Abstract

This paper explores the performance potential of gratings based on tungsten/hafnia (W/HfO2) stacks for thermophotovoltaic thermal emitters via numerical simulations. Structures consisting of a W grating over a HfO2 spacer layer and a W substrate are analyzed over a range of geometries. For shallow gratings (W grating thickness much smaller than the grating pitch), an emittance of 99.9% can be achieved for transverse magnetic (TM) polarization, but the transverse electric (TE) performance is appreciably lower. For deep gratings (W grating thickness on the order of the grating pitch), peak emittances of 97.8% and 99.7% for TE and TM polarizations, respectively, are achieved. We find that both surface plasmon polaritons and magnetic polaritons play a crucial role in shaping the emittance for TM radiation. On the other hand, cavity resonances are responsible for the almost perfect emittance in the case of TE polarization. These results suggest that by introducing an HfO2 layer it is possible to reach high emittance for operating temperatures that match the absorption characteristics of GaSb and InGaAs photovoltaic cells.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter

Jinlin Song, Mengting Si, Qiang Cheng, and Zixue Luo
Appl. Opt. 55(6) 1284-1290 (2016)

Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems

Alok Ghanekar, Laura Lin, and Yi Zheng
Opt. Express 24(10) A868-A877 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Bermel, K. Yazawa, J. L. Gray, X. Xu, and A. Shakouri, “Hybrid strategies and technologies for full spectrum solar conversion,” Energy Environ. Sci. 9, 2776–2788 (2016).
    [Crossref]
  2. P. Bermel, M. Ghebrebrhan, W. R. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), 314 (2010).
    [Crossref] [PubMed]
  3. W. R. Chan, V. Stelmakh, C. M. Waits, M. Soljačić, J. D. Joannopoulos, and I. Celanovic, “Photonic Crystal Enabled Thermophotovoltaics for a Portable Microgenerator,” J. Phys. Conf. Ser. 660, 1–5 (2015).
    [Crossref]
  4. T. Liao, L. Cai, Y. Zhao, and J. Chen, “Efficiently exploiting the waste heat in solid oxide fuel cell by means of thermophotovoltaic cell,” J. Power Sources 306, 666–673 (2016).
    [Crossref]
  5. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems.,” Opt. Express 20, A366 (2012).
    [Crossref] [PubMed]
  6. Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
    [Crossref]
  7. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljačić, E. N. Wang, and I. Celanovic, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 1–5 (2014).
    [Crossref]
  8. M. T. Aljarrah, R. Wang, E. A. Evans, C. B. Clemons, and G. W. Young, “Experimental characterization and modeling of a nanofiber-based selective emitter for thermophotovoltaic energy conversion: The effect of optical properties,” J. Appl. Phys. 109, 034306, 1–11 (2011).
    [Crossref]
  9. X. Xu, H. Ye, Y. Xu, M. Shen, X. Zhang, and X. Wu, “Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system,” Appl. Energy 113, 924–931 (2014).
    [Crossref]
  10. Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
    [Crossref]
  11. N. A. Pfiester and T. E. Vandervelde, “Selective emitters for thermophotovoltaic applications,” Phys. Status Solidi Appl. Mater. Sci. 2016, 1600410 (2016).
  12. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications.,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–22855 (2012).
    [Crossref] [PubMed]
  13. V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Solja, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Int. online J. Opt. 21, 298–303 (2013).
  14. Z. Zhou, Q. Chen, and P. Bermel, “Prospects for high-performance thermophotovoltaic conversion efficiencies exceeding the Shockley-Queisser limit,” Energy Convers. Manag. 97, 63–69 (2015).
    [Crossref]
  15. H. Deng, T. Wang, J. Gao, and X. Yang, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16, 35102 (2014).
    [Crossref]
  16. H. Wang, J. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016).
    [Crossref]
  17. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
    [Crossref]
  18. I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1D and 2D Photonic Crystals for Thermophotovoltaic Applications,” Photonic Crystal Materials and Nanostructures, R. M. De La Rue, P. Viktorovitch, C. M. Sotomayor Torres, and M. Midrio, eds. (Photonic Crystal Materials and Nanostructures, 2004), Vol. 5450, pp. 416–422.
    [Crossref]
  19. Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
    [Crossref]
  20. N. Nguyen-Huu, J. Pištora, and M. Cada, “Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes,” Nanotechnology 27, 155402 (2016).
    [Crossref] [PubMed]
  21. J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
    [Crossref]
  22. Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic-dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135, 50–57 (2014).
    [Crossref]
  23. N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating.,” Opt. Express 20, 5882–5890 (2012).
    [Crossref] [PubMed]
  24. Erwin G. Loewen and E. Popov, Diffraction Gratings and Applications (CRC Press, 1997).
  25. P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
    [Crossref] [PubMed]
  26. Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22, 21711 (2014).
    [Crossref] [PubMed]
  27. H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” J. Asian Ceram. Soc. 3, 64–69 (2015).
    [Crossref]
  28. S. Kar, High Permittivity Gate Dielectric Materials, Springer Series in Advanced Microelectronics (SpringerBerlin Heidelberg, 2013), Chap. 3.
    [Crossref]
  29. R. H. Knibbs, “The measurement of thermal expansion coefficient of tungsten at elevated temperatures,” J. Phys. E. 2, 311 (1969).
    [Crossref]
  30. V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and K. Sablon, “Improved Thermal Emitters for Thermophotovoltaic Energy Conversion,” in Proceedings of the ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, pp. 1–5 (2016).
  31. H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
    [Crossref]
  32. V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Sputtered tantalum photonic crystal coatings for high-temperature energy conversion applications,” IEEE-NANO 2015 - 15th Int. Conf. Nanotechnol. 15, 1134–1137 (2016).
  33. L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 63902 (2012).
    [Crossref]
  34. Z. M. Zhang, Nano/Micro Scale Heat Transfer (McGraw-Hill, 2007).
  35. M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” JOSA 71, 811 (1981).
    [Crossref]
  36. M. Minissale, C. Pardanaud, R. Bisson, and L. Gallais, “The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study,” Journal of Physics D: Applied Physics,  50, 455601 (2017).
    [Crossref]
  37. A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature,”. Materials,  6, 4879–4910 (2013).
    [Crossref] [PubMed]
  38. Multiphysics Reference Guide for COMSOL 5.3 (2017).
  39. S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2008)
  40. Y. Xuan and Y. Zhang, “Investigation on the physical mechanism of magnetic plasmons polaritons,” J. Quant. Spectrosc. Radiat. Transf. 132, 43–51 (2014).
    [Crossref]
  41. A. G. Borisov, F. J. García De Abajo, and S. V. Shabanov, “Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials,” Phys. Rev. B - Condens. Matter Mater. Phys. 71, 1–7 (2005).
    [Crossref]

