Abstract

Single-photon multispectral light detection and ranging (LiDAR) approaches have emerged as a route to color reconstruction and enhanced target identification in photon-starved imaging scenarios. In this paper, we present a three-dimensional imaging system based on a time-of-flight approach which is capable of simultaneous multispectral measurements using only one single-photon detector. Unlike other techniques, this approach does not require a wavelength router in the receiver channel. By observing multiple wavelengths at each spatial location, or per pixel (four discrete visible wavelengths are used in this work), we can obtain a single waveform with wavelength-to-time mapped peaks. The time-mapped peaks are created by the known chromatic group delay dispersion in the laser source’s optical fiber, resulting in temporal separations between these peaks being in the region of 200 to 1000 ps, in this case. A multispectral single waveform algorithm was proposed to fit these multiple peaked LiDAR waveforms, and then reconstruct the color (spectral response) and depth profiles for the entire image. To the best of our knowledge, this is the first dedicated computational method operating in the photon-starved regime capable of discriminating multiple peaks associated with different wavelengths in a single pixel waveform and reconstructing spectral responses and depth.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector

Aongus McCarthy, Ximing Ren, Adriano Della Frera, Nathan R. Gemmell, Nils J. Krichel, Carmelo Scarcella, Alessandro Ruggeri, Alberto Tosi, and Gerald S. Buller
Opt. Express 21(19) 22098-22113 (2013)

Spectral classification of sparse photon depth images

Yoann Altmann, Aurora Maccarone, Aongus McCarthy, Stephen McLaughlin, and Gerald S. Buller
Opt. Express 26(5) 5514-5530 (2018)

Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection

Aongus McCarthy, Nils J. Krichel, Nathan R. Gemmell, Ximing Ren, Michael G. Tanner, Sander N. Dorenbos, Val Zwiller, Robert H. Hadfield, and Gerald S. Buller
Opt. Express 21(7) 8904-8915 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: Slices of life,” Cytometry A 69A, 748-758 (2006).
    [Crossref]
  2. A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228, 1147-1153 (1985).
    [Crossref] [PubMed]
  3. S. Morsy, A. Shaker, and A. El-Rabbany, “Multispectral LiDAR data for land cover classification of urban areas,” Sensors 17, 958 (2017).
    [Crossref]
  4. J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral lidar in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens.  66, 637-641 (2011).
    [Crossref]
  5. Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 99, 1 (2017).
  6. Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Spectral classification of sparse photon depth images,” Opt. Express 26, 5514-5530 (2018).
    [Crossref] [PubMed]
  7. A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
    [Crossref]
  8. J. Il Park, M. H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral imaging using multiplexed illumination,” Proceedings of the IEEE International Conference on Computer Vision (2007).
  9. A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942-4954 (2014).
    [Crossref]
  10. A. O. C. Davis, P. M. Saulnier, M. Karpinski, and B. J. Smith, “Pulsed single-photon spectrograph by frequency-to-time mapping using chirped fiber Bragg gratings,” Opt. Express 25, 12804-12811 (2017).
    [Crossref] [PubMed]
  11. W. Gong, S. Song, B. Zhu, S Shuo, F. Li, and X. Chen, “Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance,” ISPRS J. Photogramm. Remote Sens. 69, 1-9 (2012).
    [Crossref]
  12. T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20, 7119 (2012).
    [Crossref] [PubMed]
  13. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48-51 (2008).
    [Crossref]
  14. Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. 112, 12315-20 (2015).
    [Crossref] [PubMed]
  15. H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
    [Crossref] [PubMed]
  16. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
    [Crossref]
  17. G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006-1015 (2007).
    [Crossref]
  18. R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G.S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57, 031303 (2017).
  19. A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21, 22098-22113 (2013).
    [Crossref] [PubMed]
  20. A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919-11931 (2017).
    [Crossref] [PubMed]
  21. Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10, 1-10 (2018).
    [Crossref]
  22. S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D.-U. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6, 277-296 (2015).
    [Crossref] [PubMed]
  23. G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10, 23-26 (2016).
    [Crossref]
  24. A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343, 58-61 (2014).
    [Crossref]
  25. L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep.  6, 24752 (2016).
    [Crossref] [PubMed]
  26. Z. Zhang, S. Liu, J. Peng, M. Yao, G. Zheng, and J. Zhong, “Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements,” Optica 5, 315-319 (2018).
    [Crossref]
  27. R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt.  19, 094006 (2017).
    [Crossref]
  28. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241-6251 (2009).
    [Crossref] [PubMed]
  29. Micro Photon Devices, “Datasheet of PDM series photon counting detector modules,” http://www.micro-photon-devices.com/Docs/Datasheet/PDM.pdf .
  30. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259-268 (1992).
    [Crossref]
  31. A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vision 20(1-2), 89-97 (2004).
    [Crossref]
  32. M. Pereyra, N. Whiteley, C. Andrieu, and J.-Y. Tourneret, “Maximum marginal likelihood estimation of the granularity coefficient of a Potts-Markov random field within an mcmc algorithm,” in Proceedings of IEEE-SP Workshop Stat. and Signal Processing, Gold Coast, Australia, July 2014.
  33. F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” I”EEE J. Sel. Top. Quantum Electron.20, (2014).
  34. N. Krstajić, S. Poland, J. Levitt, R. Walker, A. Erdogan, S. Ameer-Beg, and R. K. Henderson, “0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays,” Opt. Lett. 40, 4305-4308 (2015).
    [Crossref]
  35. G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777-33791 (2015).
    [Crossref]
  36. B. Aull, “Geiger-mode avalanche photodiode arrays integrated to all-digital CMOS circuits,” Sensors 16, 495 (2016).
    [Crossref]
  37. A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911 (2015).
    [Crossref]
  38. A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472-484 (2017).
    [Crossref]
  39. P. Chhabra, A. Maccarone, A. McCarthy, G. S. Buller, and A. Wallace, “Discriminating underwater LiDAR target signatures using sparse multi-spectral depth codes,” Proceedings of IEEE Sensor Signal Processing for Defence (SSPD), 2016, p. 1-5.

