Abstract

We demonstrate hybrid amorphous silicon uniform grating couplers for efficient coupling between the standard single-mode fiber and sub-micron lithium niobate waveguides. The grating couplers exhibit coupling efficiency of −3.06 dB and 1-dB bandwidth of 55 nm. The amorphous silicon grating couplers can also provide a universal building block applicable to other photonic platforms such as silicon nitride waveguides, whose moderate refractive index values prevent high efficiency grating couplers to be fabricated in the native waveguide.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon grating coupler on a lithium niobate thin film waveguide

Zhihua Chen, Yiwen Wang, Honghu Zhang, and Hui Hu
Opt. Mater. Express 8(5) 1253-1258 (2018)

Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector

Zhihua Chen, Ruihong Peng, Yiwen Wang, Houbin Zhu, and Hui Hu
Opt. Mater. Express 7(11) 4010-4017 (2017)

High coupling efficiency grating couplers on lithium niobate on insulator

Inna Krasnokutska, Robert J. Chapman, Jean-Luc J. Tambasco, and Alberto Peruzzo
Opt. Express 27(13) 17681-17685 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
    [Crossref]
  2. R. Wolf, I. Breunig, H. Zappe, and K. Buse, “Cascaded second-order optical nonlinearities in on-chip micro rings,” Opt. Express 25(24), 29927–29933 (2017).
    [Crossref] [PubMed]
  3. R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, and H. Zappe, “Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries,” Optica 5(7), 872–875 (2018).
    [Crossref]
  4. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
    [Crossref] [PubMed]
  5. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “100-GHz Low Voltage Integrated Lithium Niobate Modulators,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), SM3B.4.
    [Crossref]
  6. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
    [Crossref] [PubMed]
  7. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5(8), 1006–1011 (2018).
    [Crossref]
  8. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Second-harmonic generation in nanophotonic PPLN waveguides with ultrahigh efficiencies,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), JTh5A.2.
    [Crossref]
  9. I. Krasnokutska, J. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
    [Crossref] [PubMed]
  10. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
    [Crossref] [PubMed]
  11. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A8R), 6071–6077 (2006).
    [Crossref]
  12. Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
    [Crossref] [PubMed]
  13. L. Zhu, W. Yang, and C. Chang-Hasnain, “Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber,” Opt. Express 25(15), 18462–18473 (2017).
    [Crossref] [PubMed]
  14. Y. Luo, Z. Nong, S. Gao, H. Huang, Y. Zhu, L. Liu, L. Zhou, J. Xu, L. Liu, S. Yu, and X. Cai, “Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror,” Opt. Lett. 43(3), 474–477 (2018).
    [Crossref] [PubMed]
  15. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [Crossref] [PubMed]
  16. X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
    [Crossref]
  17. J. Sun, C. Zhang, X. Xiao, W. Sun, X. Zhang, T. Chu, J. Yu, and Y. Yu, “High Efficiency Grating Coupler for Coupling between Single-Mode Fiber and SOI Waveguides,” Chin. Phys. Lett. 30(1), 014207 (2013).
    [Crossref]
  18. M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium niobate on Insulator (LNOI) grating couplers,” in Conference on Lasers and Electro-Optics, 2015, OSA Technical Digest (online) (Optical Society of America, 2015), SW4I.7.
    [Crossref]
  19. M. A. Baghban, J. Schollhammer, C. Errando-Herranz, K. B. Gylfason, and K. Gallo, “Bragg gratings in thin-film LiNbO3 waveguides,” Opt. Express 25(26), 32323–32332 (2017).
    [Crossref]
  20. M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
    [Crossref]
  21. Z. Chen, Y. W. Wang, Y. P. Jiang, R. R. Kong, and H. Hu, “Grating coupler on single-crystal lithium niobate thin film,” Opt. Mater. 72, 136–139 (2017).
    [Crossref]
  22. Z. Chen, R. Peng, Y. Wang, H. Zhu, and H. Hu, “Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector,” Opt. Mater. Express 7(11), 4010–4017 (2017).
    [Crossref]
  23. Y. Wang, Z. Chen, L. Cai, Y. Jiang, H. Zhu, and H. Hu, “Amorphous silicon-lithium niobate thin film strip-loaded waveguides,” Opt. Mater. Express 7(11), 4018–4028 (2017).
    [Crossref]
  24. W.-J. Liu, S. Chen, H.-Y. Cheng, J.-D. Lin, and S.-L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).
    [Crossref]
  25. M. J. A. de Dood, A. Polman, T. Zijlstra, and E. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
    [Crossref]
  26. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
    [Crossref] [PubMed]
  27. Z. Chen, Y. Wang, H. Zhang, and H. Hu, “Silicon grating coupler on a lithium niobate thin film waveguide,” Opt. Mater. Express 8(5), 1253–1258 (2018).
    [Crossref]
  28. P. Xu, Y. Zhang, Z. Shao, L. Liu, L. Zhou, C. Yang, Y. Chen, and S. Yu, “High-efficiency wideband SiNx-on-SOI grating coupler with low fabrication complexity,” Opt. Lett. 42(17), 3391–3394 (2017).
    [Crossref] [PubMed]
  29. J. Jian, H. Chen, L. Liu, L. Zhou, Z. Wu, Y. Chen, and S. Yu, “High Quality Factor Dry-etched Lithium Niobate Ridge Waveguide Micro-ring Resonators,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2017), S3J.2.
    [Crossref]
  30. T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Photonic integrated circuit components based on amorphous silicon-on-insulator technology,” Photon. Res. 4(3), 126–134 (2016).
    [Crossref]

