Abstract

Optical sampling systems traditionally require either one mode-locked laser with an external delay line or two mode-locked lasers with a controllable repetition rate difference. In this paper we present a novel polarization-multiplexed laser architecture combining the benefits of both approaches. The laser emits two mode-locked pulse trains sharing only one gain section without any external delay line. The colliding pulses in the laser have orthogonal polarization as well as opposite propagation directions to reduce coupling effects. With this, the two pulse trains can be freely phase controlled to conduct pump-probe measurements. To further analyze the timing stability of the system, we conducted a two-photon-absorption experiment, leading to a timing accuracy of 30 fs. Based on the novel laser architecture, we call this new approach single-laser polarization-controlled optical sampling, or SLAPCOPS.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-laser polarization-controlled optical sampling system for THz-TDS

Michael Kolano, Benedict Gräf, Stefan Weber, Daniel Molter, and Georg von Freymann
Opt. Lett. 43(6) 1351-1354 (2018)

Long-cavity all-fiber ring laser actively mode locked with an in-fiber bandpass acousto-optic modulator

C. Cuadrado-Laborde, M. Bello-Jiménez, A. Díez, J. L. Cruz, and M. V. Andrés
Opt. Lett. 39(1) 68-71 (2014)

Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier

Peter Klopp, Uwe Griebner, Martin Zorn, Andreas Klehr, Armin Liero, Markus Weyers, and Götz Erbert
Opt. Express 17(13) 10820-10834 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. Apkarian, H. Wickramasinghe, and E.O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
    [Crossref]
  2. C. Y. Dong, P. T. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophysical Journal 69(6), 2234-2242 (1995).
    [Crossref] [PubMed]
  3. M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Review of Scientific Instruments 87(3), 031101 (2016).
    [Crossref] [PubMed]
  4. D. Molter, M. Trierweiler, F. Ellrich, J. Jonuscheit, and G. von Freymann, “Interferometry-aided terahertz time-domain spectroscopy,” Opt. Express 25(7), 7547-7558 (2017).
    [Crossref] [PubMed]
  5. B. Urbanek, M. Möller, M. Eisele, S. Baierl, D. Kaplan, C. Lange, and R. Huber, “Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay,” Appl. Phys. Lett. 108(12), 121101 (2016).
    [Crossref]
  6. P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Optics 26(19), 4303-4309 (1987).
    [Crossref]
  7. D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7(10), 2006-2015 (1990).
    [Crossref]
  8. S. Kray, F. Spöler, T. Hellerer, and H. Kurz, “Electronically controlled coherent linear optical sampling for optical coherence tomography,” Opt. Express 18(10), 9976-9990 (2010).
    [Crossref] [PubMed]
  9. Y. Kim and D. S. Yee, “High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling,” Opt. Lett. 35(22), 3715-3717 (2010).
    [Crossref] [PubMed]
  10. M. Kolano, B. Gräf, S. Weber, D. Molter, and G. von Freymann, “Single-laser polarization-controlled optical sampling system for THz-TDS,” Opt. Lett. 43(6), 1351-1354 (2018).
    [Crossref] [PubMed]
  11. C. Ouyang, P. Shum, K. Wu, J. H. Wong, H. Q. Lam, and S. Aditya, “Bidirectional passively mode-locked soliton fiber laser with a four-port circulator,” Opt. Lett. 36(11), 2089-2091 (2011).
    [Crossref] [PubMed]
  12. Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11(9), 560-564 (2017).
    [Crossref]
  13. K. Kieu and M. Mansuripur, “All-fiber bidirectional passively mode-locked ring laser,” Opt. Lett. 33(1), 64-66 (2008).
    [Crossref]
  14. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55 (2010).
    [Crossref]
  15. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414-426 (2016).
    [Crossref]
  16. S. M. Link, D. J. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164-1168 (2017).
    [Crossref] [PubMed]
  17. Z. Gong, X. Zhao, G. Hu, J. Liu, and Z. Zheng, “Polarization multiplexed, dual-frequency ultrashort pulse generation by a birefringent mode-locked fiber laser,” In Lasers and Electro-Optics (2014).
  18. M. Rusu, R. Herda, and O. G. Okhotnikov, “Passively synchronized erbium (1550-nm) and ytterbium (1040-nm) mode-locked fiber lasers sharing a cavity,” Opt. Lett. 29(19), 2246-2248 (2004).
    [Crossref] [PubMed]
  19. C. Furst, A. Leitenstorfer, and A. Laubereau, “Mechanism for self-synchronization of femtosecond pulses in a two-color Ti:sapphire laser,” IEEE J. Quantum Electron. 2(3), 473-479 (1996).
    [Crossref]
  20. J. W. Nicholson, A. D. Yablon, P. S. Westbrook, K. S. Feder, and M. F. Yan, “High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,” Opt. Express 12(13), 3025-3034 (2004).
    [Crossref] [PubMed]
  21. M. Kolano, B. Gräf, D. Molter, F. Ellrich, and G. von Freymann, “All-Polarization-Maintaining, Polarization- Multiplexed, Gain-Coupled, Mode-Locked Fiber Laser,” In Laser Applications Conference (pp. JTu2A-29). Optical Society of America (2017).
  22. B. G. Bale, K. Kieu, J. N. Kutz, and F. Wise, “Transition dynamics for multi-pulsing in mode-locked lasers,” Opt. Express 17(25), 23137-23146 (2009).
    [Crossref]
  23. A. Ramaswamy, N. Nunoya, K. J. Williams, J. Klamkin, M. Piels, L. A. Johansson, A. Hastings, L.A. Coldren, and J. E. Bowers, “Measurement of intermodulation distortion in high-linearity photodiodes,” Opt. Express,  18(3), 2317-2324 (2010).
    [Crossref] [PubMed]
  24. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett.,  17(9), 658-660 (1992).
    [Crossref] [PubMed]
  25. R. Holzlöhner, H. N. Ereifej, V. S. Grigoryan, G. M. Carter, and C. R. Menyuk, “Experimental and Theoretical Characterization of a 40-Gb/s Long-Haul Single-Channel Transmission System,” J. Lightw. Techn. 20(7), 1124 (2002).
    [Crossref]
  26. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613-1617(2010).
    [Crossref] [PubMed]

