Abstract

Higher-order modes up to LP33 are controllably excited in water-filled kagomé- and bandgap-style hollow-core photonic crystal fibers (HC-PCF). A spatial light modulator is used to create amplitude and phase distributions that closely match those of the fiber modes, resulting in typical launch efficiencies of 10–20% into the liquid-filled core. Modes, excited across the visible wavelength range, closely resemble those observed in air-filled kagomé HC-PCF and match numerical simulations. Mode indices are obtained by launching plane-waves at specific angles onto the fiber input-face and comparing the resulting intensity pattern to that of a particular mode. These results provide a framework for spatially-resolved sensing in HC-PCF microreactors and fiber-based optical manipulation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Liquid-core, liquid-cladding photonic crystal fibers

Christiano J. S. de Matos, Cristiano M. B. Cordeiro, Eliane M. dos Santos, Jackson S. K. Ong, Alexandre Bozolan, and C. H. Brito Cruz
Opt. Express 15(18) 11207-11212 (2007)

Dynamic control of higher-order modes in hollow-core photonic crystal fibers

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St.J. Russell
Opt. Express 16(22) 17972-17981 (2008)

Two-octave supercontinuum generation in a water-filled photonic crystal fiber

J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann
Opt. Express 18(6) 6230-6240 (2010)

References

  • View by:
  • |
  • |
  • |

  1. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref] [PubMed]
  2. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19, 18871–18884 (2011).
    [Crossref] [PubMed]
  3. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
    [Crossref] [PubMed]
  4. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
    [Crossref] [PubMed]
  5. L. V. Amitonova, A. Descloux, J. Petschulat, M. H. Frosz, G. Ahmed, F. Babic, X. Jiang, A. P. Mosk, P. St.J. Russell, and P. W. H. Pinkse, “High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging,” Opt. Lett. 41, 497–500 (2016).
    [Crossref] [PubMed]
  6. I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St.J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12, 33–39 (2018).
    [Crossref]
  7. N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37, 2451–2453 (2012).
    [Crossref] [PubMed]
  8. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
    [Crossref]
  9. R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
    [Crossref]
  10. H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
    [Crossref]
  11. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [Crossref] [PubMed]
  12. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [Crossref] [PubMed]
  13. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
    [Crossref] [PubMed]
  14. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
    [Crossref] [PubMed]
  15. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
    [Crossref]
  16. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express 16, 5642–5648 (2008).
    [Crossref] [PubMed]
  17. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St.J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007).
    [Crossref] [PubMed]
  18. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St.J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16, 17972–17981 (2008).
    [Crossref] [PubMed]
  19. W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St.J. Russell, and J. P. Woerdman, “Fiber transport of spatially entangled photons,” Phys. Rev. Lett. 106, 240505 (2011).
    [Crossref] [PubMed]
  20. B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, and P. St.J. Russell, “Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber,” Opt. Lett. 38, 600–602 (2013).
    [Crossref] [PubMed]
  21. O. A. Schmidt, T. G. Euser, and P. St.J. Russell, “Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber,” Opt. Express 21, 29383–29391 (2013).
    [Crossref]
  22. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, R. Li, Z. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
    [Crossref]
  23. G. Epple, N. Y. Joly, T. G. Euser, P. St.J. Russell, and R. Löw, “Effect of stray fields on Rydberg states in hollow-core PCF probed by higher-order modes,” Opt. Lett. 42, 3271–3274 (2017).
    [Crossref] [PubMed]
  24. T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St.J. Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express 12, 69–74 (2004).
    [Crossref] [PubMed]
  25. G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight, and P. St.J. Russell, “Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling,” Opt. Express 14, 3000–3006 (2006).
    [Crossref] [PubMed]
  26. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
    [Crossref] [PubMed]
  27. A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142, 925–929 (2017).
    [Crossref] [PubMed]
  28. M. Nissen, B. Doherty, J. Hamperl, J. Kobelke, K. Weber, T. Henkel, and M. A. Schmidt, “UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection,” Sensors 18, 478 (2018).
    [Crossref]
  29. M. A. Finger, N. Y. Joly, T. Weiss, and P. St.J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett 39, 821–824 (2014).
    [Crossref] [PubMed]
  30. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
    [Crossref]
  31. B. M. Trabold, D. Novoa, A. Abdolvand, and P. St.J. Russell, “Selective excitation of higher order modes in hollow-core PCF via prism-coupling,” Opt. Lett. 39, 3736–3739 (2014).
    [Crossref] [PubMed]
  32. D. Flamm, C. Schulze, D. Naidoo, S. Schroter, A. Forbes, and M. Duparre, “All-Digital Holographic Tool for Mode Excitation and Analysis in Optical Fibers,” J. Lightwave Technol. 31, 1023–1032 (2013).
    [Crossref]
  33. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A 24, 3500–3507 (2007).
    [Crossref]
  34. L. Allen, M. J. Padgett, and M. Babiker, IV. The Orbital Angular Momentum of Light, vol. 39 of Progress in Optics (Elsevier, 1999).
  35. A. W. Snyder and J. Love, Optical Waveguide Theory (SpringerUS, 1983).
  36. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St.J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
    [Crossref] [PubMed]