2018 (6)

2017 (10)

P. Xu, Y. Zhang, Z. Shao, L. Liu, L. Zhou, C. Yang, Y. Chen, and S. Yu, “High-efficiency wideband SiNx-on-SOI grating coupler with low fabrication complexity,” Opt. Lett. 42(17), 3391–3394 (2017).
[Crossref] [PubMed]

L. Zhu, W. Yang, and C. Chang-Hasnain, “Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber,” Opt. Express 25(15), 18462–18473 (2017).
[Crossref] [PubMed]

M. A. Baghban, J. Schollhammer, C. Errando-Herranz, K. B. Gylfason, and K. Gallo, “Bragg gratings in thin-film LiNbO3 waveguides,” Opt. Express 25(26), 32323–32332 (2017).
[Crossref]

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Z. Chen, Y. W. Wang, Y. P. Jiang, R. R. Kong, and H. Hu, “Grating coupler on single-crystal lithium niobate thin film,” Opt. Mater. 72, 136–139 (2017).
[Crossref]

Z. Chen, R. Peng, Y. Wang, H. Zhu, and H. Hu, “Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector,” Opt. Mater. Express 7(11), 4010–4017 (2017).
[Crossref]

Y. Wang, Z. Chen, L. Cai, Y. Jiang, H. Zhu, and H. Hu, “Amorphous silicon-lithium niobate thin film strip-loaded waveguides,” Opt. Mater. Express 7(11), 4018–4028 (2017).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
[Crossref] [PubMed]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]

R. Wolf, I. Breunig, H. Zappe, and K. Buse, “Cascaded second-order optical nonlinearities in on-chip micro rings,” Opt. Express 25(24), 29927–29933 (2017).
[Crossref] [PubMed]

2016 (1)

2014 (1)

2013 (1)

J. Sun, C. Zhang, X. Xiao, W. Sun, X. Zhang, T. Chu, J. Yu, and Y. Yu, “High Efficiency Grating Coupler for Coupling between Single-Mode Fiber and SOI Waveguides,” Chin. Phys. Lett. 30(1), 014207 (2013).
[Crossref]

2010 (3)

2007 (1)

W.-J. Liu, S. Chen, H.-Y. Cheng, J.-D. Lin, and S.-L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).
[Crossref]

2006 (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A8R), 6071–6077 (2006).
[Crossref]

2004 (1)

2002 (1)

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[Crossref]

Absil, P.

