Abstract

We propose and experimentally demonstrate a highly sensitive gas pressure sensor based on a near-balanced Mach-Zehnder interferometer (MZI) and constructed by hollow-core photonic bandgap fiber (HC-PBF) in this paper. The MZI is simply constructed by fusion splicing two HC-PBFs, which are of slightly different lengths, between two 3-dB couplers. The two output ends of each coupler are approximately equal in length, to ensure that the optical path variations of the MZI only result from the differences in the lengths between the two HC-PBFs. To apply the MZI for gas pressure sensing, a femtosecond laser is employed to drill a micro-channel in one of the two HC-PBF arms. The experiment result shows that the proposed MZI based gas pressure sensor achieves an ultrahigh sensitivity, up to 2.39 nm/kPa, which is two orders of magnitude higher than that of the previously reported MZI-based gas pressure sensors. Additionally, the effects resulting from the absolute length and relative length of the two HC-PBFs on gas pressure sensing performance are also investigated experimentally and theoretically, respectively. The ultra-high sensitivity and ease of fabrication make this device suitable for gas pressure sensing in the field of industrial and environmental safety monitoring.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer

Zhengyong Li, Changrui Liao, Yiping Wang, Lei Xu, Dongning Wang, Xiaopeng Dong, Shen Liu, Qiao Wang, Kaiming Yang, and Jiangtao Zhou
Opt. Express 23(5) 6673-6678 (2015)

Highly sensitive gas refractive index sensor based on hollow-core photonic bandgap fiber

Zhe Zhang, Jun He, Bin Du, Kuikui Guo, and Yiping Wang
Opt. Express 27(21) 29649-29658 (2019)

Ultra-highly sensitive gas pressure sensor based on dual side-hole fiber interferometers with Vernier effect

