossref]
  10. J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
    [Crossref]
  11. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
    [Crossref] [PubMed]
  12. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Exp. 14(24), 11616–11621 (2006).
    [Crossref]
  13. J. Yao, X. Yang, M. Wang, and Y. Lu, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
    [Crossref]
  14. A. A. Rifat, G. Mahdiraji, D. Chow, Y. Shee, R. Ahmed, and F. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15(5), 11499–11510 (2015).
    [Crossref] [PubMed]
  15. R. Otupiri, E. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Exp. 23(12), 15716–15727 (2015).
    [Crossref]
  16. Y. Peng, J. Hou, Y. Zhang, Z. Huang, R. Xiao, and Q. Lu, “Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber,” Opt. Lett. 38(3), 263–265 (2013).
    [Crossref] [PubMed]
  17. J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Exp. 21(11), 13733–13740 (2013).
    [Crossref]
  18. R. Zakaria, W. Kam, Y. S. Ong, S. F. A. Z. Yusoff, H. Ahmad, and Waleed S. Mohammed, “Fabrication and simulation studies on D-shaped optical fiber sensor via surface plasmon resonance,” Journal of Modern Optics 64(14), 1443–1449, (2017).
    [Crossref]
  19. W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Optics and Lasers in Engineering 58(14), 1–8, (2014).
    [Crossref]
  20. A. Khaleque and H. T. Hattori, “Polarizer based upon a plasmonic resonant thin layer on a squeezed photonic crystal fiber,” Appl. Opt. 54(9), 2543–2549 (2015).
    [Crossref] [PubMed]
  21. B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Exp. 20(23), 25858–25866 (2012).
    [Crossref]
  22. L. Duan, X. Yang, Y. Lu, and J. Yao, “Hollow-fiber-based surface plasmon resonance sensor with large refractive index detection range and high linearity,” Appl. Opt. 56(36), 9907–9912 (2017).
    [Crossref]
  23. B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Exp. 20(6), 5974–5986 (2012).
    [Crossref]
  24. A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
    [Crossref] [PubMed]
  25. N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Exp. 23(7), 8576–8582 (2015).
    [Crossref]
  26. C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” Journal of Modern Optics 63(12), 1189–1195 (2016).
    [Crossref]
  27. G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Optical and Quantum Electronics 48(46), 252(2016).
  28. T. Huang, “Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with Indium Tin Oxide at near-infrared wavelength,” Plasmonics 12(3), 25 (2017).
    [Crossref]
  29. A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sensors Journal 17(9), 2776–2783 (2017).
    [Crossref]
  30. Q. Xie, Y. Chen, X. Li, Z. Yin, L. Wang, Y. Geng, and X. Hong, “Characteristics of D-shaped photonic crystal fiber surface plasmon resonance sensors with different side-polished lengths,” Appl. Opt. 56(5), 1550–1555 (2017).
    [Crossref]
  31. G. An, X. Hao, S. Li, X. Yan, and X. Zhang, “D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Appl. Opt. 56(24), 6988–6992 (2017).
    [Crossref] [PubMed]
  32. C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Exp. 26(7), 9039–9049 (2018).
    [Crossref]
  33. A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. Mahamd Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Exp.,  24(3) 2485–2495 (2016).
    [Crossref]
  34. J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10(5), 1123–1131 (2015).
    [Crossref]
  35. R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photonics Journal 6(4), 1–11 (2014).
    [Crossref]
  36. A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. Mahamd Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: A practical sensing approach,” IEEE Photonics Technol. Lett. 2727(15), 1628–1831 (2015).
    [Crossref]
  37. A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-graphene-based photonic crystal fiber plasmonic biosensor,” IEEE Photonics Journal 8(1), 1–8 (2016).
    [Crossref]
  38. M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sensors Journal 18(1), 133–140 (2018).
    [Crossref]
  39. M. Liu, X. Yang, P. Shum, and H. Yuan, “High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance,” Appl. Opt. 57(8), 1883–1886, (2018).
    [Crossref] [PubMed]
  40. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
    [Crossref] [PubMed]
  41. L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photonics Journal 7(5), 1–9 (2015).
    [Crossref]
  42. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
    [Crossref] [PubMed]
  43. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1995).
  44. A. Vial, A.-S. Grimault, D. Macas, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71085416 (2005).
    [Crossref]
  45. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Exp. 15(18), 11413–11426 (2007).
    [Crossref]
  46. M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors Journal 18(2), 575–582 (2018).
    [Crossref]
  47. M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow core photonic crystal fiber,” IEEE Sensors Journal 18(10), 4073–4080 (2018).
    [Crossref]
  48. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Exp. 16(12), 8427–8432 (2008).
    [Crossref]
  49. G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, and F. R. M. Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33(1), 85–104 (2014).
    [Crossref]
  50. J. C. Knight, “Photonic crystal fibers,” Nature.  424, 847–851 (2003).
    [Crossref] [PubMed]
  51. S. Atakaramians, S. Afshar, H. Ebendorff Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Exp. 17(16), 14053–14062 (2009).
    [Crossref]
  52. S. Atakaramians, “Terahertz waveguides: A study of microwires and porous fibre” PhD thesis,, The University of Adelaide, 146–156, (2011). Available: https://digital.library.adelaide.edu.au/dspace/handle/2440/69317 .
  53. H. Ebendorff-Heidepriem, J. Schuppich, A. Dowler, L. Lima-Marques, and T. Monro, “3D-printed extrusion dies: A versatile approach to optical material processing,” Opt. Mater. Express 4(8), 1494–1504 (2014).
    [Crossref]
  54. C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” Journal of Lightwave Technol. 7(9), 1360–1370 (1989).
    [Crossref]
  55. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
    [Crossref] [PubMed]
  56. P. J. A. Sazio, A. Amezcua-Correa, and C. E. Finlayson, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
    [Crossref] [PubMed]
  57. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhulmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15(24), 16270–16278 (2007).
    [Crossref] [PubMed]
  58. Y. Peng, J. Hou, Y. Zhang, Z. Huang, R. Xiao, and Q. Lu, “Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber,” Opt. Lett. 38(3), 263–265, (2013).
    [Crossref] [PubMed]
  59. T. Srivastava, R. Das, and R. Jha, “Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide,” Opt. Lett. 8(2), 515–521, (2013).
  60. A. Aray, F. Chiavaioli, M. Arjmand, C. Trono, S. Tombelli, A. Giannetti, N. Cennamo, M. Soltanolkotabi, L. Zeni, and F. Baldini, “SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum,” J. Biophoton. 9(10), 1077–1084 (2016).
    [Crossref]
  61. A. K. Yetisen, H. Butt, T. Mikulchyk, R. Ahmed, Y. Montelongo, M. Humar, N. Jiang, S. Martin, I. Naydenova, and S. H. Yun, “Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security,” Adv. Opt. Mat. 4(10), 1589–1600 (2016).
    [Crossref]

