Abstract

We formulated a high birefringence, large dielectric anisotropy, UV stable, and low absorption loss nematic liquid crystal mixture, named UCF-15, for mid-wave infrared (MWIR) applications. To achieve fast response time, we fabricated a polymer network liquid crystal (PNLC) using UCF-15 as host. At 40°C operating temperature, our PNLC shows 2π phase change at λ = 4 μm, submillisecond response time, and over 98% transmittance in the 3.8 to 5.1 μm region. Potential applications of this PNLC phase modulator for high speed laser beam steering, adaptive optics, and optical tweezer are foreseeable.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast-response infrared phase modulator based on polymer network liquid crystal

Fenglin Peng, Haiwei Chen, Suvagata Tripathi, Robert J. Twieg, and Shin-Tson Wu
Opt. Mater. Express 5(2) 265-273 (2015)

Submillisecond-response and scattering-free infrared liquid crystal phase modulators

Jie Sun, Yuan Chen, and Shin-Tson Wu
Opt. Express 20(18) 20124-20129 (2012)

Hysteresis-free and submillisecond-response polymer network liquid crystal

Yun-Han Lee, Fangwang Gou, Fenglin Peng, and Shin-Tson Wu
Opt. Express 24(13) 14793-14800 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
    [Crossref] [PubMed]
  2. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
    [Crossref]
  3. F. Gou, F. Peng, Q. Ru, Y. H. Lee, H. Chen, Z. He, T. Zhan, K. L. Vodopyanov, and S. T. Wu, “Mid-wave infrared beam steering based on high-efficiency liquid crystal diffractive waveplates,” Opt. Express 25(19), 22404–22410 (2017).
    [Crossref] [PubMed]
  4. C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17(13), 10774–10781 (2009).
    [Crossref] [PubMed]
  5. S. Quirin, D. S. Peterka, and R. Yuste, “Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging,” Opt. Express 21(13), 16007–16021 (2013).
    [Crossref] [PubMed]
  6. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).
  7. H. Kim, W. Lee, H. G. Lee, H. Jo, Y. Song, and J. Ahn, “In situ single-atom array synthesis using dynamic holographic optical tweezers,” Nat. Commun. 7, 13317 (2016).
    [Crossref] [PubMed]
  8. S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
    [Crossref]
  9. J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci. 52(3), 183–192 (2014).
    [Crossref]
  10. F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S. T. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265–273 (2015).
    [Crossref]
  11. M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
    [Crossref]
  12. Y. Chen, H. Xianyu, J. Sun, P. Kula, R. Dabrowski, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Low absorption liquid crystals for mid-wave infrared applications,” Opt. Express 19(11), 10843–10848 (2011).
    [Crossref] [PubMed]
  13. F. Peng, Y. Chen, S.-T. Wu, S. Tripathi, and R. J. Twieg, “Low loss liquid crystals for infrared applications,” Liq. Cryst. 41(11), 1545–1552 (2014).
    [Crossref]
  14. S. T. Wu, D. Coates, and E. Bartmann, “Physical properties of chlorinated liquid crystals,” Liq. Cryst. 10(5), 635–646 (1991).
    [Crossref]
  15. M. Schadt, “Nematic liquid crystals and twisted-nematic LCDs,” Liq. Cryst. 45(5–6), 646–652 (2015).
  16. M. Hird, “Fluorinated liquid crystals--properties and applications,” Chem. Soc. Rev. 36(12), 2070–2095 (2007).
    [Crossref] [PubMed]
  17. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136(3B), B864–B871 (1964).
    [Crossref]
  18. M. S. Brennesholtz, “New-technology light sources for projection displays,” SID Int. Symp. Digest Tech. Papers 39(1), 858–861 (2008).
  19. S. T. Wu, U. Efron, and L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44(11), 1033–1035 (1984).
    [Crossref]
  20. S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
    [Crossref] [PubMed]
  21. I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975).
    [Crossref]
  22. S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
    [Crossref]
  23. H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
    [Crossref]
  24. Y. H. Lee, F. Gou, F. Peng, and S. T. Wu, “Hysteresis-free and submillisecond-response polymer network liquid crystal,” Opt. Express 24(13), 14793–14800 (2016).
    [Crossref] [PubMed]
  25. D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
    [Crossref]
  26. J. Sun, Y. Chen, and S. T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

H. Kim, W. Lee, H. G. Lee, H. Jo, Y. Song, and J. Ahn, “In situ single-atom array synthesis using dynamic holographic optical tweezers,” Nat. Commun. 7, 13317 (2016).
[Crossref] [PubMed]

Y. H. Lee, F. Gou, F. Peng, and S. T. Wu, “Hysteresis-free and submillisecond-response polymer network liquid crystal,” Opt. Express 24(13), 14793–14800 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (3)

F. Peng, Y. Chen, S.-T. Wu, S. Tripathi, and R. J. Twieg, “Low loss liquid crystals for infrared applications,” Liq. Cryst. 41(11), 1545–1552 (2014).
[Crossref]

J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci. 52(3), 183–192 (2014).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

2009 (2)