Andrade, N.

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A8R), 6071–6077 (2006).
[Crossref]

Baets, R.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A8R), 6071–6077 (2006).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

Baghban, M. A.

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A8R), 6071–6077 (2006).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

Bogaerts, W.

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A8R), 6071–6077 (2006).
[Crossref]

Bonaus, S.

Breunig, I.

Buse, K.

Cai, L.

Cai, X.

Chang-Hasnain, C.

Chen, S.

W.-J. Liu, S. Chen, H.-Y. Cheng, J.-D. Lin, and S.-L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).
[Crossref]

Chen, X.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Chen, Y.

Chen, Z.

Cheng, H.-Y.

W.-J. Liu, S. Chen, H.-Y. Cheng, J.-D. Lin, and S.-L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).
[Crossref]

Cheng, R.

Chu, T.

J. Sun, C. Zhang, X. Xiao, W. Sun, X. Zhang, T. Chu, J. Yu, and Y. Yu, “High Efficiency Grating Coupler for Coupling between Single-Mode Fiber and SOI Waveguides,” Chin. Phys. Lett. 30(1), 014207 (2013).
[Crossref]

de Dood, M. J. A.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[Crossref]

Ding, Y.

Errando-Herranz, C.

Fu, S.-L.

W.-J. Liu, S. Chen, H.-Y. Cheng, J.-D. Lin, and S.-L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).
[Crossref]

Fung, C. K. Y.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Gallo, K.

Gao, S.

Guo, G.-C.

Gylfason, K. B.

Hasama, T.

He, Y.

Herr, S. J.

Hu, H.

Huang, H.

Ishikawa, H.

Jia, Y.

Jiang, Y.

Jiang, Y. P.

Z. Chen, Y. W. Wang, Y. P. Jiang, R. R. Kong, and H. Hu, “Grating coupler on single-crystal lithium niobate thin film,” Opt. Mater. 72, 136–139 (2017).
[Crossref]

Kamei, T.

Kawashima, H.

Kintaka, K.

Kong, R. R.

Z. Chen, Y. W. Wang, Y. P. Jiang, R. R. Kong, and H. Hu, “Grating coupler on single-crystal lithium niobate thin film,” Opt. Mater. 72, 136–139 (2017).
[Crossref]

Krasnokutska, I.

Lepage, G.

Li, C.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Li, M.

Li, X.

Liang, H.

Lin, J.-D.

W.-J. Liu, S. Chen, H.-Y. Cheng, J.-D. Lin, and S.-L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).
[Crossref]

Lin, Q.

Lipka, T.

Lipson, M.

Liu, L.

Liu, W.-J.

W.-J. Liu, S. Chen, H.-Y. Cheng, J.-D. Lin, and S.-L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).
[Crossref]

Lo, S. M. G.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Loncar, M.

Luo, R.

Luo, Y.

Moldenhauer, L.

Mori, M.

Müller, J.

Nisar, M. S.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Nong, Z.

Ogasawara, T.

Okano, M.

Ou, H.

Pan, A.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Peng, R.

Peruzzo, A.

Peucheret, C.

Polman, A.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[Crossref]

Ren, X.-F.

Roelkens, G.

Sakakibara, Y.

Schollhammer, J.

Selvaraja, S.

Shams-Ansari, A.

Shao, Z.

Shoji, Y.

Stern, B.

Suda, S.

Sun, J.

J. Sun, C. Zhang, X. Xiao, W. Sun, X. Zhang, T. Chu, J. Yu, and Y. Yu, “High Efficiency Grating Coupler for Coupling between Single-Mode Fiber and SOI Waveguides,” Chin. Phys. Lett. 30(1), 014207 (2013).
[Crossref]

Sun, W.