2018 (6)

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Exp. 26(7), 9039–9049 (2018).
[Crossref]

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sensors Journal 18(1), 133–140 (2018).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors Journal 18(2), 575–582 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow core photonic crystal fiber,” IEEE Sensors Journal 18(10), 4073–4080 (2018).
[Crossref]

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref] [PubMed]

M. Liu, X. Yang, P. Shum, and H. Yuan, “High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance,” Appl. Opt. 57(8), 1883–1886, (2018).
[Crossref] [PubMed]

2017 (7)

Q. Xie, Y. Chen, X. Li, Z. Yin, L. Wang, Y. Geng, and X. Hong, “Characteristics of D-shaped photonic crystal fiber surface plasmon resonance sensors with different side-polished lengths,” Appl. Opt. 56(5), 1550–1555 (2017).
[Crossref]

G. An, X. Hao, S. Li, X. Yan, and X. Zhang, “D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Appl. Opt. 56(24), 6988–6992 (2017).
[Crossref] [PubMed]

L. Duan, X. Yang, Y. Lu, and J. Yao, “Hollow-fiber-based surface plasmon resonance sensor with large refractive index detection range and high linearity,” Appl. Opt. 56(36), 9907–9912 (2017).
[Crossref]

T. Huang, “Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with Indium Tin Oxide at near-infrared wavelength,” Plasmonics 12(3), 25 (2017).
[Crossref]

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sensors Journal 17(9), 2776–2783 (2017).
[Crossref]

R. Zakaria, W. Kam, Y. S. Ong, S. F. A. Z. Yusoff, H. Ahmad, and Waleed S. Mohammed, “Fabrication and simulation studies on D-shaped optical fiber sensor via surface plasmon resonance,” Journal of Modern Optics 64(14), 1443–1449, (2017).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Exp. 25(13), 14227–14237 (2017).
[Crossref]

2016 (7)

J. N. Dash and R. Jha, “Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. Mahamd Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Exp.,  24(3) 2485–2495 (2016).
[Crossref]

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” Journal of Modern Optics 63(12), 1189–1195 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Optical and Quantum Electronics 48(46), 252(2016).

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-graphene-based photonic crystal fiber plasmonic biosensor,” IEEE Photonics Journal 8(1), 1–8 (2016).
[Crossref]

A. Aray, F. Chiavaioli, M. Arjmand, C. Trono, S. Tombelli, A. Giannetti, N. Cennamo, M. Soltanolkotabi, L. Zeni, and F. Baldini, “SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum,” J. Biophoton. 9(10), 1077–1084 (2016).
[Crossref]

A. K. Yetisen, H. Butt, T. Mikulchyk, R. Ahmed, Y. Montelongo, M. Humar, N. Jiang, S. Martin, I. Naydenova, and S. H. Yun, “Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security,” Adv. Opt. Mat. 4(10), 1589–1600 (2016).
[Crossref]

2015 (9)

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photonics Journal 7(5), 1–9 (2015).
[Crossref]

A. Khaleque and H. T. Hattori, “Polarizer based upon a plasmonic resonant thin layer on a squeezed photonic crystal fiber,” Appl. Opt. 54(9), 2543–2549 (2015).
[Crossref] [PubMed]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. Mahamd Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: A practical sensing approach,” IEEE Photonics Technol. Lett. 2727(15), 1628–1831 (2015).
[Crossref]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Exp. 23(7), 8576–8582 (2015).
[Crossref]

J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

J. Yao, X. Yang, M. Wang, and Y. Lu, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

A. A. Rifat, G. Mahdiraji, D. Chow, Y. Shee, R. Ahmed, and F. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

R. Otupiri, E. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Exp. 23(12), 15716–15727 (2015).
[Crossref]

2014 (6)

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

L. G. Carrascosa, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. 50(27), 3585–3588 (2014).
[Crossref]

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photonics Journal 6(4), 1–11 (2014).
[Crossref]

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Optics and Lasers in Engineering 58(14), 1–8, (2014).
[Crossref]

H. Ebendorff-Heidepriem, J. Schuppich, A. Dowler, L. Lima-Marques, and T. Monro, “3D-printed extrusion dies: A versatile approach to optical material processing,” Opt. Mater. Express 4(8), 1494–1504 (2014).
[Crossref]

G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, and F. R. M. Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33(1), 85–104 (2014).
[Crossref]

2013 (4)

Y. Peng, J. Hou, Y. Zhang, Z. Huang, R. Xiao, and Q. Lu, “Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber,” Opt. Lett. 38(3), 263–265, (2013).
[Crossref] [PubMed]

Y. Peng, J. Hou, Y. Zhang, Z. Huang, R. Xiao, and Q. Lu, “Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber,” Opt. Lett. 38(3), 263–265 (2013).
[Crossref] [PubMed]

T. Srivastava, R. Das, and R. Jha, “Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide,” Opt. Lett. 8(2), 515–521, (2013).

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Exp. 21(11), 13733–13740 (2013).
[Crossref]

2012 (2)

B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Exp. 20(23), 25858–25866 (2012).
[Crossref]

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Exp. 20(6), 5974–5986 (2012).
[Crossref]

2009 (3)

B. Lee, S. Roh, and J. Park, “Current status of micro and nano-structured optical fiber sensors,” Optical Fiber Technol. 15, 209–221 (2009).
[Crossref]

R. Jha and G. Badenes, “Effect of fiber core dopant concentration on the performance of surface plasmon resonance-based fiber optic sensor,” Sensor. Actuat. A-Phys. 150(2), 212–217 (2009).
[Crossref]

S. Atakaramians, S. Afshar, H. Ebendorff Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Exp. 17(16), 14053–14062 (2009).
[Crossref]

2008 (1)

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Exp. 16(12), 8427–8432 (2008).
[Crossref]

2007 (2)

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Exp. 15(18), 11413–11426 (2007).
[Crossref]

X. Zhang, R. Wang, F. M. Cox, B. T. Kuhulmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15(24), 16270–16278 (2007).
[Crossref] [PubMed]

2006 (4)

P. J. A. Sazio, A. Amezcua-Correa, and C. E. Finlayson, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Exp. 14(24), 11616–11621 (2006).
[Crossref]

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref] [PubMed]

2005 (1)

A. Vial, A.-S. Grimault, D. Macas, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71085416 (2005).
[Crossref]

2004 (1)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

2003 (2)

J. C. Knight, “Photonic crystal fibers,” Nature.  424, 847–851 (2003).
[Crossref] [PubMed]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref] [PubMed]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. & Actuators B 54, 3–15 (1999).
[Crossref]

1995 (2)

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators B Chem. 29(1), 31–36, (1995).
[Crossref]

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1995).

1989 (1)

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” Journal of Lightwave Technol. 7(9), 1360–1370 (1989).
[Crossref]

1968 (1)

E. Kretchmann and Z. H. Raether, “Radiative decay of non radiative surface plasmon excited by light,” Z. Naturforsch. A. Phys. Sci. 23, 2135–2136, (1968).