2018 (1)

2017 (3)

Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11(9), 560-564 (2017).
[Crossref]

S. M. Link, D. J. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164-1168 (2017).
[Crossref] [PubMed]

D. Molter, M. Trierweiler, F. Ellrich, J. Jonuscheit, and G. von Freymann, “Interferometry-aided terahertz time-domain spectroscopy,” Opt. Express 25(7), 7547-7558 (2017).
[Crossref] [PubMed]

2016 (3)

B. Urbanek, M. Möller, M. Eisele, S. Baierl, D. Kaplan, C. Lange, and R. Huber, “Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay,” Appl. Phys. Lett. 108(12), 121101 (2016).
[Crossref]

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Review of Scientific Instruments 87(3), 031101 (2016).
[Crossref] [PubMed]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414-426 (2016).
[Crossref]

2015 (1)

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. Apkarian, H. Wickramasinghe, and E.O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

2011 (1)

2010 (5)

2009 (1)

2008 (1)

2004 (2)

2002 (1)

R. Holzlöhner, H. N. Ereifej, V. S. Grigoryan, G. M. Carter, and C. R. Menyuk, “Experimental and Theoretical Characterization of a 40-Gb/s Long-Haul Single-Channel Transmission System,” J. Lightw. Techn. 20(7), 1124 (2002).
[Crossref]

1996 (1)

C. Furst, A. Leitenstorfer, and A. Laubereau, “Mechanism for self-synchronization of femtosecond pulses in a two-color Ti:sapphire laser,” IEEE J. Quantum Electron. 2(3), 473-479 (1996).
[Crossref]

1995 (1)

C. Y. Dong, P. T. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophysical Journal 69(6), 2234-2242 (1995).
[Crossref] [PubMed]

1992 (1)

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett.,  17(9), 658-660 (1992).
[Crossref] [PubMed]

1990 (1)

D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7(10), 2006-2015 (1990).
[Crossref]

1987 (1)

P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Optics 26(19), 4303-4309 (1987).
[Crossref]

Aditya, S.

Apkarian, V.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. Apkarian, H. Wickramasinghe, and E.O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

Baierl, S.

B. Urbanek, M. Möller, M. Eisele, S. Baierl, D. Kaplan, C. Lange, and R. Huber, “Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay,” Appl. Phys. Lett. 108(12), 121101 (2016).
[Crossref]

Bale, B. G.

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55 (2010).
[Crossref]

Bowers, J. E.