2017 (1)

M. Minissale, C. Pardanaud, R. Bisson, and L. Gallais, “The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study,” Journal of Physics D: Applied Physics,  50, 455601 (2017).
[Crossref]

2016 (8)

V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Sputtered tantalum photonic crystal coatings for high-temperature energy conversion applications,” IEEE-NANO 2015 - 15th Int. Conf. Nanotechnol. 15, 1134–1137 (2016).

H. Wang, J. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016).
[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

P. Bermel, K. Yazawa, J. L. Gray, X. Xu, and A. Shakouri, “Hybrid strategies and technologies for full spectrum solar conversion,” Energy Environ. Sci. 9, 2776–2788 (2016).
[Crossref]

T. Liao, L. Cai, Y. Zhao, and J. Chen, “Efficiently exploiting the waste heat in solid oxide fuel cell by means of thermophotovoltaic cell,” J. Power Sources 306, 666–673 (2016).
[Crossref]

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

N. A. Pfiester and T. E. Vandervelde, “Selective emitters for thermophotovoltaic applications,” Phys. Status Solidi Appl. Mater. Sci. 2016, 1600410 (2016).

N. Nguyen-Huu, J. Pištora, and M. Cada, “Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes,” Nanotechnology 27, 155402 (2016).
[Crossref] [PubMed]

2015 (4)

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Z. Zhou, Q. Chen, and P. Bermel, “Prospects for high-performance thermophotovoltaic conversion efficiencies exceeding the Shockley-Queisser limit,” Energy Convers. Manag. 97, 63–69 (2015).
[Crossref]

W. R. Chan, V. Stelmakh, C. M. Waits, M. Soljačić, J. D. Joannopoulos, and I. Celanovic, “Photonic Crystal Enabled Thermophotovoltaics for a Portable Microgenerator,” J. Phys. Conf. Ser. 660, 1–5 (2015).
[Crossref]

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” J. Asian Ceram. Soc. 3, 64–69 (2015).
[Crossref]

2014 (8)

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22, 21711 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Y. Xuan and Y. Zhang, “Investigation on the physical mechanism of magnetic plasmons polaritons,” J. Quant. Spectrosc. Radiat. Transf. 132, 43–51 (2014).
[Crossref]

X. Xu, H. Ye, Y. Xu, M. Shen, X. Zhang, and X. Wu, “Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system,” Appl. Energy 113, 924–931 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljačić, E. N. Wang, and I. Celanovic, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 1–5 (2014).
[Crossref]

H. Deng, T. Wang, J. Gao, and X. Yang, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16, 35102 (2014).
[Crossref]

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic-dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135, 50–57 (2014).
[Crossref]

2013 (3)

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature,”. Materials,  6, 4879–4910 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Solja, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Int. online J. Opt. 21, 298–303 (2013).