2018 (2)

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St.J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12, 33–39 (2018).
[Crossref]

M. Nissen, B. Doherty, J. Hamperl, J. Kobelke, K. Weber, T. Henkel, and M. A. Schmidt, “UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection,” Sensors 18, 478 (2018).
[Crossref]

2017 (2)

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142, 925–929 (2017).
[Crossref] [PubMed]

G. Epple, N. Y. Joly, T. G. Euser, P. St.J. Russell, and R. Löw, “Effect of stray fields on Rydberg states in hollow-core PCF probed by higher-order modes,” Opt. Lett. 42, 3271–3274 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (1)

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

2014 (3)

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

M. A. Finger, N. Y. Joly, T. Weiss, and P. St.J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett 39, 821–824 (2014).
[Crossref] [PubMed]

B. M. Trabold, D. Novoa, A. Abdolvand, and P. St.J. Russell, “Selective excitation of higher order modes in hollow-core PCF via prism-coupling,” Opt. Lett. 39, 3736–3739 (2014).
[Crossref] [PubMed]

2013 (6)

D. Flamm, C. Schulze, D. Naidoo, S. Schroter, A. Forbes, and M. Duparre, “All-Digital Holographic Tool for Mode Excitation and Analysis in Optical Fibers,” J. Lightwave Technol. 31, 1023–1032 (2013).
[Crossref]

B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, and P. St.J. Russell, “Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber,” Opt. Lett. 38, 600–602 (2013).
[Crossref] [PubMed]

O. A. Schmidt, T. G. Euser, and P. St.J. Russell, “Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber,” Opt. Express 21, 29383–29391 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, R. Li, Z. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref] [PubMed]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

2012 (3)

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37, 2451–2453 (2012).
[Crossref] [PubMed]

2011 (3)

2008 (2)

2007 (3)

2006 (2)

2004 (1)

2002 (2)

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Abdolvand, A.

Abeeluck, A. K.

Ahmed, G.

Ahmed, N.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

Alfano, R. R.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Allen, L.

L. Allen, M. J. Padgett, and M. Babiker, IV. The Orbital Angular Momentum of Light, vol. 39 of Progress in Optics (Elsevier, 1999).

Amitonova, L. V.

Antonopoulos, G.

Argyros, A.

Arrizón, V.

Babic, F.

Babiker, M.

L. Allen, M. J. Padgett, and M. Babiker, IV. The Orbital Angular Momentum of Light, vol. 39 of Progress in Optics (Elsevier, 1999).

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, R. Li, Z. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Benabid, F.

Bird, D. M.

Birks, T. A.

Bozinovic, N.

Burger, S.

Cao, Y.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

Carrada, R.

Chen, J. S. Y.

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Cižmár, T.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St.J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12, 33–39 (2018).
[Crossref]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19, 18871–18884 (2011).
[Crossref] [PubMed]

Correa, R. A.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Cubillas, A. M.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142, 925–929 (2017).
[Crossref] [PubMed]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref] [PubMed]

Cuschieri, A.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St.J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12, 33–39 (2018).
[Crossref]

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

de Waardt, H.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Descloux, A.