Brocious, J.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. Apkarian, H. Wickramasinghe, and E.O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

Carter, G. M.

R. Holzlöhner, H. N. Ereifej, V. S. Grigoryan, G. M. Carter, and C. R. Menyuk, “Experimental and Theoretical Characterization of a 40-Gb/s Long-Haul Single-Channel Transmission System,” J. Lightw. Techn. 20(7), 1124 (2002).
[Crossref]

Coddington, I.

Coldren, L.A.

Dong, C. Y.

C. Y. Dong, P. T. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophysical Journal 69(6), 2234-2242 (1995).
[Crossref] [PubMed]

Eisele, M.

B. Urbanek, M. Möller, M. Eisele, S. Baierl, D. Kaplan, C. Lange, and R. Huber, “Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay,” Appl. Phys. Lett. 108(12), 121101 (2016).
[Crossref]

Ellrich, F.

D. Molter, M. Trierweiler, F. Ellrich, J. Jonuscheit, and G. von Freymann, “Interferometry-aided terahertz time-domain spectroscopy,” Opt. Express 25(7), 7547-7558 (2017).
[Crossref] [PubMed]

M. Kolano, B. Gräf, D. Molter, F. Ellrich, and G. von Freymann, “All-Polarization-Maintaining, Polarization- Multiplexed, Gain-Coupled, Mode-Locked Fiber Laser,” In Laser Applications Conference (pp. JTu2A-29). Optical Society of America (2017).

Elzinga, P. A.

P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Optics 26(19), 4303-4309 (1987).
[Crossref]

Ereifej, H. N.

R. Holzlöhner, H. N. Ereifej, V. S. Grigoryan, G. M. Carter, and C. R. Menyuk, “Experimental and Theoretical Characterization of a 40-Gb/s Long-Haul Single-Channel Transmission System,” J. Lightw. Techn. 20(7), 1124 (2002).
[Crossref]

Fattinger, C.

D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7(10), 2006-2015 (1990).
[Crossref]

Feder, K. S.

Fischer, M. C.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Review of Scientific Instruments 87(3), 031101 (2016).
[Crossref] [PubMed]

Fishman, D. A.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. Apkarian, H. Wickramasinghe, and E.O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

French, T.

C. Y. Dong, P. T. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophysical Journal 69(6), 2234-2242 (1995).
[Crossref] [PubMed]

Furst, C.

C. Furst, A. Leitenstorfer, and A. Laubereau, “Mechanism for self-synchronization of femtosecond pulses in a two-color Ti:sapphire laser,” IEEE J. Quantum Electron. 2(3), 473-479 (1996).
[Crossref]

Gong, Z.

Z. Gong, X. Zhao, G. Hu, J. Liu, and Z. Zheng, “Polarization multiplexed, dual-frequency ultrashort pulse generation by a birefringent mode-locked fiber laser,” In Lasers and Electro-Optics (2014).

Gräf, B.

M. Kolano, B. Gräf, S. Weber, D. Molter, and G. von Freymann, “Single-laser polarization-controlled optical sampling system for THz-TDS,” Opt. Lett. 43(6), 1351-1354 (2018).
[Crossref] [PubMed]

M. Kolano, B. Gräf, D. Molter, F. Ellrich, and G. von Freymann, “All-Polarization-Maintaining, Polarization- Multiplexed, Gain-Coupled, Mode-Locked Fiber Laser,” In Laser Applications Conference (pp. JTu2A-29). Optical Society of America (2017).

Gratton, E.

C. Y. Dong, P. T. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophysical Journal 69(6), 2234-2242 (1995).
[Crossref] [PubMed]

Grigoryan, V. S.

R. Holzlöhner, H. N. Ereifej, V. S. Grigoryan, G. M. Carter, and C. R. Menyuk, “Experimental and Theoretical Characterization of a 40-Gb/s Long-Haul Single-Channel Transmission System,” J. Lightw. Techn. 20(7), 1124 (2002).
[Crossref]

Grischkowsky, D.

D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7(10), 2006-2015 (1990).
[Crossref]

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55 (2010).
[Crossref]

Hänsch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55 (2010).
[Crossref]

Hastings, A.

Hellerer, T.

Herda, R.

Hochrein, T.

Holzlöhner, R.