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[Crossref]

2012 (4)

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 63902 (2012).
[Crossref]

N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating.,” Opt. Express 20, 5882–5890 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications.,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–22855 (2012).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems.,” Opt. Express 20, A366 (2012).
[Crossref] [PubMed]

2011 (1)

M. T. Aljarrah, R. Wang, E. A. Evans, C. B. Clemons, and G. W. Young, “Experimental characterization and modeling of a nanofiber-based selective emitter for thermophotovoltaic energy conversion: The effect of optical properties,” J. Appl. Phys. 109, 034306, 1–11 (2011).
[Crossref]

2010 (1)

P. Bermel, M. Ghebrebrhan, W. R. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), 314 (2010).
[Crossref] [PubMed]

2007 (1)

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[Crossref]

2005 (1)

A. G. Borisov, F. J. García De Abajo, and S. V. Shabanov, “Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials,” Phys. Rev. B - Condens. Matter Mater. Phys. 71, 1–7 (2005).
[Crossref]

1981 (1)

M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” JOSA 71, 811 (1981).
[Crossref]

1969 (1)

R. H. Knibbs, “The measurement of thermal expansion coefficient of tungsten at elevated temperatures,” J. Phys. E. 2, 311 (1969).
[Crossref]

Alabastri, A.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature,”. Materials,  6, 4879–4910 (2013).
[Crossref] [PubMed]

Aljarrah, M. T.

M. T. Aljarrah, R. Wang, E. A. Evans, C. B. Clemons, and G. W. Young, “Experimental characterization and modeling of a nanofiber-based selective emitter for thermophotovoltaic energy conversion: The effect of optical properties,” J. Appl. Phys. 109, 034306, 1–11 (2011).
[Crossref]

Araghchini, M.

P. Bermel, M. Ghebrebrhan, W. R. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), 314 (2010).
[Crossref] [PubMed]

Bathurst, S.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[Crossref]

Bermel, P.

P. Bermel, K. Yazawa, J. L. Gray, X. Xu, and A. Shakouri, “Hybrid strategies and technologies for full spectrum solar conversion,” Energy Environ. Sci. 9, 2776–2788 (2016).
[Crossref]

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

Z. Zhou, Q. Chen, and P. Bermel, “Prospects for high-performance thermophotovoltaic conversion efficiencies exceeding the Shockley-Queisser limit,” Energy Convers. Manag. 97, 63–69 (2015).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications.,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–22855 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. R. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), 314 (2010).
[Crossref] [PubMed]

Bierman, D. M.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljačić, E. N. Wang, and I. Celanovic, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 1–5 (2014).
[Crossref]

Bisson, R.

M. Minissale, C. Pardanaud, R. Bisson, and L. Gallais, “The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study,” Journal of Physics D: Applied Physics,  50, 455601 (2017).
[Crossref]

Borisov, A. G.

A. G. Borisov, F. J. García De Abajo, and S. V. Shabanov, “Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials,” Phys. Rev. B - Condens. Matter Mater. Phys. 71, 1–7 (2005).
[Crossref]

Cada, M.

N. Nguyen-Huu, J. Pištora, and M. Cada, “Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes,” Nanotechnology 27, 155402 (2016).
[Crossref] [PubMed]

Cai, L.

T. Liao, L. Cai, Y. Zhao, and J. Chen, “Efficiently exploiting the waste heat in solid oxide fuel cell by means of thermophotovoltaic cell,” J. Power Sources 306, 666–673 (2016).
[Crossref]

Celanovic, I.

V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Sputtered tantalum photonic crystal coatings for high-temperature energy conversion applications,” IEEE-NANO 2015 - 15th Int. Conf. Nanotechnol. 15, 1134–1137 (2016).

W. R. Chan, V. Stelmakh, C. M. Waits, M. Soljačić, J. D. Joannopoulos, and I. Celanovic, “Photonic Crystal Enabled Thermophotovoltaics for a Portable Microgenerator,” J. Phys. Conf. Ser. 660, 1–5 (2015).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljačić, E. N. Wang, and I. Celanovic, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 1–5 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljačić, E. N. Wang, and I. Celanovic, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 1–5 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22, 21711 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Solja, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Int. online J. Opt. 21, 298–303 (2013).

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications.,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–22855 (2012).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems.,” Opt. Express 20, A366 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. R. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), 314 (2010).
[Crossref] [PubMed]

V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and K. Sablon, “Improved Thermal Emitters for Thermophotovoltaic Energy Conversion,” in Proceedings of the ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, pp. 1–5 (2016).

I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1D and 2D Photonic Crystals for Thermophotovoltaic Applications,” Photonic Crystal Materials and Nanostructures, R. M. De La Rue, P. Viktorovitch, C. M. Sotomayor Torres, and M. Midrio, eds. (Photonic Crystal Materials and Nanostructures, 2004), Vol. 5450, pp. 416–422.
[Crossref]

Chan, W. R.

V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Sputtered tantalum photonic crystal coatings for high-temperature energy conversion applications,” IEEE-NANO 2015 - 15th Int. Conf. Nanotechnol. 15, 1134–1137 (2016).

W. R. Chan, V. Stelmakh, C. M. Waits, M. Soljačić, J. D. Joannopoulos, and I. Celanovic, “Photonic Crystal Enabled Thermophotovoltaics for a Portable Microgenerator,” J. Phys. Conf. Ser. 660, 1–5 (2015).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljačić, E. N. Wang, and I. Celanovic, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 1–5 (2014).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Solja, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Int. online J. Opt. 21, 298–303 (2013).