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17(13), 10774–10781 (2009).
[Crossref] [PubMed]

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

2007 (1)

M. Hird, “Fluorinated liquid crystals--properties and applications,” Chem. Soc. Rev. 36(12), 2070–2095 (2007).
[Crossref] [PubMed]

1998 (1)

S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
[Crossref]

1997 (1)

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

1996 (1)

1991 (1)

S. T. Wu, D. Coates, and E. Bartmann, “Physical properties of chlorinated liquid crystals,” Liq. Cryst. 10(5), 635–646 (1991).
[Crossref]

1990 (1)

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

1986 (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

1984 (1)

S. T. Wu, U. Efron, and L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44(11), 1033–1035 (1984).
[Crossref]

1975 (1)

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975).
[Crossref]

1964 (1)

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136(3B), B864–B871 (1964).
[Crossref]

Ahn, J.

H. Kim, W. Lee, H. G. Lee, H. Jo, Y. Song, and J. Ahn, “In situ single-atom array synthesis using dynamic holographic optical tweezers,” Nat. Commun. 7, 13317 (2016).
[Crossref] [PubMed]

An, Z.

Bartmann, E.

S. T. Wu, D. Coates, and E. Bartmann, “Physical properties of chlorinated liquid crystals,” Liq. Cryst. 10(5), 635–646 (1991).
[Crossref]

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Cao, Z.

Chen, H.

Chen, Y.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

F. Peng, Y. Chen, S.-T. Wu, S. Tripathi, and R. J. Twieg, “Low loss liquid crystals for infrared applications,” Liq. Cryst. 41(11), 1545–1552 (2014).
[Crossref]

J. Sun, Y. Chen, and S. T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
[Crossref] [PubMed]

Y. Chen, H. Xianyu, J. Sun, P. Kula, R. Dabrowski, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Low absorption liquid crystals for mid-wave infrared applications,” Opt. Express 19(11), 10843–10848 (2011).
[Crossref] [PubMed]

Coates, D.

S. T. Wu, D. Coates, and E. Bartmann, “Physical properties of chlorinated liquid crystals,” Liq. Cryst. 10(5), 635–646 (1991).
[Crossref]

Dabrowski, R.

Dorschner, T. A.

Efron, U.

S. T. Wu, U. Efron, and L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44(11), 1033–1035 (1984).
[Crossref]

Escuti, M. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Friedman, L. J.

Gou, F.

Haller, I.

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975).
[Crossref]

He, Z.

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Hess, L. D.

S. T. Wu, U. Efron, and L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44(11), 1033–1035 (1984).
[Crossref]

Hird, M.

M. Hird, “Fluorinated liquid crystals--properties and applications,” Chem. Soc. Rev. 36(12), 2070–2095 (2007).
[Crossref] [PubMed]

Hobbs, D. S.

Hohenberg, P.

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136(3B), B864–B871 (1964).
[Crossref]

Hu, M.

Jiang, B.

Jo, H.

H. Kim, W. Lee, H. G. Lee, H. Jo, Y. Song, and J. Ahn, “In situ single-atom array synthesis using dynamic holographic optical tweezers,” Nat. Commun. 7, 13317 (2016).
[Crossref] [PubMed]

Kim, H.

H. Kim, W. Lee, H. G. Lee, H. Jo, Y. Song, and J. Ahn, “In situ single-atom array synthesis using dynamic holographic optical tweezers,” Nat. Commun. 7, 13317 (2016).
[Crossref] [PubMed]

Kohn, W.

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136(3B), B864–B871 (1964).
[Crossref]

Kula, P.

Lee, H. G.

H. Kim, W. Lee, H. G. Lee, H. Jo, Y. Song, and J. Ahn, “In situ single-atom array synthesis using dynamic holographic optical tweezers,” Nat. Commun. 7, 13317 (2016).
[Crossref] [PubMed]

Lee, W.

H. Kim, W. Lee, H. G. Lee, H. Jo, Y. Song, and J. Ahn, “In situ single-atom array synthesis using dynamic holographic optical tweezers,” Nat. Commun. 7, 13317 (2016).
[Crossref] [PubMed]

Lee, Y. H.

Li, C.

Li, J.

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Mu, Q.

Peng, F.

Peterka, D. S.

Quirin, S.

Resler, D. P.

Ru, Q.

Schadt, M.

M. Schadt, “Nematic liquid crystals and twisted-nematic LCDs,” Liq. Cryst. 45(5–6), 646–652 (2015).

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

Serati, S.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Sharp, R. C.

Song, Y.

H. Kim, W. Lee, H. G. Lee, H. Jo, Y. Song, and J. Ahn, “In situ single-atom array synthesis using dynamic holographic optical tweezers,” Nat. Commun. 7, 13317 (2016).
[Crossref] [PubMed]

Sun, J.

Tripathi, S.

Twieg, R. J.

Vodopyanov, K. L.

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Wu, C. S.

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

Wu, S. T.