R. Holzlöhner, H. N. Ereifej, V. S. Grigoryan, G. M. Carter, and C. R. Menyuk, “Experimental and Theoretical Characterization of a 40-Gb/s Long-Haul Single-Channel Transmission System,” J. Lightw. Techn. 20(7), 1124 (2002).
[Crossref]

Holzwarth, R.

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613-1617(2010).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55 (2010).
[Crossref]

Hu, G.

Z. Gong, X. Zhao, G. Hu, J. Liu, and Z. Zheng, “Polarization multiplexed, dual-frequency ultrashort pulse generation by a birefringent mode-locked fiber laser,” In Lasers and Electro-Optics (2014).

Huang, F.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. Apkarian, H. Wickramasinghe, and E.O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

Huber, R.

B. Urbanek, M. Möller, M. Eisele, S. Baierl, D. Kaplan, C. Lange, and R. Huber, “Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay,” Appl. Phys. Lett. 108(12), 121101 (2016).
[Crossref]

Imamura, S.

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett.,  17(9), 658-660 (1992).
[Crossref] [PubMed]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55 (2010).
[Crossref]

Jahng, J.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. Apkarian, H. Wickramasinghe, and E.O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

Jiang, Y.

P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Optics 26(19), 4303-4309 (1987).
[Crossref]

Johansson, L. A.

Jonuscheit, J.

Kaplan, D.

B. Urbanek, M. Möller, M. Eisele, S. Baierl, D. Kaplan, C. Lange, and R. Huber, “Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay,” Appl. Phys. Lett. 108(12), 121101 (2016).
[Crossref]

Keiding, S.

D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7(10), 2006-2015 (1990).
[Crossref]

Keller, U.

S. M. Link, D. J. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164-1168 (2017).
[Crossref] [PubMed]

Kieu, K.

Kim, Y.

King, G. B.

P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Optics 26(19), 4303-4309 (1987).
[Crossref]

Klamkin, J.

Kneisler, R. J.

P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Optics 26(19), 4303-4309 (1987).
[Crossref]

Kobayashi, T.

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett.,  17(9), 658-660 (1992).
[Crossref] [PubMed]

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55 (2010).
[Crossref]

Koch, M.

Kolano, M.

M. Kolano, B. Gräf, S. Weber, D. Molter, and G. von Freymann, “Single-laser polarization-controlled optical sampling system for THz-TDS,” Opt. Lett. 43(6), 1351-1354 (2018).
[Crossref] [PubMed]

M. Kolano, B. Gräf, D. Molter, F. Ellrich, and G. von Freymann, “All-Polarization-Maintaining, Polarization- Multiplexed, Gain-Coupled, Mode-Locked Fiber Laser,” In Laser Applications Conference (pp. JTu2A-29). Optical Society of America (2017).

Kray, S.

Krumbholz, N.

Kurz, H.

Kutz, J. N.

Lam, H. Q.

Lange, C.

B. Urbanek, M. Möller, M. Eisele, S. Baierl, D. Kaplan, C. Lange, and R. Huber, “Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay,” Appl. Phys. Lett. 108(12), 121101 (2016).
[Crossref]

Laubereau, A.

C. Furst, A. Leitenstorfer, and A. Laubereau, “Mechanism for self-synchronization of femtosecond pulses in a two-color Ti:sapphire laser,” IEEE J. Quantum Electron. 2(3), 473-479 (1996).
[Crossref]

Laurendeau, N. M.

P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Optics 26(19), 4303-4309 (1987).
[Crossref]

Leitenstorfer, A.

C. Furst, A. Leitenstorfer, and A. Laubereau, “Mechanism for self-synchronization of femtosecond pulses in a two-color Ti:sapphire laser,” IEEE J. Quantum Electron. 2(3), 473-479 (1996).
[Crossref]

Link, S. M.

S. M. Link, D. J. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164-1168 (2017).
[Crossref] [PubMed]

Liu, J.

Z. Gong, X. Zhao, G. Hu, J. Liu, and Z. Zheng, “Polarization multiplexed, dual-frequency ultrashort pulse generation by a birefringent mode-locked fiber laser,” In Lasers and Electro-Optics (2014).

Lytle, F. E.

P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Optics 26(19), 4303-4309 (1987).
[Crossref]

Maas, D. J.

S. M. Link, D. J. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164-1168 (2017).
[Crossref] [PubMed]

Mansuripur, M.

Mei, M.

Menyuk, C. R.