Dholakia, K.

Docherty, A.

Doherty, B.

M. Nissen, B. Doherty, J. Hamperl, J. Kobelke, K. Weber, T. Henkel, and M. A. Schmidt, “UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection,” Sensors 18, 478 (2018).
[Crossref]

Duparre, M.

Edavalath, N. N.

Eggleton, B. J.

Eliel, E. R.

W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St.J. Russell, and J. P. Woerdman, “Fiber transport of spatially entangled photons,” Phys. Rev. Lett. 106, 240505 (2011).
[Crossref] [PubMed]

Epple, G.

Etzold, B. J. M.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142, 925–929 (2017).
[Crossref] [PubMed]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref] [PubMed]

Euser, T. G.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142, 925–929 (2017).
[Crossref] [PubMed]

G. Epple, N. Y. Joly, T. G. Euser, P. St.J. Russell, and R. Löw, “Effect of stray fields on Rydberg states in hollow-core PCF probed by higher-order modes,” Opt. Lett. 42, 3271–3274 (2017).
[Crossref] [PubMed]

B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, and P. St.J. Russell, “Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber,” Opt. Lett. 38, 600–602 (2013).
[Crossref] [PubMed]

O. A. Schmidt, T. G. Euser, and P. St.J. Russell, “Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber,” Opt. Express 21, 29383–29391 (2013).
[Crossref]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref] [PubMed]

W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St.J. Russell, and J. P. Woerdman, “Fiber transport of spatially entangled photons,” Phys. Rev. Lett. 106, 240505 (2011).
[Crossref] [PubMed]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St.J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16, 17972–17981 (2008).
[Crossref] [PubMed]

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Finger, M. A.

M. A. Finger, N. Y. Joly, T. Weiss, and P. St.J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett 39, 821–824 (2014).
[Crossref] [PubMed]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Flamm, D.

Fokoua, E. N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, R. Li, Z. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Forbes, A.

Frosz, M. H.

Golowich, S.

González, L. A.

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, R. Li, Z. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Günendi, M. C.

Hamperl, J.

M. Nissen, B. Doherty, J. Hamperl, J. Kobelke, K. Weber, T. Henkel, and M. A. Schmidt, “UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection,” Sensors 18, 478 (2018).
[Crossref]

Hayes, J. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, R. Li, Z. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Headley, C.

Hedley, T. D.

Henkel, T.

M. Nissen, B. Doherty, J. Hamperl, J. Kobelke, K. Weber, T. Henkel, and M. A. Schmidt, “UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection,” Sensors 18, 478 (2018).
[Crossref]

Huang, H.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

Huijskens, F. M.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Jiang, X.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St.J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12, 33–39 (2018).
[Crossref]

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142, 925–929 (2017).
[Crossref] [PubMed]

L. V. Amitonova, A. Descloux, J. Petschulat, M. H. Frosz, G. Ahmed, F. Babic, X. Jiang, A. P. Mosk, P. St.J. Russell, and P. W. H. Pinkse, “High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging,” Opt. Lett. 41, 497–500 (2016).
[Crossref] [PubMed]

Joly, N. Y.

G. Epple, N. Y. Joly, T. G. Euser, P. St.J. Russell, and R. Löw, “Effect of stray fields on Rydberg states in hollow-core PCF probed by higher-order modes,” Opt. Lett. 42, 3271–3274 (2017).
[Crossref] [PubMed]

M. A. Finger, N. Y. Joly, T. Weiss, and P. St.J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett 39, 821–824 (2014).
[Crossref] [PubMed]

Jones, A. C.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref] [PubMed]

Kaminski, C. F.

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Knight, J. C.

G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight, and P. St.J. Russell, “Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling,” Opt. Express 14, 3000–3006 (2006).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Kobelke, J.

M. Nissen, B. Doherty, J. Hamperl, J. Kobelke, K. Weber, T. Henkel, and M. A. Schmidt, “UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection,” Sensors 18, 478 (2018).
[Crossref]

Koonen, A. M. J.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Kristensen, P.

