Abstract

A novel reconfigurable metasurface for multiple functions is designed and investigated. The lattice of the metasurface is proposed to realize integrated absorption and polarization rotation and named as polarization conversion absorber (PCA). Then, lattices are arranged together to realize a certain function. Due to the independence of each lattice, the metasurface can present different performance based on different arrangement principle. Magnitude, polarization and phase modulation can be presented by manually arranging metasurface with 6 × 6 lattices. Both simulations and measurements prove that the proposed method provides a simple, flexible and effective strategy for multifunctional metasurface design.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion

Yi Zhao, Xiangyu Cao, Jun Gao, Xiao Liu, and Sijia Li
Opt. Express 24(10) 11208-11217 (2016)

Multi-functional coding metasurface for dual-band independent electromagnetic wave control

Wen-Long Guo, Guang-Ming Wang, Hai-Sheng Hou, Ke Chen, and Yijun Feng
Opt. Express 27(14) 19196-19211 (2019)

Design of bifunctional metasurface based on independent control of transmission and reflection

Yaqiang Zhuang, Guangming Wang, Tong Cai, and Qingfeng Zhang
Opt. Express 26(3) 3594-3603 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  3. S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref] [PubMed]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  5. M. D. Banadaki, A. A. Heidari, and M. Nakhkash, “A metamaterial absorber with a new compact unit cell,” IEEE Antennas Wirel. Propag. Lett. 17(2), 205–208 (2018).
    [Crossref]
  6. W. Zuo, Y. Yang, X. He, D. Zhan, and Q. Zhang, “A miniaturized metamaterial absorber for ultrahigh-frequency RFID system,” IEEE Antennas Wirel. Propag. Lett. 16, 928–931 (2017).
    [Crossref]
  7. S. Ramya and I. S. Rao, “A compact ultra-thin ultra-wideband microwave metamaterial absorber,” Microw. Opt. Technol. Lett. 59(8), 1837–1845 (2017).
    [Crossref]
  8. F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “Low-cost metamaterial absorbers for sub-GHz wireless systems,” IEEE Antennas Wirel. Propag. Lett. 13, 27–30 (2014).
    [Crossref]
  9. L. Yao, M. Li, X. Zhai, H. Wang, and J. Dong, “On the miniaturization of polarization insensitive wide angle metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 122(2), 61 (2016).
    [Crossref]
  10. F. Venneri, S. Costanzo, and G. D. Massa, “Fractal-shaped metamaterial absorbers for multi-reflections mitigation in the UHF-band,” IEEE Antennas Wirel. Propag. Lett. 17(2), 255–258 (2018).
    [Crossref]
  11. R. Araneo, G. Lovat, and S. Celozzi, “Compact electromagnetic absorbers for frequencies below 1 GHz,” Progrss In Electromagnetic Research 143, 67–86 (2013).
    [Crossref]
  12. S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin, and polarization–insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).
    [Crossref]
  13. C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
    [Crossref]
  14. H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
    [Crossref] [PubMed]
  15. Y. He, J. Jiang, M. Chen, S. Li, L. Miao, and S. Bie, “Design of an adjustable polarization-independent and wideband electromagnetic absorber,” J. Appl. Phys. 119(10), 105103 (2016).
    [Crossref]
  16. C. Han, E. P. J. Parrott, and E. Pickwell-MacPherson, “Tailoring metamaterial microstructures to realize broadband polarization modulation of terahertz waves,” IEEE J. Sel. Top. Quant. 23(4), 4700806 (2017).
    [Crossref]
  17. J. Y. Yin, X. Wan, Q. Zhang, and T. J. Cui, “Ultra wideband polarization–selective conversions of electromagnetic waves by metasurface under large-range incident angles,” Sci. Rep. 5(1), 12476 (2015).
    [Crossref] [PubMed]
  18. M. I. Khan, Q. Fraz, and F. A. Tahir, “Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle,” J. Appl. Phys. 121(4), 045103 (2017).
    [Crossref]
  19. L. Zhang, P. Zhou, H. Lu, L. Zhang, J. Xie, and L. Deng, “Realization of broadband reflective polarization converter using asymmetric cross–shaped resonator,” Opt. Mater. Express 6(4), 1393–1404 (2016).
    [Crossref]