2018 (3)

2017 (8)

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt.  19, 094006 (2017).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919-11931 (2017).
[Crossref] [PubMed]

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 99, 1 (2017).

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G.S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57, 031303 (2017).

S. Morsy, A. Shaker, and A. El-Rabbany, “Multispectral LiDAR data for land cover classification of urban areas,” Sensors 17, 958 (2017).
[Crossref]

A. O. C. Davis, P. M. Saulnier, M. Karpinski, and B. J. Smith, “Pulsed single-photon spectrograph by frequency-to-time mapping using chirped fiber Bragg gratings,” Opt. Express 25, 12804-12811 (2017).
[Crossref] [PubMed]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472-484 (2017).
[Crossref]

2016 (3)

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10, 23-26 (2016).
[Crossref]

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep.  6, 24752 (2016).
[Crossref] [PubMed]

B. Aull, “Geiger-mode avalanche photodiode arrays integrated to all-digital CMOS circuits,” Sensors 16, 495 (2016).
[Crossref]

2015 (5)

2014 (2)

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942-4954 (2014).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343, 58-61 (2014).
[Crossref]

2013 (1)

2012 (2)

W. Gong, S. Song, B. Zhu, S Shuo, F. Li, and X. Chen, “Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance,” ISPRS J. Photogramm. Remote Sens. 69, 1-9 (2012).
[Crossref]

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20, 7119 (2012).
[Crossref] [PubMed]

2011 (1)

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral lidar in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens.  66, 637-641 (2011).
[Crossref]

2009 (1)

2008 (1)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48-51 (2008).
[Crossref]

2007 (1)

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006-1015 (2007).
[Crossref]

2006 (2)

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: Slices of life,” Cytometry A 69A, 748-758 (2006).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[Crossref]

2004 (1)

A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vision 20(1-2), 89-97 (2004).
[Crossref]

1992 (1)

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259-268 (1992).
[Crossref]

1985 (1)

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228, 1147-1153 (1985).
[Crossref] [PubMed]

Altmann, Y.

Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Spectral classification of sparse photon depth images,” Opt. Express 26, 5514-5530 (2018).
[Crossref] [PubMed]

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 99, 1 (2017).

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt.  19, 094006 (2017).
[Crossref]

Ameer-Beg, S.

Ameer-Beg, S. M.

Andrieu, C.

M. Pereyra, N. Whiteley, C. Andrieu, and J.-Y. Tourneret, “Maximum marginal likelihood estimation of the granularity coefficient of a Potts-Markov random field within an mcmc algorithm,” in Proceedings of IEEE-SP Workshop Stat. and Signal Processing, Gold Coast, Australia, July 2014.