Lavery, M. P.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Leite, I. T.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St.J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12, 33–39 (2018).
[Crossref]

Leon-Saval, S. G.

Li, G.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Li, M.-J.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

Li, R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, R. Li, Z. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Light, P. S.

Litchinitser, N. M.

Löffler, W.

W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St.J. Russell, and J. P. Woerdman, “Fiber transport of spatially entangled photons,” Phys. Rev. Lett. 106, 240505 (2011).
[Crossref] [PubMed]

Lopez, E. A.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Love, J.

A. W. Snyder and J. Love, Optical Waveguide Theory (SpringerUS, 1983).

Löw, R.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Ménard, J.-M.

Milione, G.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

Mosk, A. P.

Naidoo, D.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Nguyen, T. A.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

Nissen, M.

M. Nissen, B. Doherty, J. Hamperl, J. Kobelke, K. Weber, T. Henkel, and M. A. Schmidt, “UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection,” Sensors 18, 478 (2018).
[Crossref]

Nolan, D. A.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

Nold, J.

Novoa, D.

Okonkwo, C. M.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Padgett, M. J.

L. Allen, M. J. Padgett, and M. Babiker, IV. The Orbital Angular Momentum of Light, vol. 39 of Progress in Optics (Elsevier, 1999).

Pearce, G. J.

Petrovich, M. N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, R. Li, Z. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Petschulat, J.

Pinkse, P. W. H.

Pla, J.

Poletti, F.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, R. Li, Z. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Pottage, J. M.

Poulton, C. G.

Ramachandran, S.

Ren, Y.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, R. Li, Z. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Ruiz, U.

Russell, P. St.J.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St.J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12, 33–39 (2018).
[Crossref]

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142, 925–929 (2017).
[Crossref] [PubMed]

G. Epple, N. Y. Joly, T. G. Euser, P. St.J. Russell, and R. Löw, “Effect of stray fields on Rydberg states in hollow-core PCF probed by higher-order modes,” Opt. Lett. 42, 3271–3274 (2017).
[Crossref] [PubMed]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St.J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
[Crossref] [PubMed]

L. V. Amitonova, A. Descloux, J. Petschulat, M. H. Frosz, G. Ahmed, F. Babic, X. Jiang, A. P. Mosk, P. St.J. Russell, and P. W. H. Pinkse, “High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging,” Opt. Lett. 41, 497–500 (2016).
[Crossref] [PubMed]

B. M. Trabold, D. Novoa, A. Abdolvand, and P. St.J. Russell, “Selective excitation of higher order modes in hollow-core PCF via prism-coupling,” Opt. Lett. 39, 3736–3739 (2014).
[Crossref] [PubMed]

M. A. Finger, N. Y. Joly, T. Weiss, and P. St.J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett 39, 821–824 (2014).
[Crossref] [PubMed]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref] [PubMed]

O. A. Schmidt, T. G. Euser, and P. St.J. Russell, “Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber,” Opt. Express 21, 29383–29391 (2013).
[Crossref]

B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, and P. St.J. Russell, “Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber,” Opt. Lett. 38, 600–602 (2013).
[Crossref] [PubMed]

W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St.J. Russell, and J. P. Woerdman, “Fiber transport of spatially entangled photons,” Phys. Rev. Lett. 106, 240505 (2011).
[Crossref] [PubMed]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St.J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16, 17972–17981 (2008).
[Crossref] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St.J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007).
[Crossref] [PubMed]

G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight, and P. St.J. Russell, “Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling,” Opt. Express 14, 3000–3006 (2006).
[Crossref] [PubMed]

T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St.J. Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express 12, 69–74 (2004).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Sadler, P. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref] [PubMed]

Scharrer, M.

W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St.J. Russell, and J. P. Woerdman, “Fiber transport of spatially entangled photons,” Phys. Rev. Lett. 106, 240505 (2011).
[Crossref] [PubMed]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St.J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16, 17972–17981 (2008).
[Crossref] [PubMed]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Schmidt, M. A.