  20. H. Wei, D. Hu, Y. Deng, X. Wu, X. Xiao, Y. Hou, Y. Wang, R. Shi, D. Wang, and J. Du, “Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips,” AIP Adv. 6(12), 125304 (2016).
    [Crossref]
  21. M. Long, W. Jiang, and S. Gong, “Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface,” IEEE Antennas Wirel. Propag. Lett. 16, 2534–2537 (2017).
    [Crossref]
  22. Y. Zhou, X. Cao, J. Gao, S. Li, and Y. Zheng, “In-band RCS reduction and gain enhancement of a dual-band PRMS-antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 2716–2720 (2017).
    [Crossref]
  23. Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
    [Crossref]
  24. J. Su, C. Kong, Z. Li, H. Yin, and Y. L. Yang, “Wideband diffuse scattering and RCS reduction of microstrip antenna array based on coding metasurface,” Electron. Lett. 53(16), 2534–2537 (2017).
    [Crossref]
  25. O. Akgol, E. Unal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, “Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal,” Optik (Stuttg.) 161, 12–19 (2018).
    [Crossref]
  26. H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014).
    [Crossref] [PubMed]
  27. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  28. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  29. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
    [Crossref] [PubMed]
  30. E. Erfani, M. Niroo-Jazi, and S. Tatu, “A high gain broadband gradient index metasurface lens antenna,” IEEE Trans. Antenn. Propag. 64(5), 1968–1973 (2016).
    [Crossref]
  31. Q. Zhang, M. Li, T. Liao, and X. Cui, “Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface,” Opt. Commun. 411, 93–100 (2018).
    [Crossref]
  32. D. Zhang, M. Ren, W. Wu, N. Gao, X. Yu, W. Cai, X. Zhang, and J. Xu, “Nanoscale beam splitters based on gradient metasurfaces,” Opt. Lett. 43(2), 267–270 (2018).
    [Crossref] [PubMed]
  33. J. Wang and Y. Jiang, “Gradient metasurface for four-direction anomalous reflection in terahertz,” Opt. Commun. 416, 125–129 (2018).
    [Crossref]
  34. Y. Fan, J. Wang, Y. Li, J. Zhang, S. Qu, Y. Han, and H. Chen, “Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface,” IEEE Trans. Antenn. Propag. 66(1), 203–208 (2018).
    [Crossref]
  35. Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6(1), 23896 (2016).
    [Crossref] [PubMed]
  36. L. Zhang, X. Wan, S. Liu, J. Y. Yin, Q. Zhang, H. T. Wu, and T. J. Cui, “Realization of low scattering for a high-gain Fabry–Perot antenna using coding metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3374–3383 (2017).
    [Crossref]
  37. X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
    [Crossref] [PubMed]
  38. H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
    [Crossref] [PubMed]
  39. Y. Zhuang, G. Wang, J. Liang, and Q. Zhang, “Dual-band low-scattering metasurface based on combination of diffusion and absorption,” IEEE Antennas Wirel. Propag. Lett. 16, 2606–2609 (2017).
    [Crossref]
  40. T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, and J. G. Liang, “Polarization-independent broadband meta-surface for bifunctional antenna,” Opt. Express 24(20), 22606–22615 (2016).
    [Crossref] [PubMed]
  41. F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
    [Crossref]
  42. W. Pan, T. Cai, S. Tang, L. Zhou, and J. Dong, “Trifunctional metasurfaces: concept and characterizations,” Opt. Express 26(13), 17447–17457 (2018).
    [Crossref] [PubMed]

2018 (9)

M. D. Banadaki, A. A. Heidari, and M. Nakhkash, “A metamaterial absorber with a new compact unit cell,” IEEE Antennas Wirel. Propag. Lett. 17(2), 205–208 (2018).
[Crossref]

F. Venneri, S. Costanzo, and G. D. Massa, “Fractal-shaped metamaterial absorbers for multi-reflections mitigation in the UHF-band,” IEEE Antennas Wirel. Propag. Lett. 17(2), 255–258 (2018).
[Crossref]

O. Akgol, E. Unal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, “Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal,” Optik (Stuttg.) 161, 12–19 (2018).
[Crossref]

Q. Zhang, M. Li, T. Liao, and X. Cui, “Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface,” Opt. Commun. 411, 93–100 (2018).
[Crossref]