Abbott, D.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sensors Journal 18(1), 133–140 (2018).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors Journal 18(2), 575–582 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow core photonic crystal fiber,” IEEE Sensors Journal 18(10), 4073–4080 (2018).
[Crossref]

S. Atakaramians, S. Afshar, H. Ebendorff Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Exp. 17(16), 14053–14062 (2009).
[Crossref]

AbdelMalek, F.

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photonics Journal 6(4), 1–11 (2014).
[Crossref]

Abouraddy, A. F.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

Ademgil, H.

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photonics Journal 6(4), 1–11 (2014).
[Crossref]

Adikan, F.

A. A. Rifat, G. Mahdiraji, D. Chow, Y. Shee, R. Ahmed, and F. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Adikan, F. R. M.

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref] [PubMed]

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sensors Journal 17(9), 2776–2783 (2017).
[Crossref]

G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, and F. R. M. Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33(1), 85–104 (2014).
[Crossref]

Afshar, S.

S. Atakaramians, S. Afshar, H. Ebendorff Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Exp. 17(16), 14053–14062 (2009).
[Crossref]

Aggoun, A.

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photonics Journal 6(4), 1–11 (2014).
[Crossref]

Ahmad, H.

R. Zakaria, W. Kam, Y. S. Ong, S. F. A. Z. Yusoff, H. Ahmad, and Waleed S. Mohammed, “Fabrication and simulation studies on D-shaped optical fiber sensor via surface plasmon resonance,” Journal of Modern Optics 64(14), 1443–1449, (2017).
[Crossref]

Ahmed, K.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sensors Journal 18(1), 133–140 (2018).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors Journal 18(2), 575–582 (2018).
[Crossref]

Ahmed, R.

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref] [PubMed]

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sensors Journal 18(1), 133–140 (2018).
[Crossref]

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sensors Journal 17(9), 2776–2783 (2017).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. Mahamd Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Exp.,  24(3) 2485–2495 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-graphene-based photonic crystal fiber plasmonic biosensor,” IEEE Photonics Journal 8(1), 1–8 (2016).
[Crossref]

A. K. Yetisen, H. Butt, T. Mikulchyk, R. Ahmed, Y. Montelongo, M. Humar, N. Jiang, S. Martin, I. Naydenova, and S. H. Yun, “Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security,” Adv. Opt. Mat. 4(10), 1589–1600 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. Mahamd Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: A practical sensing approach,” IEEE Photonics Technol. Lett. 2727(15), 1628–1831 (2015).
[Crossref]

A. A. Rifat, G. Mahdiraji, D. Chow, Y. Shee, R. Ahmed, and F. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Akowuah, E.

R. Otupiri, E. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Exp. 23(12), 15716–15727 (2015).
[Crossref]

Akowuah, E. K.

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photonics Journal 6(4), 1–11 (2014).
[Crossref]

Akter, S.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sensors Journal 18(1), 133–140 (2018).
[Crossref]

Albert, J.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

P. J. A. Sazio, A. Amezcua-Correa, and C. E. Finlayson, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Amirkhan, F.

G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, and F. R. M. Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33(1), 85–104 (2014).
[Crossref]

An, G.

G. An, X. Hao, S. Li, X. Yan, and X. Zhang, “D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Appl. Opt. 56(24), 6988–6992 (2017).
[Crossref] [PubMed]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Optical and Quantum Electronics 48(46), 252(2016).

Aray, A.

A. Aray, F. Chiavaioli, M. Arjmand, C. Trono, S. Tombelli, A. Giannetti, N. Cennamo, M. Soltanolkotabi, L. Zeni, and F. Baldini, “SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum,” J. Biophoton. 9(10), 1077–1084 (2016).
[Crossref]

Arjmand, M.

A. Aray, F. Chiavaioli, M. Arjmand, C. Trono, S. Tombelli, A. Giannetti, N. Cennamo, M. Soltanolkotabi, L. Zeni, and F. Baldini, “SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum,” J. Biophoton. 9(10), 1077–1084 (2016).
[Crossref]

Aroeti, B.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref] [PubMed]

Atakaramians, S.

S. Atakaramians, S. Afshar, H. Ebendorff Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Exp. 17(16), 14053–14062 (2009).
[Crossref]

S. Atakaramians, “Terahertz waveguides: A study of microwires and porous fibre” PhD thesis,, The University of Adelaide, 146–156, (2011). Available: https://digital.library.adelaide.edu.au/dspace/handle/2440/69317 .

Badding, J. V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Badenes, G.

R. Jha and G. Badenes, “Effect of fiber core dopant concentration on the performance of surface plasmon resonance-based fiber optic sensor,” Sensor. Actuat. A-Phys. 150(2), 212–217 (2009).
[Crossref]

Baldini, F.

A. Aray, F. Chiavaioli, M. Arjmand, C. Trono, S. Tombelli, A. Giannetti, N. Cennamo, M. Soltanolkotabi, L. Zeni, and F. Baldini, “SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum,” J. Biophoton. 9(10), 1077–1084 (2016).
[Crossref]

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macas, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71085416 (2005).
[Crossref]

Baril, N. F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Bayindir, M.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

Butt, H.

A. K. Yetisen, H. Butt, T. Mikulchyk, R. Ahmed, Y. Montelongo, M. Humar, N. Jiang, S. Martin, I. Naydenova, and S. H. Yun, “Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security,” Adv. Opt. Mat. 4(10), 1589–1600 (2016).
[Crossref]

Carrascosa, L. G.

L. G. Carrascosa, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. 50(27), 3585–3588 (2014).
[Crossref]

Caucheteur, C.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Cennamo, N.

A. Aray, F. Chiavaioli, M. Arjmand, C. Trono, S. Tombelli, A. Giannetti, N. Cennamo, M. Soltanolkotabi, L. Zeni, and F. Baldini, “SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum,” J. Biophoton. 9(10), 1077–1084 (2016).
[Crossref]

Chen, H.

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Optical and Quantum Electronics 48(46), 252(2016).

Chen, Y.

Chiavaioli, F.

A. Aray, F. Chiavaioli, M. Arjmand, C. Trono, S. Tombelli, A. Giannetti, N. Cennamo, M. Soltanolkotabi, L. Zeni, and F. Baldini, “SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum,” J. Biophoton. 9(10), 1077–1084 (2016).
[Crossref]

Chow, D.

A. A. Rifat, G. Mahdiraji, D. Chow, Y. Shee, R. Ahmed, and F. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Chow, D. M.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-graphene-based photonic crystal fiber plasmonic biosensor,” IEEE Photonics Journal 8(1), 1–8 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. Mahamd Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: A practical sensing approach,” IEEE Photonics Technol. Lett. 2727(15), 1628–1831 (2015).
[Crossref]

G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, and F. R. M. Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33(1), 85–104 (2014).
[Crossref]

Chu, P. K.