J. Sun, C. Zhang, X. Xiao, W. Sun, X. Zhang, T. Chu, J. Yu, and Y. Yu, “High Efficiency Grating Coupler for Coupling between Single-Mode Fiber and SOI Waveguides,” Chin. Phys. Lett. 30(1), 014207 (2013).
[Crossref]

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A8R), 6071–6077 (2006).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

Tambasco, J. J.

Trieu, H. K.

Tsang, H. K.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

van der Drift, E.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[Crossref]

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A8R), 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A8R), 6071–6077 (2006).
[Crossref]

Venkataraman, V.

Verheyen, P.

Vermeulen, D.

Wang, C.

Wang, Y.

Wang, Y. W.

Z. Chen, Y. W. Wang, Y. P. Jiang, R. R. Kong, and H. Hu, “Grating coupler on single-crystal lithium niobate thin film,” Opt. Mater. 72, 136–139 (2017).
[Crossref]

Werner, C. S.

Wolf, R.

Xia, J.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Xiao, X.

J. Sun, C. Zhang, X. Xiao, W. Sun, X. Zhang, T. Chu, J. Yu, and Y. Yu, “High Efficiency Grating Coupler for Coupling between Single-Mode Fiber and SOI Waveguides,” Chin. Phys. Lett. 30(1), 014207 (2013).
[Crossref]

Xiong, X.

Xu, J.

Xu, P.

Yang, C.

Yang, W.

Yu, J.

J. Sun, C. Zhang, X. Xiao, W. Sun, X. Zhang, T. Chu, J. Yu, and Y. Yu, “High Efficiency Grating Coupler for Coupling between Single-Mode Fiber and SOI Waveguides,” Chin. Phys. Lett. 30(1), 014207 (2013).
[Crossref]

Yu, S.

Yu, Y.

J. Sun, C. Zhang, X. Xiao, W. Sun, X. Zhang, T. Chu, J. Yu, and Y. Yu, “High Efficiency Grating Coupler for Coupling between Single-Mode Fiber and SOI Waveguides,” Chin. Phys. Lett. 30(1), 014207 (2013).
[Crossref]

Yuan, S.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Yvind, K.

Zappe, H.

Zhang, C.

J. Sun, C. Zhang, X. Xiao, W. Sun, X. Zhang, T. Chu, J. Yu, and Y. Yu, “High Efficiency Grating Coupler for Coupling between Single-Mode Fiber and SOI Waveguides,” Chin. Phys. Lett. 30(1), 014207 (2013).
[Crossref]

Zhang, H.

Zhang, M.

Zhang, X.

J. Sun, C. Zhang, X. Xiao, W. Sun, X. Zhang, T. Chu, J. Yu, and Y. Yu, “High Efficiency Grating Coupler for Coupling between Single-Mode Fiber and SOI Waveguides,” Chin. Phys. Lett. 30(1), 014207 (2013).
[Crossref]

Zhang, Y.

Zhao, X.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Zhou, L.

Zhu, H.

Zhu, L.

Zhu, Y.

Zijlstra, T.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[Crossref]

Chin. Phys. Lett. (1)

J. Sun, C. Zhang, X. Xiao, W. Sun, X. Zhang, T. Chu, J. Yu, and Y. Yu, “High Efficiency Grating Coupler for Coupling between Single-Mode Fiber and SOI Waveguides,” Chin. Phys. Lett. 30(1), 014207 (2013).
[Crossref]

IEEE Photonics J. (1)

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating coupler for an on-chip lithium niobate ridge waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

J. Appl. Phys. (1)

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
[Crossref]

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A8R), 6071–6077 (2006).
[Crossref]

Opt. Express (8)

L. Zhu, W. Yang, and C. Chang-Hasnain, “Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber,” Opt. Express 25(15), 18462–18473 (2017).
[Crossref] [PubMed]

