Abstract

We propose and demonstrate an all-fiber laser with LP11 mode output. A transverse mode filter is designed and fabricated to suppress the fundamental mode and enable the fiber laser to oscillate in the second-order (LP11) transverse mode. The mechanism is to introduce relatively low ohmic loss for the TE01 mode and much higher ohmic losses for other modes through the loss of evanescent waves in the metal clad. The fiber laser operates at the center wavelength of 1053.9 nm with a narrow 3 dB linewidth of 0.019 nm. Four states of cylindrical vector mode with high modal purity are obtained through adjusting the intra-cavity polarization controller. This approach has great potentiality and scalability of realizing single high-order mode fiber laser, from which a wide range of applications could benefit.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-order mode direct oscillation of few-mode fiber laser for high-quality cylindrical vector beams

Teng Wang, Fan Shi, Yiping Huang, Jianxiang Wen, Zhengqian Luo, Fufei Pang, Tingyun Wang, and Xianglong Zeng
Opt. Express 26(9) 11850-11858 (2018)

High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler

Hongdan Wan, Jie Wang, Zuxing Zhang, Yu Cai, Bin Sun, and Lin Zhang
Opt. Express 25(10) 11444-11451 (2017)

High-order mode Yb-doped fiber lasers based on mode-selective couplers

Yiping Huang, Fan Shi, Teng Wang, Xiaomin Liu, Xianglong Zeng, Fufei Pang, Tingyun Wang, and Pu Zhou
Opt. Express 26(15) 19171-19181 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  2. B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
    [Crossref] [PubMed]
  3. Y. Zhou, K. Yan, R. S. Chen, C. Gu, L. X. Xu, A. T. Wang, and Q. Zhan, “Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating,” Appl. Phys. Lett. 110(16), 161104 (2017).
    [Crossref]
  4. S. Pidishety, M. I. M. Abdul Khudus, P. Gregg, S. Ramachandran, B. Srinivasan, and G. Brambilla, “OAM Beam Generation using All-fiber Fused Couplers,” in CLEO: Science and Innovations (Optical Society of America, 2016), pp. STu1F.2.
  5. Y. Jiang, G. Ren, Y. Shen, Y. Xu, W. Jin, Y. Wu, W. Jian, and S. Jian, “Two-dimensional tunable orbital angular momentum generation using a vortex fiber,” Opt. Lett. 42(23), 5014–5017 (2017).
    [Crossref] [PubMed]
  6. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  7. J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7(3), 17148 (2018).
    [Crossref]
  8. Y. Jung, Q. Kang, H. Zhou, R. Zhang, S. Chen, H. Wang, Y. Yang, X. Jin, F. P. Payne, S. Alam, and D. J. Richardson, “Low-loss 25.3 km Few-mode Ring-Core Fiber for Mode-Division Multiplexed Transmission,” J. Lightwave Technol. 35(8), 1363–1368 (2017).
    [Crossref]
  9. K. Yan, J. Lin, Y. Zhou, C. Gu, L. Xu, A. Wang, P. Yao, and Q. Zhan, “Bi2Te3 based passively Q-switched fiber laser with cylindrical vector beam emission,” Appl. Opt. 55(11), 3026–3029 (2016).
    [Crossref] [PubMed]
  10. Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 41(3), 548–550 (2016).
    [Crossref] [PubMed]
  11. J. Wang, H. Wan, H. Cao, Y. Cai, B. Sun, Z. Zhang, and L. Zhang, “A 1.0 μm Cylindrical Vector Beam Fiber Ring Laser Based on A Mode Selective Coupler,” in Proceedings of IEEE Photonics Technology Letters (IEEE,2018), pp. 765–768.
  12. Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” in Proceedings of IEEE Journal of Selected Topics in Quantum Electronics, 24(3) (IEEE, 2018), pp. 1–6.
    [Crossref]
  13. H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
    [Crossref] [PubMed]
  14. D. Mao, Z. He, H. Lu, M. Li, W. Zhang, X. Cui, B. Jiang, and J. Zhao, “All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers,” Opt. Lett. 43(7), 1590–1593 (2018).
    [Crossref] [PubMed]
  15. Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
    [Crossref] [PubMed]
  16. R. Chen, J. Wang, X. Zhang, A. Wang, H. Ming, F. Li, D. Chung, and Q. Zhan, “High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating,” Opt. Lett. 43(4), 755–758 (2018).
    [Crossref] [PubMed]
  17. T. Liu, S. P. Chen, and J. Hou, “Selective transverse mode operation of an all-fiber laser with a mode-selective fiber Bragg grating pair,” Opt. Lett. 41(24), 5692–5695 (2016).
    [Crossref] [PubMed]
  18. T. Wang, F. Shi, Y. Huang, J. Wen, Z. Luo, F. Pang, T. Wang, and X. Zeng, “High-order mode direct oscillation of few-mode fiber laser for high-quality cylindrical vector beams,” Opt. Express 26(9), 11850–11858 (2018).
    [Crossref] [PubMed]
  19. H. Li, K. Yan, Y. Zhang, C. Gu, P. Yao, L. Xu, R. Zhang and J. Su are preparing a manuscript to be called “Low threshold high efficiency allfiber LP11 mode operated laser generating cylindrical vector beams.”
  20. Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (TE0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21(6), 291–293 (1972).
    [Crossref]
  21. R. Alonso, J. Subí As, J. Pelayo, F. Villuendas, and J. Tornos, “Single-mode, optical-fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes,” Appl. Opt. 33(22), 5197–5201 (1994).
    [Crossref] [PubMed]
  22. C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
    [Crossref]
  23. J. D. Jackson, Classical Electrodynamics (Higher Education Press, 2004), third edition, Chap. 8.
  24. L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).