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Exp. 26(7), 9039–9049 (2018).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Exp. 25(13), 14227–14237 (2017).
[Crossref]

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” Journal of Modern Optics 63(12), 1189–1195 (2016).
[Crossref]

Cox, F. M.

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Das, R.

T. Srivastava, R. Das, and R. Jha, “Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide,” Opt. Lett. 8(2), 515–521, (2013).

Dash, J. N.

J. N. Dash and R. Jha, “Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
[Crossref]

J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

Davidov, D.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref] [PubMed]

de La Chapelle, M. L.

A. Vial, A.-S. Grimault, D. Macas, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71085416 (2005).
[Crossref]

Dermosesian, E.

G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, and F. R. M. Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33(1), 85–104 (2014).
[Crossref]

Dinovitser, A.

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow core photonic crystal fiber,” IEEE Sensors Journal 18(10), 4073–4080 (2018).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors Journal 18(2), 575–582 (2018).
[Crossref]

Dowler, A.

Duan, L.

Ebendorff Heidepriem, H.

S. Atakaramians, S. Afshar, H. Ebendorff Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Exp. 17(16), 14053–14062 (2009).
[Crossref]

Ebendorff-Heidepriem, H.

Fassi Fehri, M.

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Exp. 15(18), 11413–11426 (2007).
[Crossref]

Fink, Y.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, and C. E. Finlayson, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Fischer, B. M.

S. Atakaramians, S. Afshar, H. Ebendorff Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Exp. 17(16), 14053–14062 (2009).
[Crossref]

Gang, S. Y.

G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, and F. R. M. Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33(1), 85–104 (2014).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. & Actuators B 54, 3–15 (1999).
[Crossref]

Gauvreau, B.

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Exp. 15(18), 11413–11426 (2007).
[Crossref]

Ge, S.

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photonics Journal 7(5), 1–9 (2015).
[Crossref]

Geng, Y.

Ghomeishi, M.

G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, and F. R. M. Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33(1), 85–104 (2014).
[Crossref]

Giannetti, A.

A. Aray, F. Chiavaioli, M. Arjmand, C. Trono, S. Tombelli, A. Giannetti, N. Cennamo, M. Soltanolkotabi, L. Zeni, and F. Baldini, “SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum,” J. Biophoton. 9(10), 1077–1084 (2016).
[Crossref]

Gopalan, V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macas, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71085416 (2005).
[Crossref]

Guo, T.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Haider, F.

Hao, X.

Hart, S. D.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

Hasan, M. R.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sensors Journal 18(1), 133–140 (2018).
[Crossref]

Hassani, A.

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Exp. 15(18), 11413–11426 (2007).
[Crossref]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Exp. 14(24), 11616–11621 (2006).
[Crossref]

Hattori, H. T.

Hautakorpi, M.

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Exp. 16(12), 8427–8432 (2008).
[Crossref]

Haxha, S.

R. Otupiri, E. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Exp. 23(12), 15716–15727 (2015).
[Crossref]

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photonics Journal 6(4), 1–11 (2014).
[Crossref]

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. & Actuators B 54, 3–15 (1999).
[Crossref]

Hong, X.

Hou, J.

Hou, Z.

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photonics Journal 7(5), 1–9 (2015).
[Crossref]

Huang, T.

T. Huang, “Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with Indium Tin Oxide at near-infrared wavelength,” Plasmonics 12(3), 25 (2017).
[Crossref]

Huang, Z.

Humar, M.

A. K. Yetisen, H. Butt, T. Mikulchyk, R. Ahmed, Y. Montelongo, M. Humar, N. Jiang, S. Martin, I. Naydenova, and S. H. Yun, “Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security,” Adv. Opt. Mat. 4(10), 1589–1600 (2016).
[Crossref]

Islam, M. R.

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors Journal 18(2), 575–582 (2018).
[Crossref]

Islam, M. S.

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow core photonic crystal fiber,” IEEE Sensors Journal 18(10), 4073–4080 (2018).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors Journal 18(2), 575–582 (2018).
[Crossref]

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Jha, R.

J. N. Dash and R. Jha, “Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
[Crossref]

J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

T. Srivastava, R. Das, and R. Jha, “Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide,” Opt. Lett. 8(2), 515–521, (2013).

R. Jha and G. Badenes, “Effect of fiber core dopant concentration on the performance of surface plasmon resonance-based fiber optic sensor,” Sensor. Actuat. A-Phys. 150(2), 212–217 (2009).
[Crossref]

Jiang, N.

A. K. Yetisen, H. Butt, T. Mikulchyk, R. Ahmed, Y. Montelongo, M. Humar, N. Jiang, S. Martin, I. Naydenova, and S. H. Yun, “Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security,” Adv. Opt. Mat. 4(10), 1589–1600 (2016).
[Crossref]

Joannopoulos, J. D.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

Kabashin, A.

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Exp. 15(18), 11413–11426 (2007).
[Crossref]

Kakaei, Z.

G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, and F. R. M. Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33(1), 85–104 (2014).
[Crossref]

Kam, W.

R. Zakaria, W. Kam, Y. S. Ong, S. F. A. Z. Yusoff, H. Ahmad, and Waleed S. Mohammed, “Fabrication and simulation studies on D-shaped optical fiber sensor via surface plasmon resonance,” Journal of Modern Optics 64(14), 1443–1449, (2017).
[Crossref]

Khaleque, A.

Knight, J. C.

J. C. Knight, “Photonic crystal fibers,” Nature.  424, 847–851 (2003).
[Crossref] [PubMed]

Krause, J. T.

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” Journal of Lightwave Technol. 7(9), 1360–1370 (1989).
[Crossref]

Kretchmann, E.

E. Kretchmann and Z. H. Raether, “Radiative decay of non radiative surface plasmon excited by light,” Z. Naturforsch. A. Phys. Sci. 23, 2135–2136, (1968).

Kuhulmey, B. T.

Kurkjian, C. R.

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” Journal of Lightwave Technol. 7(9), 1360–1370 (1989).
[Crossref]

Large, M. C. J.

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro and nano-structured optical fiber sensors,” Optical Fiber Technol. 15, 209–221 (2009).
[Crossref]

Li, S.

G. An, X. Hao, S. Li, X. Yan, and X. Zhang, “D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Appl. Opt. 56(24), 6988–6992 (2017).
[Crossref] [PubMed]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Optical and Quantum Electronics 48(46), 252(2016).

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Optics and Lasers in Engineering 58(14), 1–8, (2014).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Exp. 21(11), 13733–13740 (2013).
[Crossref]

Li, X.

Lima-Marques, L.

Lirtsman, V.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref] [PubMed]

Liu, C.

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Exp. 26(7), 9039–9049 (2018).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Exp. 25(13), 14227–14237 (2017).
[Crossref]

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” Journal of Modern Optics 63(12), 1189–1195 (2016).
[Crossref]

Liu, D.