Hongfeng Lin, Fufei Liu, Huiyong Guo, Ai Zhou, and Yutang Dai
Opt. Express 26(22) 28763-28772 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. J. Bock, J. Chen, P. Mikulic, and T. Eftimov, “A Novel Fiber-Optic Tapered Long-Period Grating Sensor for Pressure Monitoring,” IEEE Trans. Instrum. Meas. 56(4), 1176–1180 (2007).
    [Crossref]
  2. W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered longperiod gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
    [Crossref]
  3. X. Zhong, Y. Wang, C. Liao, S. Liu, J. Tang, and Q. Wang, “Temperature-insensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber,” Opt. Lett. 40(8), 1791–1794 (2015).
    [Crossref] [PubMed]
  4. Y. F. Zhang, C. C. Chan, Y. M. Chan, and P. Zu, “Tilted long period gratings pressure sensing in solid core photonic crystal fibers,” IEEE Sens. J. 12(5), 954–957 (2012).
    [Crossref]
  5. G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
    [Crossref]
  6. M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber,” J. Lightwave Technol. 30(8), 1080–1084 (2012).
    [Crossref]
  7. M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
    [Crossref]
  8. H.-J. Sheng, W.-F. Liu, K.-R. Lin, S.-S. Bor, and M.-Y. Fu, “High-sensitivity temperature-independent differential pressure sensor using fiber Bragg gratings,” Opt. Express 16(20), 16013–16018 (2008).
    [Crossref] [PubMed]
  9. Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
    [Crossref]
  10. C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
    [Crossref] [PubMed]
  11. T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36(18), 3542–3544 (2011).
    [Crossref] [PubMed]
  12. L. Jin, B.-O. Guan, and H. Wei, “Sensitivity characteristics of Fabry-Perot pressure sensors based on hollow-core microstructured fibers,” J. Lightwave Technol. 31(15), 2526–2532 (2013).
    [Crossref]
  13. Y. Yu, X. Chen, Q. Huang, C. Du, S. Ruan, and H. Wei, “Enhancing the pressure sensitivity of a Fabry-Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel,” Appl. Phys. B 120(3), 461–467 (2015).
    [Crossref]
  14. Y. Wang, D. N. Wang, C. Wang, and T. Hu, “Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity,” Opt. Express 21(12), 14084–14089 (2013).
    [Crossref] [PubMed]
  15. B. Xu, C. Wang, D. N. Wang, Y. Liu, and Y. Li, “Fiber-tip gas pressure sensor based on dual capillaries,” Opt. Express 23(18), 23484–23492 (2015).
    [Crossref] [PubMed]
  16. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett. 31(7), 885–887 (2006).
    [Crossref] [PubMed]
  17. D. Donlagic and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett. 30(16), 2071–2073 (2005).
    [Crossref] [PubMed]
  18. J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
    [Crossref]
  19. C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
    [Crossref] [PubMed]
  20. Z. Zhang, C. Liao, J. Tang, Z. Bai, K. Guo, M. Hou, J. He, Y. Wang, S. Liu, F. Zhang, and Y. Wang, “High-Sensitivity Gas-Pressure Sensor Based on Fiber-Tip PVC Diaphragm Fabry-Perot Interferometer,” J. Lightwave Technol. 35(18), 4067–4071 (2017).
    [Crossref]
  21. X. Zang, Y. Jiang, X. Wang, X. Wang, J. Ji, and M. Xue, “Highly sensitive pressure sensors based on conducting polymer-coated paper,” Sens. Actuators B Chem. 273(10), 1195–1201 (2018).
    [Crossref]
  22. F. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm,” Opt. Lett. 37(9), 1505–1507 (2012).
    [Crossref] [PubMed]
  23. F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett. 37(2), 133–135 (2012).
    [Crossref] [PubMed]
  24. J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett. 37(13), 2493–2495 (2012).
    [Crossref] [PubMed]
  25. W. Talataisong, D. N. Wang, R. Chitaree, C. R. Liao, and C. Wang, “Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing,” Opt. Lett. 40(7), 1220–1222 (2015).
    [Crossref] [PubMed]
  26. Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer,” Opt. Express 23(5), 6673–6678 (2015).
    [Crossref] [PubMed]
  27. M. Deng, C. P. Tang, T. Zhu, Y. J. Rao, L. C. Xu, and M. Han, “Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer,” Appl. Opt. 49(9), 1593–1598 (2010).
    [Crossref] [PubMed]

2018 (1)

X. Zang, Y. Jiang, X. Wang, X. Wang, J. Ji, and M. Xue, “Highly sensitive pressure sensors based on conducting polymer-coated paper,” Sens. Actuators B Chem. 273(10), 1195–1201 (2018).
[Crossref]

2017 (1)

2015 (5)

2014 (1)

2013 (3)

2012 (6)

2011 (2)

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36(18), 3542–3544 (2011).
[Crossref] [PubMed]

2010 (2)

2008 (1)

2007 (2)

W. J. Bock, J. Chen, P. Mikulic, and T. Eftimov, “A Novel Fiber-Optic Tapered Long-Period Grating Sensor for Pressure Monitoring,” IEEE Trans. Instrum. Meas. 56(4), 1176–1180 (2007).
[Crossref]

W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered longperiod gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
[Crossref]

2006 (1)

2005 (1)

1993 (1)

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[Crossref]

Bai, Z.

Bock, W. J.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber,” J. Lightwave Technol. 30(8), 1080–1084 (2012).
[Crossref]

W. J. Bock, J. Chen, P. Mikulic, and T. Eftimov, “A Novel Fiber-Optic Tapered Long-Period Grating Sensor for Pressure Monitoring,” IEEE Trans. Instrum. Meas. 56(4), 1176–1180 (2007).
[Crossref]

W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered longperiod gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
[Crossref]

Bor, S.-S.

Canning, J.

Chan, C. C.

Y. F. Zhang, C. C. Chan, Y. M. Chan, and P. Zu, “Tilted long period gratings pressure sensing in solid core photonic crystal fibers,” IEEE Sens. J. 12(5), 954–957 (2012).
[Crossref]

Chan, Y. M.