2018 (4)

2017 (4)

2016 (4)

2013 (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2012 (3)

2009 (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

1994 (1)

1972 (1)

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (TE0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21(6), 291–293 (1972).
[Crossref]

Alam, S.

Alonso, R.

Cai, X.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7(3), 17148 (2018).
[Crossref]

Cai, Y.

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

J. Wang, H. Wan, H. Cao, Y. Cai, B. Sun, Z. Zhang, and L. Zhang, “A 1.0 μm Cylindrical Vector Beam Fiber Ring Laser Based on A Mode Selective Coupler,” in Proceedings of IEEE Photonics Technology Letters (IEEE,2018), pp. 765–768.

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” in Proceedings of IEEE Journal of Selected Topics in Quantum Electronics, 24(3) (IEEE, 2018), pp. 1–6.
[Crossref]

Cao, H.

J. Wang, H. Wan, H. Cao, Y. Cai, B. Sun, Z. Zhang, and L. Zhang, “A 1.0 μm Cylindrical Vector Beam Fiber Ring Laser Based on A Mode Selective Coupler,” in Proceedings of IEEE Photonics Technology Letters (IEEE,2018), pp. 765–768.

Chen, R.

Chen, R. S.

Y. Zhou, K. Yan, R. S. Chen, C. Gu, L. X. Xu, A. T. Wang, and Q. Zhan, “Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating,” Appl. Phys. Lett. 110(16), 161104 (2017).
[Crossref]

Chen, S.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7(3), 17148 (2018).
[Crossref]

Y. Jung, Q. Kang, H. Zhou, R. Zhang, S. Chen, H. Wang, Y. Yang, X. Jin, F. P. Payne, S. Alam, and D. J. Richardson, “Low-loss 25.3 km Few-mode Ring-Core Fiber for Mode-Division Multiplexed Transmission,” J. Lightwave Technol. 35(8), 1363–1368 (2017).
[Crossref]

Chen, S. P.

Chiba, K.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (TE0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21(6), 291–293 (1972).
[Crossref]

Chung, D.

Cui, X.

Dong, C. H.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
[Crossref]

Du, C.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7(3), 17148 (2018).
[Crossref]

Feng, B.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Furuya, K.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (TE0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21(6), 291–293 (1972).
[Crossref]

Gu, C.

Guo, G. C.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
[Crossref]

Guo, H.

Hakuta, M.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (TE0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21(6), 291–293 (1972).
[Crossref]

Hasumi, R.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (TE0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21(6), 291–293 (1972).
[Crossref]

He, Z.

Hou, J.

Huang, L.

Huang, Y.

Jian, S.

Jian, W.

Jiang, B.

Jiang, Y.