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications.,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–22855 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. R. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), 314 (2010).
[Crossref] [PubMed]

V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and K. Sablon, “Improved Thermal Emitters for Thermophotovoltaic Energy Conversion,” in Proceedings of the ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, pp. 1–5 (2016).

Chang, J.

H. Wang, J. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016).
[Crossref]

Chen, J.

T. Liao, L. Cai, Y. Zhao, and J. Chen, “Efficiently exploiting the waste heat in solid oxide fuel cell by means of thermophotovoltaic cell,” J. Power Sources 306, 666–673 (2016).
[Crossref]

Chen, Q.

Z. Zhou, Q. Chen, and P. Bermel, “Prospects for high-performance thermophotovoltaic conversion efficiencies exceeding the Shockley-Queisser limit,” Energy Convers. Manag. 97, 63–69 (2015).
[Crossref]

Chen, Y.-B.

N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating.,” Opt. Express 20, 5882–5890 (2012).
[Crossref] [PubMed]

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[Crossref]

Cheng, Q.

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Chou, J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[Crossref]

Chou, J. B.

Clemons, C. B.

M. T. Aljarrah, R. Wang, E. A. Evans, C. B. Clemons, and G. W. Young, “Experimental characterization and modeling of a nanofiber-based selective emitter for thermophotovoltaic energy conversion: The effect of optical properties,” J. Appl. Phys. 109, 034306, 1–11 (2011).
[Crossref]

Das, G.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature,”. Materials,  6, 4879–4910 (2013).
[Crossref] [PubMed]

De Angelis, F.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature,”. Materials,  6, 4879–4910 (2013).
[Crossref] [PubMed]

Deng, H.

H. Deng, T. Wang, J. Gao, and X. Yang, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16, 35102 (2014).
[Crossref]

Di Fabrizio, E.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature,”. Materials,  6, 4879–4910 (2013).
[Crossref] [PubMed]

Dyachenko, P. N.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Eich, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Evans, E. A.

M. T. Aljarrah, R. Wang, E. A. Evans, C. B. Clemons, and G. W. Young, “Experimental characterization and modeling of a nanofiber-based selective emitter for thermophotovoltaic energy conversion: The effect of optical properties,” J. Appl. Phys. 109, 034306, 1–11 (2011).
[Crossref]

Gallais, L.

M. Minissale, C. Pardanaud, R. Bisson, and L. Gallais, “The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study,” Journal of Physics D: Applied Physics,  50, 455601 (2017).
[Crossref]

Gao, J.

H. Deng, T. Wang, J. Gao, and X. Yang, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16, 35102 (2014).
[Crossref]

García De Abajo, F. J.

A. G. Borisov, F. J. García De Abajo, and S. V. Shabanov, “Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials,” Phys. Rev. B - Condens. Matter Mater. Phys. 71, 1–7 (2005).
[Crossref]

Gaylord, T.

M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” JOSA 71, 811 (1981).
[Crossref]

Geil, R. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Ghebrebrhan, M.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications.,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–22855 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. R. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), 314 (2010).
[Crossref] [PubMed]

Giugni, A.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature,”. Materials,  6, 4879–4910 (2013).
[Crossref] [PubMed]

Gray, J. L.

P. Bermel, K. Yazawa, J. L. Gray, X. Xu, and A. Shakouri, “Hybrid strategies and technologies for full spectrum solar conversion,” Energy Environ. Sci. 9, 2776–2788 (2016).
[Crossref]

Hamam, R.

P. Bermel, M. Ghebrebrhan, W. R. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), 314 (2010).
[Crossref] [PubMed]

Ilic, O.

Jablan, M.

Jacob, Z.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Jensen, K. F.

P. Bermel, M. Ghebrebrhan, W. R. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), 314 (2010).
[Crossref] [PubMed]

Joannopoulos, J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[Crossref]

Joannopoulos, J. D.

V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Sputtered tantalum photonic crystal coatings for high-temperature energy conversion applications,” IEEE-NANO 2015 - 15th Int. Conf. Nanotechnol. 15, 1134–1137 (2016).

W. R. Chan, V. Stelmakh, C. M. Waits, M. Soljačić, J. D. Joannopoulos, and I. Celanovic, “Photonic Crystal Enabled Thermophotovoltaics for a Portable Microgenerator,” J. Phys. Conf. Ser. 660, 1–5 (2015).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22, 21711 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Solja, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Int. online J. Opt. 21, 298–303 (2013).

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications.,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–22855 (2012).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems.,” Opt. Express 20, A366 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. R. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), 314 (2010).
[Crossref] [PubMed]

V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and K. Sablon, “Improved Thermal Emitters for Thermophotovoltaic Energy Conversion,” in Proceedings of the ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, pp. 1–5 (2016).

Johnson, S. G.

P. Bermel, M. Ghebrebrhan, W. R. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), 314 (2010).
[Crossref] [PubMed]

Jovanovic, N.

I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1D and 2D Photonic Crystals for Thermophotovoltaic Applications,” Photonic Crystal Materials and Nanostructures, R. M. De La Rue, P. Viktorovitch, C. M. Sotomayor Torres, and M. Midrio, eds. (Photonic Crystal Materials and Nanostructures, 2004), Vol. 5450, pp. 416–422.
[Crossref]

Kar, S.