Aull, B.

B. Aull, “Geiger-mode avalanche photodiode arrays integrated to all-digital CMOS circuits,” Sensors 16, 495 (2016).
[Crossref]

Barber, P.

Benediktsson, J. A.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
[Crossref]

Bian, L.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep.  6, 24752 (2016).
[Crossref] [PubMed]

Birks, T. A.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Boardman, J. W.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
[Crossref]

Brazile, J.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
[Crossref]

Bridle, H. L.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Brockherde, W.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” I”EEE J. Sel. Top. Quantum Electron.20, (2014).

Bronzi, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” I”EEE J. Sel. Top. Quantum Electron.20, (2014).

Bruzzone, L.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
[Crossref]

Buller, G. S.

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 99, 1 (2017).

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt.  19, 094006 (2017).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919-11931 (2017).
[Crossref] [PubMed]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911 (2015).
[Crossref]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777-33791 (2015).
[Crossref]

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942-4954 (2014).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21, 22098-22113 (2013).
[Crossref] [PubMed]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241-6251 (2009).
[Crossref] [PubMed]

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006-1015 (2007).
[Crossref]

P. Chhabra, A. Maccarone, A. McCarthy, G. S. Buller, and A. Wallace, “Discriminating underwater LiDAR target signatures using sparse multi-spectral depth codes,” Proceedings of IEEE Sensor Signal Processing for Defence (SSPD), 2016, p. 1-5.

Buller, G.S.

Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Spectral classification of sparse photon depth images,” Opt. Express 26, 5514-5530 (2018).
[Crossref] [PubMed]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472-484 (2017).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G.S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57, 031303 (2017).

Camps-Valls, G.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
[Crossref]

Chambolle, A.

A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vision 20(1-2), 89-97 (2004).
[Crossref]

Chandrasekharan, H. K.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Chanussot, J.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
[Crossref]

Chen, F.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep.  6, 24752 (2016).
[Crossref] [PubMed]

Chen, X.

W. Gong, S. Song, B. Zhu, S Shuo, F. Li, and X. Chen, “Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance,” ISPRS J. Photogramm. Remote Sens. 69, 1-9 (2012).
[Crossref]

Chen, Y.

Cheng, S.

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. 112, 12315-20 (2015).
[Crossref] [PubMed]

Chhabra, P.

P. Chhabra, A. Maccarone, A. McCarthy, G. S. Buller, and A. Wallace, “Discriminating underwater LiDAR target signatures using sparse multi-spectral depth codes,” Proceedings of IEEE Sensor Signal Processing for Defence (SSPD), 2016, p. 1-5.

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48-51 (2008).
[Crossref]

Coelho, S.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[Crossref]

Colaço, A.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343, 58-61 (2014).
[Crossref]

Collins, R. J.

Contini, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” I”EEE J. Sel. Top. Quantum Electron.20, (2014).

Dai, Q.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep.  6, 24752 (2016).
[Crossref] [PubMed]

Dalgarno, P. A.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Dalla Mora, A.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” I”EEE J. Sel. Top. Quantum Electron.20, (2014).

Davis, A. O. C.

Della Frera, A.

Devauges, V.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[Crossref]

Durini, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” I”EEE J. Sel. Top. Quantum Electron.20, (2014).

Dutton, N.

El-Rabbany, A.

S. Morsy, A. Shaker, and A. El-Rabbany, “Multispectral LiDAR data for land cover classification of urban areas,” Sensors 17, 958 (2017).
[Crossref]

Erdogan, A.

Faccio, D.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10, 23-26 (2016).
[Crossref]

Fan, J.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep.  6, 24752 (2016).
[Crossref] [PubMed]

Fatemi, E.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259-268 (1992).
[Crossref]

Fauvel, M.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
[Crossref]

Fernández, V.

Gamba, P.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
[Crossref]

Gariepy, G.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10, 23-26 (2016).
[Crossref]

Gemmell, N. R.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[Crossref]

Goetz, A. F.

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228, 1147-1153 (1985).
[Crossref] [PubMed]

Gong, W.

W. Gong, S. Song, B. Zhu, S Shuo, F. Li, and X. Chen, “Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance,” ISPRS J. Photogramm. Remote Sens. 69, 1-9 (2012).
[Crossref]

Goyal, V. K.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343, 58-61 (2014).
[Crossref]

Gris-Sánchez, I.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Grossberg, M. D.