Jin, W.

Jin, X.

Jung, Y.

Kang, Q.

Klitis, C.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7(3), 17148 (2018).
[Crossref]

Li, F.

Li, J.

Li, M.

Li, S.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7(3), 17148 (2018).
[Crossref]

Li, Z.

Lin, J.

Lin, Z.

Ling, L.

Liu, J.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7(3), 17148 (2018).
[Crossref]

Liu, T.

Liu, Y.

Lu, H.

Luo, Z.

Mao, D.

Ming, H.

Mo, Q.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7(3), 17148 (2018).
[Crossref]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Pang, F.

Payne, F. P.

Pelayo, J.

Ren, G.

Ren, X. F.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
[Crossref]

Richardson, D. J.

Shen, Y.

Shi, F.

Sorel, M.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7(3), 17148 (2018).
[Crossref]

Subí As, J.

Suematsu, Y.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (TE0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21(6), 291–293 (1972).
[Crossref]

Sun, B.

Sun, F. W.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
[Crossref]

Tornos, J.

Villuendas, F.

Wan, H.

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” in Proceedings of IEEE Journal of Selected Topics in Quantum Electronics, 24(3) (IEEE, 2018), pp. 1–6.
[Crossref]

J. Wang, H. Wan, H. Cao, Y. Cai, B. Sun, Z. Zhang, and L. Zhang, “A 1.0 μm Cylindrical Vector Beam Fiber Ring Laser Based on A Mode Selective Coupler,” in Proceedings of IEEE Photonics Technology Letters (IEEE,2018), pp. 765–768.

Wang, A.

Wang, A. T.

Y. Zhou, K. Yan, R. S. Chen, C. Gu, L. X. Xu, A. T. Wang, and Q. Zhan, “Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating,” Appl. Phys. Lett. 110(16), 161104 (2017).
[Crossref]

Wang, H.

Wang, J.

R. Chen, J. Wang, X. Zhang, A. Wang, H. Ming, F. Li, D. Chung, and Q. Zhan, “High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating,” Opt. Lett. 43(4), 755–758 (2018).
[Crossref] [PubMed]

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7(3), 17148 (2018).
[Crossref]

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

J. Wang, H. Wan, H. Cao, Y. Cai, B. Sun, Z. Zhang, and L. Zhang, “A 1.0 μm Cylindrical Vector Beam Fiber Ring Laser Based on A Mode Selective Coupler,” in Proceedings of IEEE Photonics Technology Letters (IEEE,2018), pp. 765–768.

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” in Proceedings of IEEE Journal of Selected Topics in Quantum Electronics, 24(3) (IEEE, 2018), pp. 1–6.
[Crossref]

Wang, T.

Wen, J.

Wu, Y.

Xu, L.

Xu, L. X.

Y. Zhou, K. Yan, R. S. Chen, C. Gu, L. X. Xu, A. T. Wang, and Q. Zhan, “Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating,” Appl. Phys. Lett. 110(16), 161104 (2017).
[Crossref]

Xu, Y.

Yan, K.

Y. Zhou, K. Yan, R. S. Chen, C. Gu, L. X. Xu, A. T. Wang, and Q. Zhan, “Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating,” Appl. Phys. Lett. 110(16), 161104 (2017).
[Crossref]

K. Yan, J. Lin, Y. Zhou, C. Gu, L. Xu, A. Wang, P. Yao, and Q. Zhan, “Bi2Te3 based passively Q-switched fiber laser with cylindrical vector beam emission,” Appl. Opt. 55(11), 3026–3029 (2016).
[Crossref] [PubMed]

Yang, Y.

Yao, P.

Yu, S.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7(3), 17148 (2018).
[Crossref]

Zeng, X.

Zhan, Q.

Zhang, C.

Zhang, L.

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
[Crossref] [PubMed]

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” in Proceedings of IEEE Journal of Selected Topics in Quantum Electronics, 24(3) (IEEE, 2018), pp. 1–6.
[Crossref]

J. Wang, H. Wan, H. Cao, Y. Cai, B. Sun, Z. Zhang, and L. Zhang, “A 1.0 μm Cylindrical Vector Beam Fiber Ring Laser Based on A Mode Selective Coupler,” in Proceedings of IEEE Photonics Technology Letters (IEEE,2018), pp. 765–768.