S. Kar, High Permittivity Gate Dielectric Materials, Springer Series in Advanced Microelectronics (SpringerBerlin Heidelberg, 2013), Chap. 3.
[Crossref]

Kassakian, J. G.

I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1D and 2D Photonic Crystals for Thermophotovoltaic Applications,” Photonic Crystal Materials and Nanostructures, R. M. De La Rue, P. Viktorovitch, C. M. Sotomayor Torres, and M. Midrio, eds. (Photonic Crystal Materials and Nanostructures, 2004), Vol. 5450, pp. 416–422.
[Crossref]

Kim, S.-G.

Knibbs, R. H.

R. H. Knibbs, “The measurement of thermal expansion coefficient of tungsten at elevated temperatures,” J. Phys. E. 2, 311 (1969).
[Crossref]

Krekeler, T.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Lang, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Lee, H.-J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[Crossref]

Lenert, A.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljačić, E. N. Wang, and I. Celanovic, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 1–5 (2014).
[Crossref]

Liang, Y.

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic-dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135, 50–57 (2014).
[Crossref]

Liao, T.

T. Liao, L. Cai, Y. Zhao, and J. Chen, “Efficiently exploiting the waste heat in solid oxide fuel cell by means of thermophotovoltaic cell,” J. Power Sources 306, 666–673 (2016).
[Crossref]

Liberale, C.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature,”. Materials,  6, 4879–4910 (2013).
[Crossref] [PubMed]

Lo, Y.-L.

Loewen, Erwin G.

Erwin G. Loewen and E. Popov, Diffraction Gratings and Applications (CRC Press, 1997).

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2008)

Marton, C. H.

P. Bermel, M. Ghebrebrhan, W. R. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), 314 (2010).
[Crossref] [PubMed]

Minissale, M.

M. Minissale, C. Pardanaud, R. Bisson, and L. Gallais, “The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study,” Journal of Physics D: Applied Physics,  50, 455601 (2017).
[Crossref]

Moharam, M.

M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” JOSA 71, 811 (1981).
[Crossref]

Molesky, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Nam, Y.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljačić, E. N. Wang, and I. Celanovic, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 1–5 (2014).
[Crossref]

Nguyen-Huu, N.

N. Nguyen-Huu, J. Pištora, and M. Cada, “Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes,” Nanotechnology 27, 155402 (2016).
[Crossref] [PubMed]

N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating.,” Opt. Express 20, 5882–5890 (2012).
[Crossref] [PubMed]

O’Sullivan, F.

I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1D and 2D Photonic Crystals for Thermophotovoltaic Applications,” Photonic Crystal Materials and Nanostructures, R. M. De La Rue, P. Viktorovitch, C. M. Sotomayor Torres, and M. Midrio, eds. (Photonic Crystal Materials and Nanostructures, 2004), Vol. 5450, pp. 416–422.
[Crossref]

Padma Kumar, H.

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” J. Asian Ceram. Soc. 3, 64–69 (2015).
[Crossref]

Pardanaud, C.

M. Minissale, C. Pardanaud, R. Bisson, and L. Gallais, “The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study,” Journal of Physics D: Applied Physics,  50, 455601 (2017).
[Crossref]

Petrov, A. Y.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Pfiester, N. A.

N. A. Pfiester and T. E. Vandervelde, “Selective emitters for thermophotovoltaic applications,” Phys. Status Solidi Appl. Mater. Sci. 2016, 1600410 (2016).

Pištora, J.

N. Nguyen-Huu, J. Pištora, and M. Cada, “Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes,” Nanotechnology 27, 155402 (2016).
[Crossref] [PubMed]

Popov, E.

Erwin G. Loewen and E. Popov, Diffraction Gratings and Applications (CRC Press, 1997).

Qi, M.

I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1D and 2D Photonic Crystals for Thermophotovoltaic Applications,” Photonic Crystal Materials and Nanostructures, R. M. De La Rue, P. Viktorovitch, C. M. Sotomayor Torres, and M. Midrio, eds. (Photonic Crystal Materials and Nanostructures, 2004), Vol. 5450, pp. 416–422.
[Crossref]

Rinnerbauer, V.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22, 21711 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Solja, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Int. online J. Opt. 21, 298–303 (2013).

Ritter, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Sablon, K.

V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and K. Sablon, “Improved Thermal Emitters for Thermophotovoltaic Energy Conversion,” in Proceedings of the ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, pp. 1–5 (2016).

Saka, N.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[Crossref]

Sakr, E.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

Saravana Kumar, S.

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” J. Asian Ceram. Soc. 3, 64–69 (2015).
[Crossref]

Senkevich, J. J.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Solja, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Int. online J. Opt. 21, 298–303 (2013).

Shabanov, S. V.

A. G. Borisov, F. J. García De Abajo, and S. V. Shabanov, “Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials,” Phys. Rev. B - Condens. Matter Mater. Phys. 71, 1–7 (2005).
[Crossref]

Shakouri, A.