B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Exp. 20(23), 25858–25866 (2012).
[Crossref]

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Exp. 20(6), 5974–5986 (2012).
[Crossref]

Liu, M.

Liu, Q.

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Exp. 26(7), 9039–9049 (2018).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Exp. 25(13), 14227–14237 (2017).
[Crossref]

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” Journal of Modern Optics 63(12), 1189–1195 (2016).
[Crossref]

Lu, Q.

Lu, X.

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Exp. 26(7), 9039–9049 (2018).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Exp. 25(13), 14227–14237 (2017).
[Crossref]

Lu, Y.

L. Duan, X. Yang, Y. Lu, and J. Yao, “Hollow-fiber-based surface plasmon resonance sensor with large refractive index detection range and high linearity,” Appl. Opt. 56(36), 9907–9912 (2017).
[Crossref]

J. Yao, X. Yang, M. Wang, and Y. Lu, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

Luan, N.

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Exp. 23(7), 8576–8582 (2015).
[Crossref]

Ludvigsen, H.

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Exp. 16(12), 8427–8432 (2008).
[Crossref]

Lv, J.

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Exp. 25(13), 14227–14237 (2017).
[Crossref]

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” Journal of Modern Optics 63(12), 1189–1195 (2016).
[Crossref]

Lv, W.

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Exp. 23(7), 8576–8582 (2015).
[Crossref]

Macas, D.

A. Vial, A.-S. Grimault, D. Macas, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71085416 (2005).
[Crossref]

Mahamd Adikan, F. R.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. Mahamd Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Exp.,  24(3) 2485–2495 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-graphene-based photonic crystal fiber plasmonic biosensor,” IEEE Photonics Journal 8(1), 1–8 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. Mahamd Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: A practical sensing approach,” IEEE Photonics Technol. Lett. 2727(15), 1628–1831 (2015).
[Crossref]

Mahdiraji, G.

A. A. Rifat, G. Mahdiraji, D. Chow, Y. Shee, R. Ahmed, and F. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Mahdiraji, G. A.

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref] [PubMed]

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sensors Journal 17(9), 2776–2783 (2017).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-graphene-based photonic crystal fiber plasmonic biosensor,” IEEE Photonics Journal 8(1), 1–8 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. Mahamd Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Exp.,  24(3) 2485–2495 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. Mahamd Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: A practical sensing approach,” IEEE Photonics Technol. Lett. 2727(15), 1628–1831 (2015).
[Crossref]

G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, and F. R. M. Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33(1), 85–104 (2014).
[Crossref]

Malitson, I. H.

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Martin, S.

A. K. Yetisen, H. Butt, T. Mikulchyk, R. Ahmed, Y. Montelongo, M. Humar, N. Jiang, S. Martin, I. Naydenova, and S. H. Yun, “Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security,” Adv. Opt. Mat. 4(10), 1589–1600 (2016).
[Crossref]

Matthewson, M. J.

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” Journal of Lightwave Technol. 7(9), 1360–1370 (1989).
[Crossref]

Mattinen, M.

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Exp. 16(12), 8427–8432 (2008).
[Crossref]

Mikulchyk, T.

A. K. Yetisen, H. Butt, T. Mikulchyk, R. Ahmed, Y. Montelongo, M. Humar, N. Jiang, S. Martin, I. Naydenova, and S. H. Yun, “Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security,” Adv. Opt. Mat. 4(10), 1589–1600 (2016).
[Crossref]

Miroshnichenko, A. E.

Mohammed, Waleed S.

R. Zakaria, W. Kam, Y. S. Ong, S. F. A. Z. Yusoff, H. Ahmad, and Waleed S. Mohammed, “Fabrication and simulation studies on D-shaped optical fiber sensor via surface plasmon resonance,” Journal of Modern Optics 64(14), 1443–1449, (2017).
[Crossref]

Monro, T.

Monro, T. M.

S. Atakaramians, S. Afshar, H. Ebendorff Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Exp. 17(16), 14053–14062 (2009).
[Crossref]

Montelongo, Y.

A. K. Yetisen, H. Butt, T. Mikulchyk, R. Ahmed, Y. Montelongo, M. Humar, N. Jiang, S. Martin, I. Naydenova, and S. H. Yun, “Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security,” Adv. Opt. Mat. 4(10), 1589–1600 (2016).
[Crossref]

Mu, H.

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Exp. 25(13), 14227–14237 (2017).
[Crossref]

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” Journal of Modern Optics 63(12), 1189–1195 (2016).
[Crossref]

Nagel, M.

S. Atakaramians, S. Afshar, H. Ebendorff Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Exp. 17(16), 14053–14062 (2009).
[Crossref]

Naydenova, I.

A. K. Yetisen, H. Butt, T. Mikulchyk, R. Ahmed, Y. Montelongo, M. Humar, N. Jiang, S. Martin, I. Naydenova, and S. H. Yun, “Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security,” Adv. Opt. Mat. 4(10), 1589–1600 (2016).
[Crossref]

Ng, B. W.-H.

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow core photonic crystal fiber,” IEEE Sensors Journal 18(10), 4073–4080 (2018).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors Journal 18(2), 575–582 (2018).
[Crossref]

Ong, Y. S.

R. Zakaria, W. Kam, Y. S. Ong, S. F. A. Z. Yusoff, H. Ahmad, and Waleed S. Mohammed, “Fabrication and simulation studies on D-shaped optical fiber sensor via surface plasmon resonance,” Journal of Modern Optics 64(14), 1443–1449, (2017).
[Crossref]

Otupiri, R.

R. Otupiri, E. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Exp. 23(12), 15716–15727 (2015).
[Crossref]

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photonics Journal 6(4), 1–11 (2014).
[Crossref]

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro and nano-structured optical fiber sensors,” Optical Fiber Technol. 15, 209–221 (2009).
[Crossref]

Peng, L.

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photonics Journal 7(5), 1–9 (2015).
[Crossref]

Peng, Y.

Poh, S. Y.

G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, and F. R. M. Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33(1), 85–104 (2014).
[Crossref]

Qin, W.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Optics and Lasers in Engineering 58(14), 1–8, (2014).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Exp. 21(11), 13733–13740 (2013).
[Crossref]

Raether, Z. H.

E. Kretchmann and Z. H. Raether, “Radiative decay of non radiative surface plasmon excited by light,” Z. Naturforsch. A. Phys. Sci. 23, 2135–2136, (1968).

Rana, S.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sensors Journal 18(1), 133–140 (2018).
[Crossref]

Rifat, A. A.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sensors Journal 18(1), 133–140 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow core photonic crystal fiber,” IEEE Sensors Journal 18(10), 4073–4080 (2018).
[Crossref]

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref] [PubMed]

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sensors Journal 17(9), 2776–2783 (2017).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-graphene-based photonic crystal fiber plasmonic biosensor,” IEEE Photonics Journal 8(1), 1–8 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. Mahamd Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Exp.,  24(3) 2485–2495 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. Mahamd Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: A practical sensing approach,” IEEE Photonics Technol. Lett. 2727(15), 1628–1831 (2015).
[Crossref]

A. A. Rifat, G. Mahdiraji, D. Chow, Y. Shee, R. Ahmed, and F. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Robinson, G.