M. Nissen, B. Doherty, J. Hamperl, J. Kobelke, K. Weber, T. Henkel, and M. A. Schmidt, “UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection,” Sensors 18, 478 (2018).
[Crossref]

Schmidt, O. A.

Schroter, S.

Schulze, C.

Schülzgen, A.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Šiler, M.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St.J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12, 33–39 (2018).
[Crossref]

Slavík, Z.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, R. Li, Z. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. Love, Optical Waveguide Theory (SpringerUS, 1983).

Taccardi, N.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142, 925–929 (2017).
[Crossref] [PubMed]

Trabold, B. M.

Tur, M.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

Turtaev, S.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St.J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12, 33–39 (2018).
[Crossref]

Uebel, P.

Unterkofler, S.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref] [PubMed]

van Uden, R. G. H.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Vellekoop, I. M.

Walser, A. M.

Wang, Y. Y.

Wasserscheid, P.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142, 925–929 (2017).
[Crossref] [PubMed]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref] [PubMed]

Weber, K.

M. Nissen, B. Doherty, J. Hamperl, J. Kobelke, K. Weber, T. Henkel, and M. A. Schmidt, “UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection,” Sensors 18, 478 (2018).
[Crossref]

Weiss, T.

M. A. Finger, N. Y. Joly, T. Weiss, and P. St.J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett 39, 821–824 (2014).
[Crossref] [PubMed]

Wheeler, N. V.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, R. Li, Z. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[Crossref] [PubMed]

Whyte, G.

Wiederhecker, G. S.

Willner, A. E.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

Woerdman, J. P.

W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St.J. Russell, and J. P. Woerdman, “Fiber transport of spatially entangled photons,” Phys. Rev. Lett. 106, 240505 (2011).
[Crossref] [PubMed]

Xia, C.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

Xie, G.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Analyst (1)

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre,” Analyst 142, 925–929 (2017).
[Crossref] [PubMed]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Chem. Soc. Rev. (1)

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Nat. Photonics (4)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8, 865–870 (2014).
[Crossref]

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St.J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12, 33–39 (2018).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, R. Li, Z. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Opt. Express (7)

A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express 16, 5642–5648 (2008).
[Crossref] [PubMed]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St.J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16, 17972–17981 (2008).
[Crossref] [PubMed]

T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St.J. Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express 12, 69–74 (2004).
[Crossref] [PubMed]

G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight, and P. St.J. Russell, “Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling,” Opt. Express 14, 3000–3006 (2006).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19, 18871–18884 (2011).
[Crossref] [PubMed]

O. A. Schmidt, T. G. Euser, and P. St.J. Russell, “Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber,” Opt. Express 21, 29383–29391 (2013).
[Crossref]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St.J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007).
[Crossref] [PubMed]

Opt. Lett (1)

M. A. Finger, N. Y. Joly, T. Weiss, and P. St.J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett 39, 821–824 (2014).
[Crossref] [PubMed]

Opt. Lett. (10)

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
[Crossref]

B. M. Trabold, D. Novoa, A. Abdolvand, and P. St.J. Russell, “Selective excitation of higher order modes in hollow-core PCF via prism-coupling,” Opt. Lett. 39, 3736–3739 (2014).
[Crossref] [PubMed]

L. V. Amitonova, A. Descloux, J. Petschulat, M. H. Frosz, G. Ahmed, F. Babic, X. Jiang, A. P. Mosk, P. St.J. Russell, and P. W. H. Pinkse, “High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging,” Opt. Lett. 41, 497–500 (2016).
[Crossref] [PubMed]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St.J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
[Crossref] [PubMed]

G. Epple, N. Y. Joly, T. G. Euser, P. St.J. Russell, and R. Löw, “Effect of stray fields on Rydberg states in hollow-core PCF probed by higher-order modes,” Opt. Lett. 42, 3271–3274 (2017).
[Crossref] [PubMed]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37, 2451–2453 (2012).
[Crossref] [PubMed]