Y. F. Zhang, C. C. Chan, Y. M. Chan, and P. Zu, “Tilted long period gratings pressure sensing in solid core photonic crystal fibers,” IEEE Sens. J. 12(5), 954–957 (2012).
[Crossref]

Chen, J.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber,” J. Lightwave Technol. 30(8), 1080–1084 (2012).
[Crossref]

W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered longperiod gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
[Crossref]

W. J. Bock, J. Chen, P. Mikulic, and T. Eftimov, “A Novel Fiber-Optic Tapered Long-Period Grating Sensor for Pressure Monitoring,” IEEE Trans. Instrum. Meas. 56(4), 1176–1180 (2007).
[Crossref]

Chen, K. P.

Chen, R.

Chen, T.

Chen, X.

Y. Yu, X. Chen, Q. Huang, C. Du, S. Ruan, and H. Wei, “Enhancing the pressure sensitivity of a Fabry-Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel,” Appl. Phys. B 120(3), 461–467 (2015).
[Crossref]

Chitaree, R.

Chow, Y.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[Crossref]

Cibula, E.

Cook, K.

Cooper, K. L.

Dai, J. Y.

Dakin, J. P.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[Crossref]

Deng, M.

Dong, X.

Donlagic, D.

Du, C.

Y. Yu, X. Chen, Q. Huang, C. Du, S. Ruan, and H. Wei, “Enhancing the pressure sensitivity of a Fabry-Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel,” Appl. Phys. B 120(3), 461–467 (2015).
[Crossref]

Eftimov, T.

W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered longperiod gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
[Crossref]

W. J. Bock, J. Chen, P. Mikulic, and T. Eftimov, “A Novel Fiber-Optic Tapered Long-Period Grating Sensor for Pressure Monitoring,” IEEE Trans. Instrum. Meas. 56(4), 1176–1180 (2007).
[Crossref]

Fink, T.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

F. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm,” Opt. Lett. 37(9), 1505–1507 (2012).
[Crossref] [PubMed]

Fu, M.-Y.

Grobnic, D.

Guan, B.-O.

Guo, F.

Guo, K.

Han, M.

He, J.

Ho, H. L.

Hou, M.

Hu, T.

Huang, J.

Huang, Q.

Y. Yu, X. Chen, Q. Huang, C. Du, S. Ruan, and H. Wei, “Enhancing the pressure sensitivity of a Fabry-Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel,” Appl. Phys. B 120(3), 461–467 (2015).
[Crossref]

Jewart, C.

Jewart, C. M.

Ji, J.

X. Zang, Y. Jiang, X. Wang, X. Wang, J. Ji, and M. Xue, “Highly sensitive pressure sensors based on conducting polymer-coated paper,” Sens. Actuators B Chem. 273(10), 1195–1201 (2018).
[Crossref]

Jiang, Y.

X. Zang, Y. Jiang, X. Wang, X. Wang, J. Ji, and M. Xue, “Highly sensitive pressure sensors based on conducting polymer-coated paper,” Sens. Actuators B Chem. 273(10), 1195–1201 (2018).
[Crossref]

Jin, L.

L. Jin, B.-O. Guan, and H. Wei, “Sensitivity characteristics of Fabry-Perot pressure sensors based on hollow-core microstructured fibers,” J. Lightwave Technol. 31(15), 2526–2532 (2013).
[Crossref]

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Jin, W.

J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett. 37(13), 2493–2495 (2012).
[Crossref] [PubMed]

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Ju, J.

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Koester, L.

Korwin-Pawlowski, M.

W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered longperiod gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
[Crossref]

Kowal, D.

G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
[Crossref]

Li, C.

Li, H.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Li, Y.

Li, Z.

Liao, C.

Liao, C. R.

Lin, K.-R.

Liu, N.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Liu, S.

Liu, W.-F.

Liu, Y.

Lu, L.

Lu, W.