P. Bermel, K. Yazawa, J. L. Gray, X. Xu, and A. Shakouri, “Hybrid strategies and technologies for full spectrum solar conversion,” Energy Environ. Sci. 9, 2776–2788 (2016).
[Crossref]

Shen, M.

X. Xu, H. Ye, Y. Xu, M. Shen, X. Zhang, and X. Wu, “Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system,” Appl. Energy 113, 924–931 (2014).
[Crossref]

Shen, Y.

Shuai, Y.

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic-dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135, 50–57 (2014).
[Crossref]

Smyth, K.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[Crossref]

Solja, M.

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Solja, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Int. online J. Opt. 21, 298–303 (2013).

Soljacic, M.

V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Sputtered tantalum photonic crystal coatings for high-temperature energy conversion applications,” IEEE-NANO 2015 - 15th Int. Conf. Nanotechnol. 15, 1134–1137 (2016).

W. R. Chan, V. Stelmakh, C. M. Waits, M. Soljačić, J. D. Joannopoulos, and I. Celanovic, “Photonic Crystal Enabled Thermophotovoltaics for a Portable Microgenerator,” J. Phys. Conf. Ser. 660, 1–5 (2015).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljačić, E. N. Wang, and I. Celanovic, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 1–5 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22, 21711 (2014).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems.,” Opt. Express 20, A366 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications.,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–22855 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. R. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), 314 (2010).
[Crossref] [PubMed]

V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and K. Sablon, “Improved Thermal Emitters for Thermophotovoltaic Energy Conversion,” in Proceedings of the ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, pp. 1–5 (2016).

Solomon, S.

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” J. Asian Ceram. Soc. 3, 64–69 (2015).
[Crossref]

Song, J.

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Stelmakh, V.

V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Sputtered tantalum photonic crystal coatings for high-temperature energy conversion applications,” IEEE-NANO 2015 - 15th Int. Conf. Nanotechnol. 15, 1134–1137 (2016).

W. R. Chan, V. Stelmakh, C. M. Waits, M. Soljačić, J. D. Joannopoulos, and I. Celanovic, “Photonic Crystal Enabled Thermophotovoltaics for a Portable Microgenerator,” J. Phys. Conf. Ser. 660, 1–5 (2015).
[Crossref]

V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and K. Sablon, “Improved Thermal Emitters for Thermophotovoltaic Energy Conversion,” in Proceedings of the ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, pp. 1–5 (2016).

Störmer, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Sun, Y.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

Tan, H.

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic-dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135, 50–57 (2014).
[Crossref]

Thomas, J. K.

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” J. Asian Ceram. Soc. 3, 64–69 (2015).
[Crossref]

Toma, A.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature,”. Materials,  6, 4879–4910 (2013).
[Crossref] [PubMed]

Tuccio, S.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature,”. Materials,  6, 4879–4910 (2013).
[Crossref] [PubMed]

Vandervelde, T. E.

N. A. Pfiester and T. E. Vandervelde, “Selective emitters for thermophotovoltaic applications,” Phys. Status Solidi Appl. Mater. Sci. 2016, 1600410 (2016).

Vidya, S.

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” J. Asian Ceram. Soc. 3, 64–69 (2015).
[Crossref]

Vijayakumar, C.

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” J. Asian Ceram. Soc. 3, 64–69 (2015).
[Crossref]

Waits, C. M.

W. R. Chan, V. Stelmakh, C. M. Waits, M. Soljačić, J. D. Joannopoulos, and I. Celanovic, “Photonic Crystal Enabled Thermophotovoltaics for a Portable Microgenerator,” J. Phys. Conf. Ser. 660, 1–5 (2015).
[Crossref]

Wang, E. N.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljačić, E. N. Wang, and I. Celanovic, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 1–5 (2014).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Wang, H.

H. Wang, J. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016).
[Crossref]

Wang, L.

H. Wang, J. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016).
[Crossref]

Wang, L. P.

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 63902 (2012).
[Crossref]

Wang, R.

M. T. Aljarrah, R. Wang, E. A. Evans, C. B. Clemons, and G. W. Young, “Experimental characterization and modeling of a nanofiber-based selective emitter for thermophotovoltaic energy conversion: The effect of optical properties,” J. Appl. Phys. 109, 034306, 1–11 (2011).
[Crossref]

Wang, T.

H. Deng, T. Wang, J. Gao, and X. Yang, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16, 35102 (2014).
[Crossref]

Wu, H.

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Wu, X.

X. Xu, H. Ye, Y. Xu, M. Shen, X. Zhang, and X. Wu, “Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system,” Appl. Energy 113, 924–931 (2014).
[Crossref]

Xu, X.

P. Bermel, K. Yazawa, J. L. Gray, X. Xu, and A. Shakouri, “Hybrid strategies and technologies for full spectrum solar conversion,” Energy Environ. Sci. 9, 2776–2788 (2016).
[Crossref]

X. Xu, H. Ye, Y. Xu, M. Shen, X. Zhang, and X. Wu, “Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system,” Appl. Energy 113, 924–931 (2014).
[Crossref]

Xu, Y.