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators B Chem. 29(1), 31–36, (1995).
[Crossref]

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro and nano-structured optical fiber sensors,” Optical Fiber Technol. 15, 209–221 (2009).
[Crossref]

Sandoghchi, S. R.

G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, and F. R. M. Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33(1), 85–104 (2014).
[Crossref]

Sazio, P. J. A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

P. J. A. Sazio, A. Amezcua-Correa, and C. E. Finlayson, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Schuppich, J.

Shee, Y.

A. A. Rifat, G. Mahdiraji, D. Chow, Y. Shee, R. Ahmed, and F. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Shee, Y. G.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. Mahamd Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Exp.,  24(3) 2485–2495 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-graphene-based photonic crystal fiber plasmonic biosensor,” IEEE Photonics Journal 8(1), 1–8 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. Mahamd Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: A practical sensing approach,” IEEE Photonics Technol. Lett. 2727(15), 1628–1831 (2015).
[Crossref]

Shi, F.

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photonics Journal 7(5), 1–9 (2015).
[Crossref]

Shuai, B.

B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Exp. 20(23), 25858–25866 (2012).
[Crossref]

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Exp. 20(6), 5974–5986 (2012).
[Crossref]

Shum, P.

Skorobogatiy, M.

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Exp. 14(24), 11616–11621 (2006).
[Crossref]

Skorobogatiy, M. A.

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Exp. 15(18), 11413–11426 (2007).
[Crossref]

Soltanolkotabi, M.

A. Aray, F. Chiavaioli, M. Arjmand, C. Trono, S. Tombelli, A. Giannetti, N. Cennamo, M. Soltanolkotabi, L. Zeni, and F. Baldini, “SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum,” J. Biophoton. 9(10), 1077–1084 (2016).
[Crossref]

Sorin, F.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

Srivastava, T.

T. Srivastava, R. Das, and R. Jha, “Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide,” Opt. Lett. 8(2), 515–521, (2013).

Su, W.

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Exp. 26(7), 9039–9049 (2018).
[Crossref]

Sua, Y. M.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-graphene-based photonic crystal fiber plasmonic biosensor,” IEEE Photonics Journal 8(1), 1–8 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. Mahamd Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Exp.,  24(3) 2485–2495 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. Mahamd Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: A practical sensing approach,” IEEE Photonics Technol. Lett. 2727(15), 1628–1831 (2015).
[Crossref]

Subbaraman, H.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sensors Journal 18(1), 133–140 (2018).
[Crossref]

Sultana, J.

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors Journal 18(2), 575–582 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow core photonic crystal fiber,” IEEE Sensors Journal 18(10), 4073–4080 (2018).
[Crossref]

Sun, T.

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Exp. 26(7), 9039–9049 (2018).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Exp. 25(13), 14227–14237 (2017).
[Crossref]

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” Journal of Modern Optics 63(12), 1189–1195 (2016).
[Crossref]

Tombelli, S.

A. Aray, F. Chiavaioli, M. Arjmand, C. Trono, S. Tombelli, A. Giannetti, N. Cennamo, M. Soltanolkotabi, L. Zeni, and F. Baldini, “SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum,” J. Biophoton. 9(10), 1077–1084 (2016).
[Crossref]

Trono, C.

A. Aray, F. Chiavaioli, M. Arjmand, C. Trono, S. Tombelli, A. Giannetti, N. Cennamo, M. Soltanolkotabi, L. Zeni, and F. Baldini, “SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum,” J. Biophoton. 9(10), 1077–1084 (2016).
[Crossref]

Vial, A.

A. Vial, A.-S. Grimault, D. Macas, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71085416 (2005).
[Crossref]

Viens, J.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

Wang, F.

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Exp. 26(7), 9039–9049 (2018).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Exp. 25(13), 14227–14237 (2017).
[Crossref]

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” Journal of Modern Optics 63(12), 1189–1195 (2016).
[Crossref]

Wang, G.

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Optical and Quantum Electronics 48(46), 252(2016).

Wang, L.

Wang, M.

J. Yao, X. Yang, M. Wang, and Y. Lu, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

Wang, R.

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Exp. 23(7), 8576–8582 (2015).
[Crossref]

X. Zhang, R. Wang, F. M. Cox, B. T. Kuhulmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15(24), 16270–16278 (2007).
[Crossref] [PubMed]

Wang, X.

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Optical and Quantum Electronics 48(46), 252(2016).

Won, D.-J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Xia, C.

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photonics Journal 7(5), 1–9 (2015).
[Crossref]

Xia, L.

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Exp. 20(6), 5974–5986 (2012).
[Crossref]

B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Exp. 20(23), 25858–25866 (2012).
[Crossref]

Xiao, R.

Xiao, Y.

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Exp. 21(11), 13733–13740 (2013).
[Crossref]

Xie, Q.

Xin, X.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Optics and Lasers in Engineering 58(14), 1–8, (2014).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Exp. 21(11), 13733–13740 (2013).
[Crossref]

Xue, J.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Optics and Lasers in Engineering 58(14), 1–8, (2014).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Exp. 21(11), 13733–13740 (2013).
[Crossref]

Yan, X.

Yang, L.

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Exp. 25(13), 14227–14237 (2017).
[Crossref]

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” Journal of Modern Optics 63(12), 1189–1195 (2016).
[Crossref]

Yang, X.

Yao, J.

L. Duan, X. Yang, Y. Lu, and J. Yao, “Hollow-fiber-based surface plasmon resonance sensor with large refractive index detection range and high linearity,” Appl. Opt. 56(36), 9907–9912 (2017).
[Crossref]

J. Yao, X. Yang, M. Wang, and Y. Lu, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Exp. 23(7), 8576–8582 (2015).
[Crossref]

Yao, Y.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Optics and Lasers in Engineering 58(14), 1–8, (2014).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. & Actuators B 54, 3–15 (1999).
[Crossref]

Yeo, K. S.

G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, and F. R. M. Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33(1), 85–104 (2014).
[Crossref]

Yetisen, A. K.

A. K. Yetisen, H. Butt, T. Mikulchyk, R. Ahmed, Y. Montelongo, M. Humar, N. Jiang, S. Martin, I. Naydenova, and S. H. Yun, “Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security,” Adv. Opt. Mat. 4(10), 1589–1600 (2016).
[Crossref]

Yin, Z.

Yuan, H.

Yun, S. H.

A. K. Yetisen, H. Butt, T. Mikulchyk, R. Ahmed, Y. Montelongo, M. Humar, N. Jiang, S. Martin, I. Naydenova, and S. H. Yun, “Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security,” Adv. Opt. Mat. 4(10), 1589–1600 (2016).
[Crossref]

Yusoff, S. F. A. Z.