R. Holzlöhner, H. N. Ereifej, V. S. Grigoryan, G. M. Carter, and C. R. Menyuk, “Experimental and Theoretical Characterization of a 40-Gb/s Long-Haul Single-Channel Transmission System,” J. Lightw. Techn. 20(7), 1124 (2002).
[Crossref]

Möller, M.

B. Urbanek, M. Möller, M. Eisele, S. Baierl, D. Kaplan, C. Lange, and R. Huber, “Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay,” Appl. Phys. Lett. 108(12), 121101 (2016).
[Crossref]

Molter, D.

Newbury, N.

Nicholson, J. W.

Nowak, D.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. Apkarian, H. Wickramasinghe, and E.O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

Nunoya, N.

Okhotnikov, O. G.

Ouyang, C.

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55 (2010).
[Crossref]

Picqué, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55 (2010).
[Crossref]

Piels, M.

Potma, E.O.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. Apkarian, H. Wickramasinghe, and E.O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

Ramaswamy, A.

Robles, F. E.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Review of Scientific Instruments 87(3), 031101 (2016).
[Crossref] [PubMed]

Rusu, M.

Shum, P.

So, P. T.

C. Y. Dong, P. T. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophysical Journal 69(6), 2234-2242 (1995).
[Crossref] [PubMed]

Spöler, F.

Swann, W.

Takagi, Y.

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett.,  17(9), 658-660 (1992).
[Crossref] [PubMed]

Trierweiler, M.

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55 (2010).
[Crossref]

Urbanek, B.

B. Urbanek, M. Möller, M. Eisele, S. Baierl, D. Kaplan, C. Lange, and R. Huber, “Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay,” Appl. Phys. Lett. 108(12), 121101 (2016).
[Crossref]

Vahala, K.

Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11(9), 560-564 (2017).
[Crossref]

Van Exter, M.

D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7(10), 2006-2015 (1990).
[Crossref]

von Freymann, G.

Waldburger, D.

S. M. Link, D. J. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164-1168 (2017).
[Crossref] [PubMed]

Warren, W. S.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Review of Scientific Instruments 87(3), 031101 (2016).
[Crossref] [PubMed]

Weber, S.

Westbrook, P. S.

Wickramasinghe, H.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. Apkarian, H. Wickramasinghe, and E.O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

Wilk, R.

Williams, K. J.

Wilson, J. W.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Review of Scientific Instruments 87(3), 031101 (2016).
[Crossref] [PubMed]

Wise, F.

Wong, J. H.

Wu, K.

Yablon, A. D.

Yampolsky, S.

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. Apkarian, H. Wickramasinghe, and E.O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

Yan, M. F.

Yang, K. Y.

Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11(9), 560-564 (2017).
[Crossref]

Yang, Q. F.

Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11(9), 560-564 (2017).
[Crossref]

Yee, D. S.

Yi, X.

Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11(9), 560-564 (2017).
[Crossref]

Yoshihara, K.

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett.,  17(9), 658-660 (1992).
[Crossref] [PubMed]

Zhao, X.

Z. Gong, X. Zhao, G. Hu, J. Liu, and Z. Zheng, “Polarization multiplexed, dual-frequency ultrashort pulse generation by a birefringent mode-locked fiber laser,” In Lasers and Electro-Optics (2014).

Zheng, Z.

Z. Gong, X. Zhao, G. Hu, J. Liu, and Z. Zheng, “Polarization multiplexed, dual-frequency ultrashort pulse generation by a birefringent mode-locked fiber laser,” In Lasers and Electro-Optics (2014).

Appl. Optics (1)

P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Optics 26(19), 4303-4309 (1987).
[Crossref]

Appl. Phys. Lett. (2)

J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. Apkarian, H. Wickramasinghe, and E.O. Potma, “Ultrafast pump-probe force microscopy with nanoscale resolution,” Appl. Phys. Lett. 106(8), 083113 (2015).
[Crossref]

B. Urbanek, M. Möller, M. Eisele, S. Baierl, D. Kaplan, C. Lange, and R. Huber, “Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay,” Appl. Phys. Lett. 108(12), 121101 (2016).
[Crossref]

Biophysical Journal (1)

C. Y. Dong, P. T. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by asynchronous pump-probe microscopy,” Biophysical Journal 69(6), 2234-2242 (1995).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