Zhang, R.

Zhang, W.

Zhang, X.

Zhang, Z.

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” in Proceedings of IEEE Journal of Selected Topics in Quantum Electronics, 24(3) (IEEE, 2018), pp. 1–6.
[Crossref]

J. Wang, H. Wan, H. Cao, Y. Cai, B. Sun, Z. Zhang, and L. Zhang, “A 1.0 μm Cylindrical Vector Beam Fiber Ring Laser Based on A Mode Selective Coupler,” in Proceedings of IEEE Photonics Technology Letters (IEEE,2018), pp. 765–768.

Zhao, J.

Zhao, Y.

Zhou, H.

Zhou, Y.

Zhu, L.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7(3), 17148 (2018).
[Crossref]

Zou, C. L.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
[Crossref]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
[Crossref]

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (TE0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21(6), 291–293 (1972).
[Crossref]

Y. Zhou, K. Yan, R. S. Chen, C. Gu, L. X. Xu, A. T. Wang, and Q. Zhan, “Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating,” Appl. Phys. Lett. 110(16), 161104 (2017).
[Crossref]

J. Lightwave Technol. (1)

Light Sci. Appl. (1)

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7(3), 17148 (2018).
[Crossref]

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

Other (5)

S. Pidishety, M. I. M. Abdul Khudus, P. Gregg, S. Ramachandran, B. Srinivasan, and G. Brambilla, “OAM Beam Generation using All-fiber Fused Couplers,” in CLEO: Science and Innovations (Optical Society of America, 2016), pp. STu1F.2.

J. Wang, H. Wan, H. Cao, Y. Cai, B. Sun, Z. Zhang, and L. Zhang, “A 1.0 μm Cylindrical Vector Beam Fiber Ring Laser Based on A Mode Selective Coupler,” in Proceedings of IEEE Photonics Technology Letters (IEEE,2018), pp. 765–768.

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” in Proceedings of IEEE Journal of Selected Topics in Quantum Electronics, 24(3) (IEEE, 2018), pp. 1–6.
[Crossref]

H. Li, K. Yan, Y. Zhang, C. Gu, P. Yao, L. Xu, R. Zhang and J. Su are preparing a manuscript to be called “Low threshold high efficiency allfiber LP11 mode operated laser generating cylindrical vector beams.”

J. D. Jackson, Classical Electrodynamics (Higher Education Press, 2004), third edition, Chap. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the mode filter. The right part is the cross section of the mode filter.
Fig. 2
Fig. 2 One-dimensional electric field distribution of modes (a) TE01, (b) HE11, (c) HE21, and (d) TM01 across the center of the beam in the mode filter. The fiber cladding diameter is 12 μm and the thickness of Al film is 200 nm. The metal conductor boundary is at the position 4 μm and 16μm.
Fig. 3
Fig. 3 Dependencies of (a) Re(neff) and (b) confinement losses for the modes on the cladding diameter with δ set to be 100 nm. Dependencies of (c) Re(neff) and (d) confinement losses for the modes on the thickness of the Aluminum coating with d set to be 12 μm. The insert shows the confinement loss of TE01 mode.
Fig. 4
Fig. 4 The SEM images of the fabricated mode filter. (a) At the magnification of 4.5k; (b) at the magnification of 300.
Fig. 5
Fig. 5 The experiment setup of the high-order mode fiber laser. LD: 980nm laser diode; WDM: 980/1064 nm wavelength division multiplexing; HR-FBG: high reflective few-mode fiber Bragg grating; FM-YDF: few-mode ytterbium-doped fiber; PC: polarization controller; LR-FBG: low reflective few-mode fiber Bragg grating.
Fig. 6
Fig. 6 Measured spectrum of the fiber laser with mode filter (blue line) and without mode filter (yellow line).
Fig. 7
Fig. 7 Output power characteristic of the LP11 mode oscillation fiber laser.
Fig. 8
Fig. 8 Intensity profiles of the CVB output and the distributions after passing through a linear polarizer. The white arrows represent the orientation of the linear polarizer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L o s s c o n f i n e m e n t = 20 ln 10 2 π λ Im ( n e f f ) d B / m

Metrics