J. Il Park, M. H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral imaging using multiplexed illumination,” Proceedings of the IEEE International Conference on Computer Vision (2007).

Gualtieri, A.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
[Crossref]

Hakala, T.

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20, 7119 (2012).
[Crossref] [PubMed]

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral lidar in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens.  66, 637-641 (2011).
[Crossref]

Halimi, A.

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G.S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57, 031303 (2017).

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472-484 (2017).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919-11931 (2017).
[Crossref] [PubMed]

Henderson, R.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10, 23-26 (2016).
[Crossref]

Henderson, R. K.

Hero, A.

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 99, 1 (2017).

Intermite, G.

Izdebski, F.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Jalali, B.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48-51 (2008).
[Crossref]

Jo, J. A.

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. 112, 12315-20 (2015).
[Crossref] [PubMed]

Kaartinen, H.

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral lidar in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens.  66, 637-641 (2011).
[Crossref]

Kaasalainen, S.

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20, 7119 (2012).
[Crossref] [PubMed]

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral lidar in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens.  66, 637-641 (2011).
[Crossref]

Kang, Y.

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10, 1-10 (2018).
[Crossref]

Karpinski, M.

Kirmani, A.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343, 58-61 (2014).
[Crossref]

Krichel, N. J.

Krstajic, N.

Lamb, R. A.

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919-11931 (2017).
[Crossref] [PubMed]

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt.  19, 094006 (2017).
[Crossref]

Leach, J.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10, 23-26 (2016).
[Crossref]

Lee, M. H.

J. Il Park, M. H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral imaging using multiplexed illumination,” Proceedings of the IEEE International Conference on Computer Vision (2007).

Lehmann, K. K.

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. 112, 12315-20 (2015).
[Crossref] [PubMed]

Levenson, R. M.

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: Slices of life,” Cytometry A 69A, 748-758 (2006).
[Crossref]

Levitt, J.

Li, D.

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10, 1-10 (2018).
[Crossref]

Li, D. D.-U.

Li, F.

W. Gong, S. Song, B. Zhu, S Shuo, F. Li, and X. Chen, “Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance,” ISPRS J. Photogramm. Remote Sens. 69, 1-9 (2012).
[Crossref]

Li, L.

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10, 1-10 (2018).
[Crossref]

Li, Z.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep.  6, 24752 (2016).
[Crossref] [PubMed]

Liu, D.

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10, 1-10 (2018).
[Crossref]

Liu, S.

Lussana, R.

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777-33791 (2015).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” I”EEE J. Sel. Top. Quantum Electron.20, (2014).

Maccarone, A.

Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Spectral classification of sparse photon depth images,” Opt. Express 26, 5514-5530 (2018).
[Crossref] [PubMed]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472-484 (2017).
[Crossref]

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 99, 1 (2017).

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911 (2015).
[Crossref]

P. Chhabra, A. Maccarone, A. McCarthy, G. S. Buller, and A. Wallace, “Discriminating underwater LiDAR target signatures using sparse multi-spectral depth codes,” Proceedings of IEEE Sensor Signal Processing for Defence (SSPD), 2016, p. 1-5.

MacPherson, W. N.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Mansfield, J. R.

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: Slices of life,” Cytometry A 69A, 748-758 (2006).
[Crossref]

Marconcini, M.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
[Crossref]

Martinez-Ramirez, D.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942-4954 (2014).
[Crossref]

McCarthy, A.

Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Spectral classification of sparse photon depth images,” Opt. Express 26, 5514-5530 (2018).
[Crossref] [PubMed]

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 99, 1 (2017).

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472-484 (2017).
[Crossref]

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt.  19, 094006 (2017).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G.S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57, 031303 (2017).

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911 (2015).
[Crossref]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777-33791 (2015).
[Crossref]

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942-4954 (2014).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21, 22098-22113 (2013).
[Crossref] [PubMed]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241-6251 (2009).
[Crossref] [PubMed]

P. Chhabra, A. Maccarone, A. McCarthy, G. S. Buller, and A. Wallace, “Discriminating underwater LiDAR target signatures using sparse multi-spectral depth codes,” Proceedings of IEEE Sensor Signal Processing for Defence (SSPD), 2016, p. 1-5.