D. Zhang, M. Ren, W. Wu, N. Gao, X. Yu, W. Cai, X. Zhang, and J. Xu, “Nanoscale beam splitters based on gradient metasurfaces,” Opt. Lett. 43(2), 267–270 (2018).
[Crossref] [PubMed]

J. Wang and Y. Jiang, “Gradient metasurface for four-direction anomalous reflection in terahertz,” Opt. Commun. 416, 125–129 (2018).
[Crossref]

Y. Fan, J. Wang, Y. Li, J. Zhang, S. Qu, Y. Han, and H. Chen, “Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface,” IEEE Trans. Antenn. Propag. 66(1), 203–208 (2018).
[Crossref]

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref]

W. Pan, T. Cai, S. Tang, L. Zhou, and J. Dong, “Trifunctional metasurfaces: concept and characterizations,” Opt. Express 26(13), 17447–17457 (2018).
[Crossref] [PubMed]

2017 (10)

Y. Zhuang, G. Wang, J. Liang, and Q. Zhang, “Dual-band low-scattering metasurface based on combination of diffusion and absorption,” IEEE Antennas Wirel. Propag. Lett. 16, 2606–2609 (2017).
[Crossref]

J. Su, C. Kong, Z. Li, H. Yin, and Y. L. Yang, “Wideband diffuse scattering and RCS reduction of microstrip antenna array based on coding metasurface,” Electron. Lett. 53(16), 2534–2537 (2017).
[Crossref]

L. Zhang, X. Wan, S. Liu, J. Y. Yin, Q. Zhang, H. T. Wu, and T. J. Cui, “Realization of low scattering for a high-gain Fabry–Perot antenna using coding metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3374–3383 (2017).
[Crossref]

M. I. Khan, Q. Fraz, and F. A. Tahir, “Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle,” J. Appl. Phys. 121(4), 045103 (2017).
[Crossref]

M. Long, W. Jiang, and S. Gong, “Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface,” IEEE Antennas Wirel. Propag. Lett. 16, 2534–2537 (2017).
[Crossref]

Y. Zhou, X. Cao, J. Gao, S. Li, and Y. Zheng, “In-band RCS reduction and gain enhancement of a dual-band PRMS-antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 2716–2720 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

C. Han, E. P. J. Parrott, and E. Pickwell-MacPherson, “Tailoring metamaterial microstructures to realize broadband polarization modulation of terahertz waves,” IEEE J. Sel. Top. Quant. 23(4), 4700806 (2017).
[Crossref]

W. Zuo, Y. Yang, X. He, D. Zhan, and Q. Zhang, “A miniaturized metamaterial absorber for ultrahigh-frequency RFID system,” IEEE Antennas Wirel. Propag. Lett. 16, 928–931 (2017).
[Crossref]

S. Ramya and I. S. Rao, “A compact ultra-thin ultra-wideband microwave metamaterial absorber,” Microw. Opt. Technol. Lett. 59(8), 1837–1845 (2017).
[Crossref]

2016 (11)

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

Y. He, J. Jiang, M. Chen, S. Li, L. Miao, and S. Bie, “Design of an adjustable polarization-independent and wideband electromagnetic absorber,” J. Appl. Phys. 119(10), 105103 (2016).
[Crossref]

L. Yao, M. Li, X. Zhai, H. Wang, and J. Dong, “On the miniaturization of polarization insensitive wide angle metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 122(2), 61 (2016).
[Crossref]

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

L. Zhang, P. Zhou, H. Lu, L. Zhang, J. Xie, and L. Deng, “Realization of broadband reflective polarization converter using asymmetric cross–shaped resonator,” Opt. Mater. Express 6(4), 1393–1404 (2016).
[Crossref]

H. Wei, D. Hu, Y. Deng, X. Wu, X. Xiao, Y. Hou, Y. Wang, R. Shi, D. Wang, and J. Du, “Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips,” AIP Adv. 6(12), 125304 (2016).
[Crossref]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

E. Erfani, M. Niroo-Jazi, and S. Tatu, “A high gain broadband gradient index metasurface lens antenna,” IEEE Trans. Antenn. Propag. 64(5), 1968–1973 (2016).
[Crossref]

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6(1), 23896 (2016).
[Crossref] [PubMed]