C. Furst, A. Leitenstorfer, and A. Laubereau, “Mechanism for self-synchronization of femtosecond pulses in a two-color Ti:sapphire laser,” IEEE J. Quantum Electron. 2(3), 473-479 (1996).
[Crossref]

J. Lightw. Techn. (1)

R. Holzlöhner, H. N. Ereifej, V. S. Grigoryan, G. M. Carter, and C. R. Menyuk, “Experimental and Theoretical Characterization of a 40-Gb/s Long-Haul Single-Channel Transmission System,” J. Lightw. Techn. 20(7), 1124 (2002).
[Crossref]

JOSA B (1)

D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7(10), 2006-2015 (1990).
[Crossref]

Nat. Photonics (2)

Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11(9), 560-564 (2017).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett (1)

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett.,  17(9), 658-660 (1992).
[Crossref] [PubMed]

Opt. Lett. (5)

Optica (1)

Review of Scientific Instruments (1)

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Review of Scientific Instruments 87(3), 031101 (2016).
[Crossref] [PubMed]

Science (1)

S. M. Link, D. J. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164-1168 (2017).
[Crossref] [PubMed]

Other (2)

Z. Gong, X. Zhao, G. Hu, J. Liu, and Z. Zheng, “Polarization multiplexed, dual-frequency ultrashort pulse generation by a birefringent mode-locked fiber laser,” In Lasers and Electro-Optics (2014).

M. Kolano, B. Gräf, D. Molter, F. Ellrich, and G. von Freymann, “All-Polarization-Maintaining, Polarization- Multiplexed, Gain-Coupled, Mode-Locked Fiber Laser,” In Laser Applications Conference (pp. JTu2A-29). Optical Society of America (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the complete SLAPCOPS system, comprising the SLAPCOPS resonator, an optical amplifier stage and the phase control unit. Also shown is the experimental setup for the investigation of the timing stability of the system (dashed box).
Fig. 2
Fig. 2 Schematic setup of the all polarization maintaining SLAPCOPS resonator using only one pump diode and one laser-active section. The colliding pulses in the gain section have orthogonal polarization as well as opposite propagation directions to avoid passive synchronization effects while approaching ΔfRep= 0 Hz. The voltage-controlled loss elements ensure the self-mode-locked operation of both rings.
Fig. 3
Fig. 3 Mode-lock state before (upper graph) and after (lower graph) the adjustment of the loss element acquired with a 16 GHz digital oscilloscope (DSA-X-91604A). The black curve is flipped in sign for clarity. Before the adjustment ring 2 is mode-locked in a higher harmonic state, providing two pulses per round trip. After equalizing the ring related losses both rings provide one pulse per round trip.
Fig. 4
Fig. 4 Transition dynamics of the SLAPCOPS resonator while adjusting the transmittance of the loss element. The black curve shows the output signal of ring 1. The red curve shows the output signal of ring 2 and is flipped in sign for clarity. In the first phase only ring 2 is able to mode-lock. While reducing the transmittance of the loss element, the oscillator is entering a chaotic regime. In this unstable state no ring is able to permanently mode-lock and the energy is rapidly fluctuating between both rings. By further decreasing the transmittance the oscillator enters a stable state, in which both rings are mode-locked simultaneously.
Fig. 5
Fig. 5 RF spectra of the 214th harmonic. The red and black curves show the spectrum for the individual pulse trains measured successively with the same photo diode. The green curve results from the superposition of both pulse trains at the photo diode. The broad pedestal arises from the nonlinearity of the detection process. As depicted in the inset the pedestal consists of distinct spectral components with a seperation corresponding to ΔfRep.
Fig. 6
Fig. 6 Optical spectra measured at the output of the SLAPCOPS resonator, showing almost the same center wavelength and 3 dB bandwidth. Black indicates the spectrum from ring 1 and red from ring 2, respectively. Kelly sidebands indicate that both rings are working in the solitary regime.
Fig. 7
Fig. 7 The sech2-fitted intensity autocorrelation signals of the optical pulses for the TPA experiment. Black indicates the amplified signal from ring 1 and red from ring 2 respectively.
Fig. 8
Fig. 8 Heat map of 1000 TPA waveforms (upper graph) and corresponding timing distribution (lower graph). The area of evaluation is highlighted with the white box. The timing jitter showing a standard deviation of approx. 30 fs for the leading and trailing edge of the TPA signal.

Metrics