McEwan, K. J.

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G.S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57, 031303 (2017).

McLaughlin, S.

Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Spectral classification of sparse photon depth images,” Opt. Express 26, 5514-5530 (2018).
[Crossref] [PubMed]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G.S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57, 031303 (2017).

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472-484 (2017).
[Crossref]

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt.  19, 094006 (2017).
[Crossref]

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 99, 1 (2017).

Meng, Z.

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. 112, 12315-20 (2015).
[Crossref] [PubMed]

Moffat, J.

Monypenny, J.

Morak, S.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942-4954 (2014).
[Crossref]

Morsy, S.

S. Morsy, A. Shaker, and A. El-Rabbany, “Multispectral LiDAR data for land cover classification of urban areas,” Sensors 17, 958 (2017).
[Crossref]

Nayar, S. K.

J. Il Park, M. H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral imaging using multiplexed illumination,” Proceedings of the IEEE International Conference on Computer Vision (2007).

Newstadt, G.

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 99, 1 (2017).

Ng, T.

Nichol, C. J.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942-4954 (2014).
[Crossref]

Osher, S.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259-268 (1992).
[Crossref]

Park, J. Il

J. Il Park, M. H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral imaging using multiplexed illumination,” Proceedings of the IEEE International Conference on Computer Vision (2007).

Pawlikowska, A. M.

Peng, J.

Pereyra, M.

M. Pereyra, N. Whiteley, C. Andrieu, and J.-Y. Tourneret, “Maximum marginal likelihood estimation of the granularity coefficient of a Potts-Markov random field within an mcmc algorithm,” in Proceedings of IEEE-SP Workshop Stat. and Signal Processing, Gold Coast, Australia, July 2014.

Petillot, Y.

Petrov, G. I.

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. 112, 12315-20 (2015).
[Crossref] [PubMed]

Plaza, A.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
[Crossref]

Poland, S.

Poland, S. P.

Räikkönen, E.

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral lidar in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens.  66, 637-641 (2011).
[Crossref]

Ren, X.

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G.S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57, 031303 (2017).

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt.  19, 094006 (2017).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911 (2015).
[Crossref]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777-33791 (2015).
[Crossref]

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942-4954 (2014).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21, 22098-22113 (2013).
[Crossref] [PubMed]

Richardson, J.

Rock, B. N.

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228, 1147-1153 (1985).
[Crossref] [PubMed]

Rudin, L. I.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259-268 (1992).
[Crossref]

Ruggeri, A.

Saulnier, P. M.

Scarcella, C.

Scully, M. O.

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. 112, 12315-20 (2015).
[Crossref] [PubMed]

Shaker, A.

S. Morsy, A. Shaker, and A. El-Rabbany, “Multispectral LiDAR data for land cover classification of urban areas,” Sensors 17, 958 (2017).
[Crossref]

Shapiro, J. H.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343, 58-61 (2014).
[Crossref]

Shin, D.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343, 58-61 (2014).
[Crossref]

Shuo, S

W. Gong, S. Song, B. Zhu, S Shuo, F. Li, and X. Chen, “Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance,” ISPRS J. Photogramm. Remote Sens. 69, 1-9 (2012).
[Crossref]

Situ, G.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep.  6, 24752 (2016).
[Crossref] [PubMed]

Smith, B. J.

Solli, D. R.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48-51 (2008).
[Crossref]

Solomon, J. E.

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228, 1147-1153 (1985).
[Crossref] [PubMed]

Song, S.

W. Gong, S. Song, B. Zhu, S Shuo, F. Li, and X. Chen, “Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance,” ISPRS J. Photogramm. Remote Sens. 69, 1-9 (2012).
[Crossref]

Suhling, K.

Suo, J.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep.  6, 24752 (2016).
[Crossref] [PubMed]

Suomalainen, J.

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20, 7119 (2012).
[Crossref] [PubMed]

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral lidar in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens.  66, 637-641 (2011).
[Crossref]

Taghizadeh, M. R.

Thomson, R. R.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Tilton, J. C.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
[Crossref]

Tisa, S.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” I”EEE J. Sel. Top. Quantum Electron.20, (2014).

Tobin, R.

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt.  19, 094006 (2017).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G.S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57, 031303 (2017).

Tonolini, F.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10, 23-26 (2016).
[Crossref]

Tosi, A.