F. Gou, F. Peng, Q. Ru, Y. H. Lee, H. Chen, Z. He, T. Zhan, K. L. Vodopyanov, and S. T. Wu, “Mid-wave infrared beam steering based on high-efficiency liquid crystal diffractive waveplates,” Opt. Express 25(19), 22404–22410 (2017).
[Crossref] [PubMed]

Y. H. Lee, F. Gou, F. Peng, and S. T. Wu, “Hysteresis-free and submillisecond-response polymer network liquid crystal,” Opt. Express 24(13), 14793–14800 (2016).
[Crossref] [PubMed]

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S. T. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265–273 (2015).
[Crossref]

J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci. 52(3), 183–192 (2014).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

J. Sun, Y. Chen, and S. T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
[Crossref] [PubMed]

S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
[Crossref]

S. T. Wu, D. Coates, and E. Bartmann, “Physical properties of chlorinated liquid crystals,” Liq. Cryst. 10(5), 635–646 (1991).
[Crossref]

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

S. T. Wu, U. Efron, and L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44(11), 1033–1035 (1984).
[Crossref]

Wu, S.-T.

F. Peng, Y. Chen, S.-T. Wu, S. Tripathi, and R. J. Twieg, “Low loss liquid crystals for infrared applications,” Liq. Cryst. 41(11), 1545–1552 (2014).
[Crossref]

Y. Chen, H. Xianyu, J. Sun, P. Kula, R. Dabrowski, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Low absorption liquid crystals for mid-wave infrared applications,” Opt. Express 19(11), 10843–10848 (2011).
[Crossref] [PubMed]

Xia, M.

Xianyu, H.

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Xu, D.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Xuan, L.

Yan, J.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Yuan, J.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Yuste, R.

Zhan, T.

Annu. Rev. Mater. Sci. (1)

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

Appl. Phys. Lett. (2)

S. T. Wu, U. Efron, and L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44(11), 1033–1035 (1984).
[Crossref]

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Chem. Soc. Rev. (1)

M. Hird, “Fluorinated liquid crystals--properties and applications,” Chem. Soc. Rev. 36(12), 2070–2095 (2007).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
[Crossref]

J. Polym. Sci. (1)

J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci. 52(3), 183–192 (2014).
[Crossref]

Liq. Cryst. (4)

F. Peng, Y. Chen, S.-T. Wu, S. Tripathi, and R. J. Twieg, “Low loss liquid crystals for infrared applications,” Liq. Cryst. 41(11), 1545–1552 (2014).
[Crossref]

S. T. Wu, D. Coates, and E. Bartmann, “Physical properties of chlorinated liquid crystals,” Liq. Cryst. 10(5), 635–646 (1991).
[Crossref]

M. Schadt, “Nematic liquid crystals and twisted-nematic LCDs,” Liq. Cryst. 45(5–6), 646–652 (2015).

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

Nat. Commun. (1)

H. Kim, W. Lee, H. G. Lee, H. Jo, Y. Song, and J. Ahn, “In situ single-atom array synthesis using dynamic holographic optical tweezers,” Nat. Commun. 7, 13317 (2016).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. (1)

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136(3B), B864–B871 (1964).
[Crossref]

Phys. Rev. A Gen. Phys. (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

Proc. IEEE (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Prog. Solid State Chem. (1)

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975).
[Crossref]

Other (2)

M. S. Brennesholtz, “New-technology light sources for projection displays,” SID Int. Symp. Digest Tech. Papers 39(1), 858–861 (2008).

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Birefringence dispersion of UCF-15 at T = 40°C: dots are measured data and solid line is fitting with Eq. (1). (b) Measured transmittance of UCF-15 in the MWIR region with cell gap d = 18 μm.
Fig. 2
Fig. 2 (a) Birefringence and (b) visco-elastic coefficients of UCF-15 as a function of temperature. Dots are measured data and solid lines are fitting with Eq. (2) and Eq. (3), respectively. λ = 633 nm.
Fig. 3
Fig. 3 Voltage-dependent phase change of our PNLC device in reflective mode at λ = 1.55 μm and λ = 4 μm. Cell gap d = 14.5 μm, and operating temperature T = 40°C.
Fig. 4
Fig. 4 (a) Temperature dependent relaxation time for 2π phase change of our PNLC device. (b) The transient relaxation process of the PNLC sample at T = 40°C fitted with single (dashed blue line) and double (solid red line) relaxation curves.
Fig. 5
Fig. 5 Measured transmission spectra of PNLC sample at V = 0, 60 and 120 Vrms. Transmittance was normalized to the cell filled with pure nematic host UCF-15.

Tables (3)

Tables Icon

Table 1 Chemical structures and weight of compounds employed.

Tables Icon

Table 2 Measured phase transition temperatures and physical properties of UCF-15 at T = 40°C and 1 kHz.

Tables Icon

Table 3 Operating voltage and relaxation time of PNLCs at λ = 4 μm and T = 40°C.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n = G λ 2 λ * 2 λ 2 λ * 2 .
Δ n = Δ n 0 ( 1 T / T c ) β ,
γ 1 K 11 = A exp ( E a / k B T ) ( 1 T / T c ) β ,
δ ( t ) = A × e t / τ 1 + B × e t / τ 2 ,

Metrics