X. Xu, H. Ye, Y. Xu, M. Shen, X. Zhang, and X. Wu, “Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system,” Appl. Energy 113, 924–931 (2014).
[Crossref]

Xuan, Y.

Y. Xuan and Y. Zhang, “Investigation on the physical mechanism of magnetic plasmons polaritons,” J. Quant. Spectrosc. Radiat. Transf. 132, 43–51 (2014).
[Crossref]

Yang, X.

H. Deng, T. Wang, J. Gao, and X. Yang, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16, 35102 (2014).
[Crossref]

Yang, Y.

H. Wang, J. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016).
[Crossref]

Yazawa, K.

P. Bermel, K. Yazawa, J. L. Gray, X. Xu, and A. Shakouri, “Hybrid strategies and technologies for full spectrum solar conversion,” Energy Environ. Sci. 9, 2776–2788 (2016).
[Crossref]

Ye, H.

X. Xu, H. Ye, Y. Xu, M. Shen, X. Zhang, and X. Wu, “Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system,” Appl. Energy 113, 924–931 (2014).
[Crossref]

Yeng, Y. X.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22, 21711 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Solja, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Int. online J. Opt. 21, 298–303 (2013).

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications.,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–22855 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. R. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), 314 (2010).
[Crossref] [PubMed]

Young, G. W.

M. T. Aljarrah, R. Wang, E. A. Evans, C. B. Clemons, and G. W. Young, “Experimental characterization and modeling of a nanofiber-based selective emitter for thermophotovoltaic energy conversion: The effect of optical properties,” J. Appl. Phys. 109, 034306, 1–11 (2011).
[Crossref]

Zaccaria, R. P.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature,”. Materials,  6, 4879–4910 (2013).
[Crossref] [PubMed]

Zhang, X.

X. Xu, H. Ye, Y. Xu, M. Shen, X. Zhang, and X. Wu, “Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system,” Appl. Energy 113, 924–931 (2014).
[Crossref]

Zhang, Y.

Y. Xuan and Y. Zhang, “Investigation on the physical mechanism of magnetic plasmons polaritons,” J. Quant. Spectrosc. Radiat. Transf. 132, 43–51 (2014).
[Crossref]

Zhang, Z. M.

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 63902 (2012).
[Crossref]

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[Crossref]

Z. M. Zhang, Nano/Micro Scale Heat Transfer (McGraw-Hill, 2007).

Zhao, J.

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Zhao, Y.

T. Liao, L. Cai, Y. Zhao, and J. Chen, “Efficiently exploiting the waste heat in solid oxide fuel cell by means of thermophotovoltaic cell,” J. Power Sources 306, 666–673 (2016).
[Crossref]

Zhou, Z.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

Z. Zhou, Q. Chen, and P. Bermel, “Prospects for high-performance thermophotovoltaic conversion efficiencies exceeding the Shockley-Queisser limit,” Energy Convers. Manag. 97, 63–69 (2015).
[Crossref]

Adv. Energy Mater. (1)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Appl. Energy (1)

X. Xu, H. Ye, Y. Xu, M. Shen, X. Zhang, and X. Wu, “Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system,” Appl. Energy 113, 924–931 (2014).
[Crossref]

Appl. Phys. Lett. (2)

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[Crossref]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 63902 (2012).
[Crossref]

Energy Convers. Manag. (1)

Z. Zhou, Q. Chen, and P. Bermel, “Prospects for high-performance thermophotovoltaic conversion efficiencies exceeding the Shockley-Queisser limit,” Energy Convers. Manag. 97, 63–69 (2015).
[Crossref]

Energy Environ. Sci. (1)

P. Bermel, K. Yazawa, J. L. Gray, X. Xu, and A. Shakouri, “Hybrid strategies and technologies for full spectrum solar conversion,” Energy Environ. Sci. 9, 2776–2788 (2016).
[Crossref]

IEEE-NANO 2015 - 15th Int. Conf. Nanotechnol. (1)

V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Sputtered tantalum photonic crystal coatings for high-temperature energy conversion applications,” IEEE-NANO 2015 - 15th Int. Conf. Nanotechnol. 15, 1134–1137 (2016).

Int. J. Heat Mass Transf. (1)

H. Wang, J. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016).
[Crossref]

Int. online J. Opt. (1)

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Solja, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Int. online J. Opt. 21, 298–303 (2013).