Tourneret, J.-Y.

M. Pereyra, N. Whiteley, C. Andrieu, and J.-Y. Tourneret, “Maximum marginal likelihood estimation of the granularity coefficient of a Potts-Markov random field within an mcmc algorithm,” in Proceedings of IEEE-SP Workshop Stat. and Signal Processing, Gold Coast, Australia, July 2014.

Trianni, G.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
[Crossref]

Tyndall, D.

Vane, G.

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228, 1147-1153 (1985).
[Crossref] [PubMed]

Venkatraman, D.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343, 58-61 (2014).
[Crossref]

Villa, F.

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777-33791 (2015).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” I”EEE J. Sel. Top. Quantum Electron.20, (2014).

Waddie, A. J.

Walker, R.

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

N. Krstajić, S. Poland, J. Levitt, R. Walker, A. Erdogan, S. Ameer-Beg, and R. K. Henderson, “0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays,” Opt. Lett. 40, 4305-4308 (2015).
[Crossref]

Walker, R. J.

Wallace, A.

P. Chhabra, A. Maccarone, A. McCarthy, G. S. Buller, and A. Wallace, “Discriminating underwater LiDAR target signatures using sparse multi-spectral depth codes,” Proceedings of IEEE Sensor Signal Processing for Defence (SSPD), 2016, p. 1-5.

Wallace, A. M.

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911 (2015).
[Crossref]

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942-4954 (2014).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241-6251 (2009).
[Crossref] [PubMed]

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006-1015 (2007).
[Crossref]

Warburton, R. E.

Weyers, S.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” I”EEE J. Sel. Top. Quantum Electron.20, (2014).

Whiteley, N.

M. Pereyra, N. Whiteley, C. Andrieu, and J.-Y. Tourneret, “Maximum marginal likelihood estimation of the granularity coefficient of a Potts-Markov random field within an mcmc algorithm,” in Proceedings of IEEE-SP Workshop Stat. and Signal Processing, Gold Coast, Australia, July 2014.

Wong, F. N. C.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343, 58-61 (2014).
[Crossref]

Woodhouse, I. H.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942-4954 (2014).
[Crossref]

Yakovlev, V. V

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. 112, 12315-20 (2015).
[Crossref] [PubMed]

Yao, M.

Zappa, F.

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777-33791 (2015).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” I”EEE J. Sel. Top. Quantum Electron.20, (2014).

Zhang, T.

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10, 1-10 (2018).
[Crossref]

Zhang, Z.

Zhao, W.

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10, 1-10 (2018).
[Crossref]

Zheng, G.

Zhong, J.

Zhu, B.

W. Gong, S. Song, B. Zhu, S Shuo, F. Li, and X. Chen, “Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance,” ISPRS J. Photogramm. Remote Sens. 69, 1-9 (2012).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Cytometry A (1)

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: Slices of life,” Cytometry A 69A, 748-758 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006-1015 (2007).
[Crossref]

IEEE Photonics J. (1)

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10, 1-10 (2018).
[Crossref]

IEEE Trans. Comput. Imaging (2)

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 99, 1 (2017).

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472-484 (2017).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens. 52, 4942-4954 (2014).
[Crossref]

ISPRS J. Photogramm. Remote Sens (1)

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral lidar in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens.  66, 637-641 (2011).
[Crossref]

ISPRS J. Photogramm. Remote Sens. (1)

W. Gong, S. Song, B. Zhu, S Shuo, F. Li, and X. Chen, “Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance,” ISPRS J. Photogramm. Remote Sens. 69, 1-9 (2012).
[Crossref]

J. Math. Imaging Vision (1)

A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vision 20(1-2), 89-97 (2004).
[Crossref]

J. Opt (1)

R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A. Lamb, S. McLaughlin, and G. S. Buller, “Comparative study of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays,” J. Opt.  19, 094006 (2017).
[Crossref]

Nat. Commun. (1)

H. K. Chandrasekharan, F. Izdebski, I. Gris-Sánchez, N. Krstajić, R. Walker, H. L. Bridle, P. A. Dalgarno, W. N. MacPherson, R. K. Henderson, T. A. Birks, and R. R. Thomson, “Multiplexed single-mode wavelength-to-time mapping of multimode light,” Nat. Commun. 8, 14080 (2017).
[Crossref] [PubMed]

Nat. Photonics (2)

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10, 23-26 (2016).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48-51 (2008).
[Crossref]

Opt. Eng. (1)

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G.S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57, 031303 (2017).