Ma, J.

J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett. 37(13), 2493–2495 (2012).
[Crossref] [PubMed]

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Mergo, P.

G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
[Crossref]

Mihailov, S. J.

Mikulic, P.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber,” J. Lightwave Technol. 30(8), 1080–1084 (2012).
[Crossref]

W. J. Bock, J. Chen, P. Mikulic, and T. Eftimov, “A Novel Fiber-Optic Tapered Long-Period Grating Sensor for Pressure Monitoring,” IEEE Trans. Instrum. Meas. 56(4), 1176–1180 (2007).
[Crossref]

W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered longperiod gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
[Crossref]

Peng, W.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Rao, Y. J.

Reekie, L.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[Crossref]

Ren, D.

Ruan, S.

Y. Yu, X. Chen, Q. Huang, C. Du, S. Ruan, and H. Wei, “Enhancing the pressure sensitivity of a Fabry-Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel,” Appl. Phys. B 120(3), 461–467 (2015).
[Crossref]

Sheng, H.-J.

Shi, X.

Smietana, M.

Statkiewicz-Barabach, G.

G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
[Crossref]

Szczurowski, M. K.

G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
[Crossref]

Talataisong, W.

Tang, C. P.

Tang, J.

Turner, J.

Urbanczyk, W.

G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
[Crossref]

Wang, A.

Wang, C.

Wang, D.

Wang, D. N.

Wang, Q.

Wang, X.

X. Zang, Y. Jiang, X. Wang, X. Wang, J. Ji, and M. Xue, “Highly sensitive pressure sensors based on conducting polymer-coated paper,” Sens. Actuators B Chem. 273(10), 1195–1201 (2018).
[Crossref]

X. Zang, Y. Jiang, X. Wang, X. Wang, J. Ji, and M. Xue, “Highly sensitive pressure sensors based on conducting polymer-coated paper,” Sens. Actuators B Chem. 273(10), 1195–1201 (2018).
[Crossref]

X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett. 31(7), 885–887 (2006).
[Crossref] [PubMed]

Wang, Y.

Wei, H.

Y. Yu, X. Chen, Q. Huang, C. Du, S. Ruan, and H. Wei, “Enhancing the pressure sensitivity of a Fabry-Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel,” Appl. Phys. B 120(3), 461–467 (2015).
[Crossref]

L. Jin, B.-O. Guan, and H. Wei, “Sensitivity characteristics of Fabry-Perot pressure sensors based on hollow-core microstructured fibers,” J. Lightwave Technol. 31(15), 2526–2532 (2013).
[Crossref]

Xu, B.

Xu, F.

Xu, J.

Xu, L.

Xu, L. C.

Xu, M.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[Crossref]

Xue, M.

X. Zang, Y. Jiang, X. Wang, X. Wang, J. Ji, and M. Xue, “Highly sensitive pressure sensors based on conducting polymer-coated paper,” Sens. Actuators B Chem. 273(10), 1195–1201 (2018).
[Crossref]

Yang, K.

Yu, B.

Yu, Y.

Y. Yu, X. Chen, Q. Huang, C. Du, S. Ruan, and H. Wei, “Enhancing the pressure sensitivity of a Fabry-Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel,” Appl. Phys. B 120(3), 461–467 (2015).
[Crossref]

Zang, X.

X. Zang, Y. Jiang, X. Wang, X. Wang, J. Ji, and M. Xue, “Highly sensitive pressure sensors based on conducting polymer-coated paper,” Sens. Actuators B Chem. 273(10), 1195–1201 (2018).
[Crossref]

Zhang, B.

Zhang, F.

Zhang, Q.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Zhang, Y. F.

Y. F. Zhang, C. C. Chan, Y. M. Chan, and P. Zu, “Tilted long period gratings pressure sensing in solid core photonic crystal fibers,” IEEE Sens. J. 12(5), 954–957 (2012).
[Crossref]

Zhang, Z.

Zhong, X.

Zhou, J.