J. Appl. Phys. (1)

M. T. Aljarrah, R. Wang, E. A. Evans, C. B. Clemons, and G. W. Young, “Experimental characterization and modeling of a nanofiber-based selective emitter for thermophotovoltaic energy conversion: The effect of optical properties,” J. Appl. Phys. 109, 034306, 1–11 (2011).
[Crossref]

J. Asian Ceram. Soc. (1)

H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” J. Asian Ceram. Soc. 3, 64–69 (2015).
[Crossref]

J. Opt. (1)

H. Deng, T. Wang, J. Gao, and X. Yang, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16, 35102 (2014).
[Crossref]

J. Phys. Conf. Ser. (1)

W. R. Chan, V. Stelmakh, C. M. Waits, M. Soljačić, J. D. Joannopoulos, and I. Celanovic, “Photonic Crystal Enabled Thermophotovoltaics for a Portable Microgenerator,” J. Phys. Conf. Ser. 660, 1–5 (2015).
[Crossref]

J. Phys. E. (1)

R. H. Knibbs, “The measurement of thermal expansion coefficient of tungsten at elevated temperatures,” J. Phys. E. 2, 311 (1969).
[Crossref]

J. Power Sources (1)

T. Liao, L. Cai, Y. Zhao, and J. Chen, “Efficiently exploiting the waste heat in solid oxide fuel cell by means of thermophotovoltaic cell,” J. Power Sources 306, 666–673 (2016).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (3)

Y. Xuan and Y. Zhang, “Investigation on the physical mechanism of magnetic plasmons polaritons,” J. Quant. Spectrosc. Radiat. Transf. 132, 43–51 (2014).
[Crossref]

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic-dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135, 50–57 (2014).
[Crossref]

JOSA (1)

M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” JOSA 71, 811 (1981).
[Crossref]

Journal of Physics D: Applied Physics (1)

M. Minissale, C. Pardanaud, R. Bisson, and L. Gallais, “The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study,” Journal of Physics D: Applied Physics,  50, 455601 (2017).
[Crossref]

Materials (1)

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature,”. Materials,  6, 4879–4910 (2013).
[Crossref] [PubMed]

Nanophotonics (1)

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

Nanotechnology (1)

N. Nguyen-Huu, J. Pištora, and M. Cada, “Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes,” Nanotechnology 27, 155402 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljačić, E. N. Wang, and I. Celanovic, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 1–5 (2014).
[Crossref]

Opt. Commun. (1)

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[Crossref]

Opt. Express (4)

Phys. Rev. B - Condens. Matter Mater. Phys. (1)

A. G. Borisov, F. J. García De Abajo, and S. V. Shabanov, “Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials,” Phys. Rev. B - Condens. Matter Mater. Phys. 71, 1–7 (2005).
[Crossref]

Phys. Status Solidi Appl. Mater. Sci. (1)

N. A. Pfiester and T. E. Vandervelde, “Selective emitters for thermophotovoltaic applications,” Phys. Status Solidi Appl. Mater. Sci. 2016, 1600410 (2016).

Proc. Natl. Acad. Sci. U. S. A. (1)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications.,” Proc. Natl. Acad. Sci. U. S. A. 109, 2280–22855 (2012).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Other (7)

I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1D and 2D Photonic Crystals for Thermophotovoltaic Applications,” Photonic Crystal Materials and Nanostructures, R. M. De La Rue, P. Viktorovitch, C. M. Sotomayor Torres, and M. Midrio, eds. (Photonic Crystal Materials and Nanostructures, 2004), Vol. 5450, pp. 416–422.
[Crossref]

Multiphysics Reference Guide for COMSOL 5.3 (2017).

S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2008)

V. Stelmakh, W. R. Chan, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and K. Sablon, “Improved Thermal Emitters for Thermophotovoltaic Energy Conversion,” in Proceedings of the ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, pp. 1–5 (2016).

S. Kar, High Permittivity Gate Dielectric Materials, Springer Series in Advanced Microelectronics (SpringerBerlin Heidelberg, 2013), Chap. 3.
[Crossref]

Z. M. Zhang, Nano/Micro Scale Heat Transfer (McGraw-Hill, 2007).

Erwin G. Loewen and E. Popov, Diffraction Gratings and Applications (CRC Press, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Simulated normal emittance for the studied shallow grating. (a) Emittance for both TE and TM polarizations for W gratings with and without hafnia spacer layers. The inset shows the geometry of the structure. (b) Magnetic field strength for λ = 1.73 µm.
Fig. 2
Fig. 2 Simulated normal emittance for the studied deep grating. (a) Emittance for both TE and TM polarizations for W gratings with and without hafnia spacer layers. The inset shows the geometry of the structure. (b) Electric field magnitude for λ = 1.614 µm and the magnetic field magnitude for λ = 1.674 µm.
Fig. 3
Fig. 3 Excitation wavelength for MPs (λMP) as a function of spacer dielectric constant for both shallow (blue) and deep (red) gratings, for several spacer thicknesses.
Fig. 4
Fig. 4 Directional emittance of the deep grating as a function of the angle of incidence. (a) and (b) show the emittance for different angles of incidence (θ = 0°, 30°, 45°, and 60°) for TE and TM polarizations, respectively.
Fig. 5
Fig. 5 Thermal radiation for (a) shallow and (b) deep gratings at T = 1680 K and T = 1750 K, respectively. The blackbody thermal radiation is shown for comparison. An in-band emittance of 88.25% and 85.17% is achieved for the deep gratings for TE and TM polarization, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϵ i n , i ( T ) = 0 λ g ε i ( λ ) E b ( T , λ ) d λ 0 λ g E b ( T , λ ) d λ , i = TE , TM,

Metrics