Opt. Express (7)

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21, 22098-22113 (2013).
[Crossref] [PubMed]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919-11931 (2017).
[Crossref] [PubMed]

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20, 7119 (2012).
[Crossref] [PubMed]

A. O. C. Davis, P. M. Saulnier, M. Karpinski, and B. J. Smith, “Pulsed single-photon spectrograph by frequency-to-time mapping using chirped fiber Bragg gratings,” Opt. Express 25, 12804-12811 (2017).
[Crossref] [PubMed]

Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, and G.S. Buller, “Spectral classification of sparse photon depth images,” Opt. Express 26, 5514-5530 (2018).
[Crossref] [PubMed]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777-33791 (2015).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911 (2015).
[Crossref]

Opt. Lett. (1)

Optica (1)

Physica D (1)

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259-268 (1992).
[Crossref]

Proc. Natl. Acad. Sci. (1)

Z. Meng, G. I. Petrov, S. Cheng, J. A. Jo, K. K. Lehmann, V. V Yakovlev, and M. O. Scully, “Lightweight Raman spectroscope using time-correlated photon-counting detection,” Proc. Natl. Acad. Sci. 112, 12315-20 (2015).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[Crossref]

Sci. Rep (1)

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep.  6, 24752 (2016).
[Crossref] [PubMed]

Science (2)

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon Imaging,” Science 343, 58-61 (2014).
[Crossref]

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228, 1147-1153 (1985).
[Crossref] [PubMed]

Sensors (2)

S. Morsy, A. Shaker, and A. El-Rabbany, “Multispectral LiDAR data for land cover classification of urban areas,” Sensors 17, 958 (2017).
[Crossref]

B. Aull, “Geiger-mode avalanche photodiode arrays integrated to all-digital CMOS circuits,” Sensors 16, 495 (2016).
[Crossref]

Other (6)

M. Pereyra, N. Whiteley, C. Andrieu, and J.-Y. Tourneret, “Maximum marginal likelihood estimation of the granularity coefficient of a Potts-Markov random field within an mcmc algorithm,” in Proceedings of IEEE-SP Workshop Stat. and Signal Processing, Gold Coast, Australia, July 2014.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” I”EEE J. Sel. Top. Quantum Electron.20, (2014).

Micro Photon Devices, “Datasheet of PDM series photon counting detector modules,” http://www.micro-photon-devices.com/Docs/Datasheet/PDM.pdf .

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ.113, (2009).
[Crossref]

J. Il Park, M. H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral imaging using multiplexed illumination,” Proceedings of the IEEE International Conference on Computer Vision (2007).