R. Zakaria, W. Kam, Y. S. Ong, S. F. A. Z. Yusoff, H. Ahmad, and Waleed S. Mohammed, “Fabrication and simulation studies on D-shaped optical fiber sensor via surface plasmon resonance,” Journal of Modern Optics 64(14), 1443–1449, (2017).
[Crossref]

Zakaria, R.

R. Zakaria, W. Kam, Y. S. Ong, S. F. A. Z. Yusoff, H. Ahmad, and Waleed S. Mohammed, “Fabrication and simulation studies on D-shaped optical fiber sensor via surface plasmon resonance,” Journal of Modern Optics 64(14), 1443–1449, (2017).
[Crossref]

Zeni, L.

A. Aray, F. Chiavaioli, M. Arjmand, C. Trono, S. Tombelli, A. Giannetti, N. Cennamo, M. Soltanolkotabi, L. Zeni, and F. Baldini, “SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum,” J. Biophoton. 9(10), 1077–1084 (2016).
[Crossref]

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Zhang, W.

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Optical and Quantum Electronics 48(46), 252(2016).

Zhang, X.

Zhang, Y.

Zhao, Y.

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Optical and Quantum Electronics 48(46), 252(2016).

Zheng, S.

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” Journal of Modern Optics 63(12), 1189–1195 (2016).
[Crossref]

Zhou, G.

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photonics Journal 7(5), 1–9 (2015).
[Crossref]

Zhu, X.

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Exp. 21(11), 13733–13740 (2013).
[Crossref]

Ziblat, R.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref] [PubMed]

Adv. Opt. Mat. (1)

A. K. Yetisen, H. Butt, T. Mikulchyk, R. Ahmed, Y. Montelongo, M. Humar, N. Jiang, S. Martin, I. Naydenova, and S. H. Yun, “Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security,” Adv. Opt. Mat. 4(10), 1589–1600 (2016).
[Crossref]

Anal. Bioanal. Chem. (2)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Appl. Opt. (5)

Biophys. J. (1)

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[Crossref] [PubMed]

Chem. Commun. (1)

L. G. Carrascosa, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. 50(27), 3585–3588 (2014).
[Crossref]

Electron. Lett. (1)

J. Yao, X. Yang, M. Wang, and Y. Lu, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

Fiber Integr. Opt. (1)

G. A. Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Y. Gang, and F. R. M. Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: An experimental study,” Fiber Integr. Opt. 33(1), 85–104 (2014).
[Crossref]

IEEE Photonics Journal (3)

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photonics Journal 7(5), 1–9 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-graphene-based photonic crystal fiber plasmonic biosensor,” IEEE Photonics Journal 8(1), 1–8 (2016).
[Crossref]

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photonics Journal 6(4), 1–11 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. Mahamd Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: A practical sensing approach,” IEEE Photonics Technol. Lett. 2727(15), 1628–1831 (2015).
[Crossref]

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

IEEE Sensors Journal (4)

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sensors Journal 18(1), 133–140 (2018).
[Crossref]

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sensors Journal 17(9), 2776–2783 (2017).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors Journal 18(2), 575–582 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow core photonic crystal fiber,” IEEE Sensors Journal 18(10), 4073–4080 (2018).
[Crossref]

J. Biophoton. (1)

A. Aray, F. Chiavaioli, M. Arjmand, C. Trono, S. Tombelli, A. Giannetti, N. Cennamo, M. Soltanolkotabi, L. Zeni, and F. Baldini, “SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum,” J. Biophoton. 9(10), 1077–1084 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

Journal of Lightwave Technol. (1)

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” Journal of Lightwave Technol. 7(9), 1360–1370 (1989).
[Crossref]

Journal of Modern Optics (2)

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” Journal of Modern Optics 63(12), 1189–1195 (2016).
[Crossref]

R. Zakaria, W. Kam, Y. S. Ong, S. F. A. Z. Yusoff, H. Ahmad, and Waleed S. Mohammed, “Fabrication and simulation studies on D-shaped optical fiber sensor via surface plasmon resonance,” Journal of Modern Optics 64(14), 1443–1449, (2017).
[Crossref]

Nature (2)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[Crossref] [PubMed]

J. C. Knight, “Photonic crystal fibers,” Nature.  424, 847–851 (2003).
[Crossref] [PubMed]

Opt. Exp. (12)

S. Atakaramians, S. Afshar, H. Ebendorff Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Exp. 17(16), 14053–14062 (2009).
[Crossref]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Exp. 16(12), 8427–8432 (2008).
[Crossref]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Exp. 15(18), 11413–11426 (2007).
[Crossref]

B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Exp. 20(23), 25858–25866 (2012).
[Crossref]

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Exp. 20(6), 5974–5986 (2012).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Exp. 21(11), 13733–13740 (2013).
[Crossref]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Exp. 23(7), 8576–8582 (2015).
[Crossref]

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Exp. 26(7), 9039–9049 (2018).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. Mahamd Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Exp.,  24(3) 2485–2495 (2016).
[Crossref]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Exp. 14(24), 11616–11621 (2006).
[Crossref]

R. Otupiri, E. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Exp. 23(12), 15716–15727 (2015).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Exp. 25(13), 14227–14237 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. Express (1)

Optical and Quantum Electronics (1)

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Optical and Quantum Electronics 48(46), 252(2016).

Optical Fiber Technol. (1)

B. Lee, S. Roh, and J. Park, “Current status of micro and nano-structured optical fiber sensors,” Optical Fiber Technol. 15, 209–221 (2009).
[Crossref]

Optics and Lasers in Engineering (1)

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Optics and Lasers in Engineering 58(14), 1–8, (2014).
[Crossref]

Phys. Rev. B (1)

A. Vial, A.-S. Grimault, D. Macas, D. Barchiesi, and M. L. de La Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71085416 (2005).
[Crossref]

Plasmonics (3)

T. Huang, “Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with Indium Tin Oxide at near-infrared wavelength,” Plasmonics 12(3), 25 (2017).
[Crossref]

J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

J. N. Dash and R. Jha, “Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
[Crossref]

Science (2)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

P. J. A. Sazio, A. Amezcua-Correa, and C. E. Finlayson, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Sens. & Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. & Actuators B 54, 3–15 (1999).
[Crossref]

Sens. Actuators B Chem. (1)

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators B Chem. 29(1), 31–36, (1995).
[Crossref]

Sensor. Actuat. A-Phys. (1)

R. Jha and G. Badenes, “Effect of fiber core dopant concentration on the performance of surface plasmon resonance-based fiber optic sensor,” Sensor. Actuat. A-Phys. 150(2), 212–217 (2009).
[Crossref]

Sensors (1)

A. A. Rifat, G. Mahdiraji, D. Chow, Y. Shee, R. Ahmed, and F. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Z. Naturforsch. A. Phys. Sci. (1)

E. Kretchmann and Z. H. Raether, “Radiative decay of non radiative surface plasmon excited by light,” Z. Naturforsch. A. Phys. Sci. 23, 2135–2136, (1968).