Zhu, T.

Zhu, Y.

Zu, P.

Y. F. Zhang, C. C. Chan, Y. M. Chan, and P. Zu, “Tilted long period gratings pressure sensing in solid core photonic crystal fibers,” IEEE Sens. J. 12(5), 954–957 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. Yu, X. Chen, Q. Huang, C. Du, S. Ruan, and H. Wei, “Enhancing the pressure sensitivity of a Fabry-Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel,” Appl. Phys. B 120(3), 461–467 (2015).
[Crossref]

Electron. Lett. (1)

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
[Crossref]

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

IEEE Sens. J. (1)

Y. F. Zhang, C. C. Chan, Y. M. Chan, and P. Zu, “Tilted long period gratings pressure sensing in solid core photonic crystal fibers,” IEEE Sens. J. 12(5), 954–957 (2012).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

W. J. Bock, J. Chen, P. Mikulic, and T. Eftimov, “A Novel Fiber-Optic Tapered Long-Period Grating Sensor for Pressure Monitoring,” IEEE Trans. Instrum. Meas. 56(4), 1176–1180 (2007).
[Crossref]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (1)

W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered longperiod gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (10)

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

W. Talataisong, D. N. Wang, R. Chitaree, C. R. Liao, and C. Wang, “Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing,” Opt. Lett. 40(7), 1220–1222 (2015).
[Crossref] [PubMed]

X. Zhong, Y. Wang, C. Liao, S. Liu, J. Tang, and Q. Wang, “Temperature-insensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber,” Opt. Lett. 40(8), 1791–1794 (2015).
[Crossref] [PubMed]

F. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm,” Opt. Lett. 37(9), 1505–1507 (2012).
[Crossref] [PubMed]

J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett. 37(13), 2493–2495 (2012).
[Crossref] [PubMed]

D. Donlagic and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett. 30(16), 2071–2073 (2005).
[Crossref] [PubMed]

X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett. 31(7), 885–887 (2006).
[Crossref] [PubMed]

C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
[Crossref] [PubMed]

T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36(18), 3542–3544 (2011).
[Crossref] [PubMed]

F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett. 37(2), 133–135 (2012).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

X. Zang, Y. Jiang, X. Wang, X. Wang, J. Ji, and M. Xue, “Highly sensitive pressure sensors based on conducting polymer-coated paper,” Sens. Actuators B Chem. 273(10), 1195–1201 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the proposed HC-PBF-based MZI for gas pressure sensing.
Fig. 2
Fig. 2 Schematic diagram of the experimental setup for gas pressure sensing measurement
Fig. 3
Fig. 3 (a) The transmission spectrum variations and (b) the pressure response of of the MZI with LHC-PBF2 = 18 mm and ΔL = 30 μm.
Fig. 4
Fig. 4 Relationship between gas pressure and the dip wavelengths for MZIs with LHC-PBF2 = 10 mm in case of (a) ΔL = 30 μm and (b) ΔL = 140 μm.
Fig. 5
Fig. 5 The relationship between gas pressure and the dip wavelengths for MZIs with ΔL = 70 μm in case of (a) LHC-PBF2 = 10 mm and (b) LHC-PBF2 = 18 mm.
Fig. 6
Fig. 6 The simulated pressure sensitivity of the sensor under different arm-length-difference (ΔL´) brought by two 3-dB coupler in the MZI.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos ( 2 π ( n L H C P B F 1 n 0 L H C P B F 2 ) λ + φ 0 ) ,
2 π ( n L H C P B F 1 n 0 L H C P B F 2 ) λ m + φ 0 = ( 2 m + 1 ) π ,
d λ d P = λ n L H C P B F 2 L H C P B F 2 + Δ L n 0 d n d P ,
n = 1 + 2.8793 × 10 9 × P 1 + 0.003671 × t ,
d λ d P = λ ( n 0 n ) + Δ L L H C P B F 2 n 0 d n d P .

Metrics