P. Chhabra, A. Maccarone, A. McCarthy, G. S. Buller, and A. Wallace, “Discriminating underwater LiDAR target signatures using sparse multi-spectral depth codes,” Proceedings of IEEE Sensor Signal Processing for Defence (SSPD), 2016, p. 1-5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of the multispectral depth imaging system. The silicon single-photon avalanche diode (Si-SPAD) was operated in electrically gated mode. The target was a figurine placed against a flat hardboard sheet (approximately 35 mm × 45 mm × 30 mm in X × Y × Z).
Fig. 2
Fig. 2 The optical spectrum of the light selected by the AOTF was measured at the output end of the polarization-maintaining photonic crystal fiber using an optical spectrum analyzer (OSA). The bandwidths, at full width at half maximum (FWHM), were 3.3, 3.6, 4.2 and 5.9 nm for λ1 = 473 nm, λ2 = 532 nm, λ3 = 589 nm, and λ4 = 640 nm, respectively. It was confirmed that there was no other light emission in the operational spectral range of the silicon single-photon avalanche diode (Si-SPAD) detector (i.e. 400-1000 nm).
Fig. 3
Fig. 3 Example of a single waveform with four wavelength-to-time mapped peaks for the four wavelengths (i.e. λ1 = 473 nm, λ2 = 532 nm, λ3 = 589 nm, and λ4 = 640 nm). This example is a histogram of photon counts versus time measured by time-correlated single-photon counting (TCSPC). This measurement was on the flat backplane of the target scene shown in Fig. 1 with an acquisition time of approximately 4 seconds.
Fig. 4
Fig. 4 Histograms of normalized photon counts versus time obtained from a single position on a reference target. Each histogram was constructed using data measured at a detection level of approximately 110 k photon counts per second. (a): Four single-wavelength based histograms, denoted as 1 wavelength ×4. (b): One simultaneous four-wavelength based histogram, denoted as 4 wavelengths ×1. (c): Two dual-wavelength based histograms, denoted as 2 wavelengths ×2.
Fig. 5
Fig. 5 Examples of real LiDAR-based photon data fitted by our proposed algorithm: top -the simultaneous four-wavelength based raw pixel data (in blue) and its final fit estimation (in red); bottom - the raw pixel data at λ = 473 and 589 nm (in orange) and its final fit estimation (in green), the raw pixel data at λ = 532 and 640 nm (in blue) and its final fit estimation (in red).
Fig. 6
Fig. 6 Depth/range profiles obtained using waveforms at 4 wavelengths ×1 (top, strategy #1) and 2 wavelengths ×2 (bottom, strategy #2) without ambient sources at different numbers of average “useful” per-pixel photon counts (photons originally emitted by the laser source, and not events associated with background).
Fig. 7
Fig. 7 Intensity profiles obtained using waveforms at 4 wavelengths ×1 (top, strategy #1) and 2 wavelengths ×2 (bottom, strategy #2) without ambient sources at different numbers of average “useful” per-pixel photon counts.
Fig. 8
Fig. 8 Surface-to-surface resolution at different numbers of average per-pixel photon counts (100, 10, 5 and 1) in dark conditions for both imaging strategies. (a): Depths of three different flat uniform surfaces on the legs and base of the target; (b) and (c): Depth values estimated using our proposed method. These values are selected across 26 vertical pixels of the three surfaces for each strategy.
Fig. 9
Fig. 9 Background emstimations using waveforms at 4 wavelengths ×1 (top, strategy #1) and 2 wavelengths ×2 (bottom, strategy #2) at different numbers of average “useful” per-pixel photon counts.
Fig. 10
Fig. 10 Empirical cumulative density functions (CDFs) of the depth absolute error (DAE) obtained using waveforms at 4 wavelengths ×1 (blue curves, strategy #1) and 2 wavelengths ×2 (red curves, strategy #2). These are shown for no ambient background (top row) and with background (bottom row). In each case, we have shown the results for 100, 10, 5 and 1 average “useful” photons per pixel.
Fig. 11
Fig. 11 Mean reflectivity absolute errors (RAEs) obtained using waveforms at 4 wavelengths ×1 (red curves, strategy #1) and 2 wavelengths ×2 (blue curves, strategy #2) as a function of the average “useful” per-pixel photon counts (photons originally emitted by the laser source, and not events associated with background). The dash lines represent ± one standard deviation intervals. (a) the graph corresponds to RAE obtained as a function of average photon count per pixel without ambient sources, and (b) the graph with ambient sources.

Tables (3)

Tables Icon

Table 1 Top row: timing jitters, at full width at half maximum (FWHM), of the peaks for the four wavelengths. Bottom row: the time delays between neighboring peaks.

Tables Icon

Algorithm 1 Proposed Multispectral Single Waveform (MSSW) algorithm

Tables Icon

Table 2 Acquisition time of different photon counts per pixel on average for both imaging strategies. Note that the optical power level used for the observation per spatial location for the two strategies is quantified in terms of the photon counts per second calibrated on a uniform, Lambertian target (i.e. a Spectralon panel SRT-99-050 by Labsphere) in dark conditions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

y n , m , t | ( λ n , m , b n , m , t n ) ~ P ( i = 1 B [ λ n , i , m g m , i ( t t n ) ] + b n , m )
f ( Y | Λ , B , t ) = m = 1 M n f ( y n , m | λ n , m , t n , b n , m )
f ( Λ | γ ) = i , m f ( Λ i , m | γ i , m ) ,
f ( B | δ ) = m f ( b m | δ m ) ,
f ( t , Λ , B | Y , Φ ) f ( Y | Λ , B , t ) f ( t | c ) f ( Λ | γ ) f ( B | δ ) .
f ( Λ | Y , t , B , Φ ) m = 1 m [ ( i f ( Λ i , m | γ i , m ) ) ( i f ( y n , m | λ n , m , t n , b n , m ) ) ] .