Other (1)

S. Atakaramians, “Terahertz waveguides: A study of microwires and porous fibre” PhD thesis,, The University of Adelaide, 146–156, (2011). Available: https://digital.library.adelaide.edu.au/dspace/handle/2440/69317 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Fig. 1
Fig. 1 Cross section and general set-up for practical sensing of the proposed sensor (a) Cross section and (b) General set-up for practical sensing.
Fig. 2
Fig. 2 Optical field distribution of the proposed sensor at resonance wavelength with (a) na = 1.33, x -pol, core mode, (b) na = 1.33, y-pol, core mode, (c) na = 1.33, x-pol, SPP mode, (d) na = 1.33, y-pol, SPP mode, (e) na = 1.42, x -pol, core mode, (f) na = 1.42, y-pol, core mode, (g) na = 1.42, x -pol, SPP mode, and (h) na = 1.42, y-pol, SPP mode at H = 0.5 µm, W = 0.15 µm, Λ = 1.8 µm, Λ1 = 1.6 µm, Λ2 = 1.24 µm, d = 1.35 µm, d 1 = 1.20 µm, d 2 = 0.18 µm, tg = 30 nm, ta = 0.9 µm, and tp = 1.0 µm.
Fig. 3
Fig. 3 Dispersion relation of fundamental core mode, plasmonic mode, and loss spectra of na = 1.42 for x and y-polarization modes with H = 0.5 µm, W = 0.15 µm, Λ = 1.8 µm, Λ1 = 1.6 µm, Λ2 = 1.24 µm, d = 1.35 µm, d 1 = 1.20 µm, d 2 = 0.18 µm, tg = 30 nm, ta = 0.9 µm, and tp = 1.0 µm.
Fig. 4
Fig. 4 Changes of loss peak with the variation of n a from 1.33 to 1.43 for x-polarization mode and other optimal design parameters.
Fig. 5
Fig. 5 Changes of loss peak with the variation of na from 1.33 to 1.43 for y-polarization mode and other optimal design parameters.
Fig. 6
Fig. 6 Amplitude sensitivity of the proposed sensor at an analyte RI range of 1.33 to 1.42 for x and y-polarization mode keeping other design parameters optimum.
Fig. 7
Fig. 7 Confinement loss and amplitude sensitivity of the sensor with solid core.
Fig. 8
Fig. 8 Confinement loss and amplitude sensitivity of the sensor with circular shaped core.
Fig. 9
Fig. 9 Confinement loss of analyte 1.41 and 1.42 with different height (H) of the rectangular core at both x and y polarizations with other optimal design conditions.
Fig. 10
Fig. 10 Amplitude sensitivity with different height (H) of the rectangular core at both x and y polarizations with an analyte RI of na = 1.41.
Fig. 11
Fig. 11 Confinement loss with various width (W) of the rectangular core at both x and y polarizations with other optimal design conditions.
Fig. 12
Fig. 12 Amplitude sensitivity with various width (W) of the rectangular core at both x and y polarizations with an analyte RI of na = 1.41.
Fig. 13
Fig. 13 Optical field distribution of the sensor with (a) na = 1.42, x -pol, core mode (circular core), (b) na = 1.42, y-pol, core mode (circular core), (c) na = 1.42, x -pol, SPP mode (circular core), (d) na = 1.42, y-pol, SPP mode (circular core), (e) na = 1.42, x -pol, core mode (solid core), (f) na = 1.42, y-pol, core mode (solid core), (g) na = 1.42, x -pol, SPP mode (solid core), and (h) na = 1.42, y-pol, SPP mode (solid core).
Fig. 14
Fig. 14 Characteristics of birefringence with rectangular, circular and solid core with H = 0.5 µm, W = 0.15 µm, Λ = 1.8 µm, Λ1 = 1.6 µm, Λ2 = 1.24 µm, d = 1.35 µm, d1 = 1.20 µm, d2 = 0.18 µm, tg = 30 nm, ta = 0.9 µm, tp = 1.0 µm and radius of the circular core (rc) = d2.
Fig. 15
Fig. 15 Confinement loss of the sensor at optimum diameters of d, d1 and d2 and ± 2% variation from the optimum diameters keeping other geometrical parameters optimum.
Fig. 16
Fig. 16 Amplitude sensitivity of the sensor at optimum diameters of d, d1 and d2 and ±2% variation from the optimum diameters with an analyte RI of na = 1.41.
Fig. 17
Fig. 17 Confinement loss of the sensor at optimum pitch distances of Λ, Λ1, and Λ2 and ± 2% variation from the optimum pitch distances keeping other parameters optimum.
Fig. 18
Fig. 18 Amplitude sensitivity of the sensor at optimum pitch distances of Λ, Λ1, and Λ2 and ± 2% variation from the optimum pitch distances with an analyte RI of na = 1.41.
Fig. 19
Fig. 19 Confinement loss of the proposed sensor for na = 1.41 and na = 1.42 with different variation of tg at optimal design conditions.
Fig. 20
Fig. 20 Amplitude sensitivity of the proposed sensor for na = 1.41 with variation of tg.
Fig. 21
Fig. 21 Confinement loss of the proposed sensor for na = 1.41 and na = 1.42 with different thickness of analyte channel (ta) at optimal design conditions.
Fig. 22
Fig. 22 Amplitude sensitivity of the proposed sensor for na = 1.41 with variation of ta and other optimal design conditions.
Fig. 23
Fig. 23 Confinement loss of the proposed sensor for na = 1.41 and na = 1.42 with various thickness of PML (tp) at optimal design conditions.
Fig. 24
Fig. 24 Amplitude sensitivity of the proposed sensor for na = 1.41 with different values of tp and other optimal design conditions.
Fig. 25
Fig. 25 Length of the sensor regarding to different analyte RI.

Tables (2)

Tables Icon

Table 1 Analysis of sensing performance in terms of amplitude sensitivity and wavelength sensitivity with different variation of analyte RI.

Tables Icon

Table 2 Comparison of performance of the proposed sensor with prior sensors.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n = 1 + 0.692 λ 2 λ 2 0.0047 + 0.408 λ 2 λ 2 0.014 + 0.897 λ 2 λ 2 97.934
ε m = ε ω D 2 ω ( ω + j γ D ) + Δ ε Ω L 2 ( ω 2 Ω L 2 ) j Γ L ω
α loss = 8.686 × 2 π λ × Im ( n eff ) × 10 4 , dB / cm
S w ( λ ) = Δ λ peak Δ n a
P ( L , λ , n a ) = P 0 e α ( λ , n a ) L
L = 1 α ( λ , n a ) .
S A ( λ ) = 1 α ( λ , n a ) δ α ( λ , n a ) δ n a
B = | n x n y |
R = Δ n a Δ λ min Δ λ peak

Metrics