R. Wolf, I. Breunig, H. Zappe, and K. Buse, “Cascaded second-order optical nonlinearities in on-chip micro rings,” Opt. Express 25(24), 29927–29933 (2017).
[Crossref] [PubMed]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref] [PubMed]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
[Crossref] [PubMed]

I. Krasnokutska, J. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
[Crossref] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
[Crossref] [PubMed]

M. A. Baghban, J. Schollhammer, C. Errando-Herranz, K. B. Gylfason, and K. Gallo, “Bragg gratings in thin-film LiNbO3 waveguides,” Opt. Express 25(26), 32323–32332 (2017).
[Crossref]

Opt. Lett. (4)

Opt. Mater. (1)

Z. Chen, Y. W. Wang, Y. P. Jiang, R. R. Kong, and H. Hu, “Grating coupler on single-crystal lithium niobate thin film,” Opt. Mater. 72, 136–139 (2017).
[Crossref]

Opt. Mater. Express (3)

Optica (3)

Photon. Res. (1)

Surf. Coat. Tech. (1)

W.-J. Liu, S. Chen, H.-Y. Cheng, J.-D. Lin, and S.-L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).
[Crossref]

Other (4)

J. Jian, H. Chen, L. Liu, L. Zhou, Z. Wu, Y. Chen, and S. Yu, “High Quality Factor Dry-etched Lithium Niobate Ridge Waveguide Micro-ring Resonators,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2017), S3J.2.
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “100-GHz Low Voltage Integrated Lithium Niobate Modulators,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), SM3B.4.
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Second-harmonic generation in nanophotonic PPLN waveguides with ultrahigh efficiencies,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), JTh5A.2.
[Crossref]

M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium niobate on Insulator (LNOI) grating couplers,” in Conference on Lasers and Electro-Optics, 2015, OSA Technical Digest (online) (Optical Society of America, 2015), SW4I.7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematics of amorphous silicon grating on LN thin film.
Fig. 2
Fig. 2 Ez distribution of TE mode simulated by a 2D FDTD method.
Fig. 3
Fig. 3 Fabrication process of device. (a) a brief description of process flow: a diced x-cut LNOIXSi chip (1) is deposited by a thin Ti layer and spin coating with HSQ. The waveguide pattern is defined by EBL (2) and etched by optimized argon plasma in ICP (3). Re-deposition on sidewall is cleaned by standard clean solution 1 (SC-1) and the residual mask is removed by diluted HF (4). 90-nm silica layer and 220-nm a-Si layer are deposited successively by ICP-CVD (5). HSQ is spin coating again for grating-pattern transfer by EBL (6). The grating-pattern is transferred to a-Si by ICP etching (7). A 1.5-μm silica cladding is deposited by ICP-CVD (8). (b) SEM image of hybrid a-Si grating coupler on LN thin film before silica coated. (c). Zoom in SEM image.
Fig. 4
Fig. 4 Top-view image (a) and side-view image (b) taken from downward and horizontal cameras respectively. Wafer-scale testing is realized on LN platform. (c) Spectrum measurement setup.
Fig. 5
Fig. 5 (a) The measured spectrum of samples with four different waveguide length. (b) Fiber-to-fiber loss vary with waveguide length at 1552.5 nm. The intercept of fitted line represents the coupling loss of input and output coupler and the slope represents the propagation loss of the waveguide.
Fig. 6
Fig. 6 The transmission spectrums of a-Si grating couplers. Simulation result is shown in red dash line. Experimental result is shown in blue.

Tables (3)

Tables Icon

Table 1 Optimized parameters of a-Si grating on LN thin film by genetic algorithm.

Tables Icon

Table 2 Comparison with simulation and experimental results

Tables Icon

Table 3 Demonstrated grating coupler on thin-film LN waveguide

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β - m K = k y

Metrics