B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, and P. St.J. Russell, “Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber,” Opt. Lett. 38, 600–602 (2013).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St.J. Russell, and J. P. Woerdman, “Fiber transport of spatially entangled photons,” Phys. Rev. Lett. 106, 240505 (2011).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Science (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Scient. Rep. (1)

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Scient. Rep. 5, 14931 (2015).
[Crossref]

Sensors (1)

M. Nissen, B. Doherty, J. Hamperl, J. Kobelke, K. Weber, T. Henkel, and M. A. Schmidt, “UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection,” Sensors 18, 478 (2018).
[Crossref]

Other (2)

L. Allen, M. J. Padgett, and M. Babiker, IV. The Orbital Angular Momentum of Light, vol. 39 of Progress in Optics (Elsevier, 1999).

A. W. Snyder and J. Love, Optical Waveguide Theory (SpringerUS, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Fiber analysis: (a) Microscope image of the kagomé fiber (flat-to-flat core diameter d = 33 μm), (b) scanning electron micrograph of the core region, overlaid with the simulated intensity profile of an LP33 mode. (c) four non-LP modes predicted by the hexagonal capillary simulation.
Fig. 2
Fig. 2 Setup schematic. Section A: filtering, expansion, and polarization of the input beam. Section B: modulation by phase-only SLM and projection onto the input-face of an HC-PCF. Section C: imaging of the end-face of the liquid-filled HC-PCF, enclosed by two pressure cells (PC). Section D: verification of the intensity distribution projected onto the HC-PCF. BE, beam expander; BS, beam splitter; Cam, camera; FM, flip mirror; Apert., aperture; P, polarizer; W, waste.
Fig. 3
Fig. 3 Mode excitation example: (a) Simulated intensity profile of an LP31 core mode in the kagomé PCF. (b) Measured intensity of an LG 0 ( 3 ) + LG 0 ( 3 ) beam profile. (c) Measured intensity profile of the excited LP31 fiber mode. Radial- (d) and azimuthal (e) sections along the dashed curves in (a–c).
Fig. 4
Fig. 4 Kagomé HC-PCF results: Overview of higher-order modes excited in a water-filled kagomé PCF at three different wavelengths compared to the hexagonal capillary simulation results. Each square represents 38 × 38 μm2. The fitness parameter FP of each LP mode is shown in the bottom-right corner of each square. Gray squares represent modes that could not be stably excited.
Fig. 5
Fig. 5 Bandgap HC-PCF results: (a) Scanning electron micrograph of the 19-cell bandgap HC-PCF with a core diameter of 21 μm. (b–g) measured mode intensity profiles of higher-order modes up to LP31, excited in the liquid-filled fiber at a wavelength of 800 nm. The LP11∗ mode in (e) is a superposition of the LP11a and LP11b modes.
Fig. 6
Fig. 6 Angled excitation results: a–d Fitness parameter, measured at 650 nm vs.incident angle for four different modes: (a) LP1,1, (b) LP2,1, (c) LP1,2, and (d) LP3,3. Lower FP values correspond to purer mode excitation. Circles indicate the optimum coupling angle θext = θopt for each mode. e Measured normalized mode indices (nnm/ncore) compared to the MS model (Eq. 2) and hexagonal capillary simulations. The two datapoints for the simulated LP32 mode correspond to the presence of two non-degenerate modes with the same LP symmetry, but different orientation. These modes were not observed experimentally. (f) Schematic: rays incident at angle θext refract when entering the liquid cell and enter the fiber core at angle θcore. (g) Simulated electric field profile of an LP33 mode. (h) Magnitude of the Fourier-transformed (FT) mode field profile. (i) Fitness parameter plotted against the incident angle.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ j = 2 t j n g 2 n w 2 ,
n pm = n core 2 u pm 2 a 2 k 0 2 ,
E p ( ) ( r , ϕ ) ~ e r 2 / w 2 ( r w ) | | L p | | ( 2 r 2 w 2 ) e i ϕ ,
FP = ( T ( x , y ) M ( x , y ) ) 2 d x d y T ( x , y ) 2 d x d y M ( x , y ) 2 d x d y ,
θ core = cos 1 ( n pm n core ) ,

Metrics