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, and J. G. Liang, “Polarization-independent broadband meta-surface for bifunctional antenna,” Opt. Express 24(20), 22606–22615 (2016).
[Crossref] [PubMed]

2015 (1)

J. Y. Yin, X. Wan, Q. Zhang, and T. J. Cui, “Ultra wideband polarization–selective conversions of electromagnetic waves by metasurface under large-range incident angles,” Sci. Rep. 5(1), 12476 (2015).
[Crossref] [PubMed]

2014 (4)

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin, and polarization–insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).
[Crossref]

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “Low-cost metamaterial absorbers for sub-GHz wireless systems,” IEEE Antennas Wirel. Propag. Lett. 13, 27–30 (2014).
[Crossref]

H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

2013 (1)

R. Araneo, G. Lovat, and S. Celozzi, “Compact electromagnetic absorbers for frequencies below 1 GHz,” Progrss In Electromagnetic Research 143, 67–86 (2013).
[Crossref]

2012 (1)

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (1)

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[Crossref] [PubMed]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2006 (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Akgol, O.

O. Akgol, E. Unal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, “Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal,” Optik (Stuttg.) 161, 12–19 (2018).
[Crossref]

Altintas, O.

O. Akgol, E. Unal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, “Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal,” Optik (Stuttg.) 161, 12–19 (2018).
[Crossref]

Araneo, R.

R. Araneo, G. Lovat, and S. Celozzi, “Compact electromagnetic absorbers for frequencies below 1 GHz,” Progrss In Electromagnetic Research 143, 67–86 (2013).
[Crossref]

Banadaki, M. D.

M. D. Banadaki, A. A. Heidari, and M. Nakhkash, “A metamaterial absorber with a new compact unit cell,” IEEE Antennas Wirel. Propag. Lett. 17(2), 205–208 (2018).
[Crossref]

Bie, S.

Y. He, J. Jiang, M. Chen, S. Li, L. Miao, and S. Bie, “Design of an adjustable polarization-independent and wideband electromagnetic absorber,” J. Appl. Phys. 119(10), 105103 (2016).
[Crossref]

Bozhevolnyi, S. I.

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref]

Cai, T.

Cai, W.

Cao, X.

Y. Zhou, X. Cao, J. Gao, S. Li, and Y. Zheng, “In-band RCS reduction and gain enhancement of a dual-band PRMS-antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 2716–2720 (2017).
[Crossref]

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6(1), 23896 (2016).
[Crossref] [PubMed]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin, and polarization–insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Celozzi, S.

R. Araneo, G. Lovat, and S. Celozzi, “Compact electromagnetic absorbers for frequencies below 1 GHz,” Progrss In Electromagnetic Research 143, 67–86 (2013).
[Crossref]

Chen, H.

Y. Fan, J. Wang, Y. Li, J. Zhang, S. Qu, Y. Han, and H. Chen, “Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface,” IEEE Trans. Antenn. Propag. 66(1), 203–208 (2018).
[Crossref]

Chen, M.

Y. He, J. Jiang, M. Chen, S. Li, L. Miao, and S. Bie, “Design of an adjustable polarization-independent and wideband electromagnetic absorber,” J. Appl. Phys. 119(10), 105103 (2016).
[Crossref]

Chen, T. Y.

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

Chen, W.

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6(1), 23896 (2016).
[Crossref] [PubMed]

Chen, W. T.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Chen, X.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Cheng, Q.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Costa, F.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “Low-cost metamaterial absorbers for sub-GHz wireless systems,” IEEE Antennas Wirel. Propag. Lett. 13, 27–30 (2014).
[Crossref]

Costanzo, S.

F. Venneri, S. Costanzo, and G. D. Massa, “Fractal-shaped metamaterial absorbers for multi-reflections mitigation in the UHF-band,” IEEE Antennas Wirel. Propag. Lett. 17(2), 255–258 (2018).
[Crossref]

Cui, T. J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

L. Zhang, X. Wan, S. Liu, J. Y. Yin, Q. Zhang, H. T. Wu, and T. J. Cui, “Realization of low scattering for a high-gain Fabry–Perot antenna using coding metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3374–3383 (2017).
[Crossref]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

J. Y. Yin, X. Wan, Q. Zhang, and T. J. Cui, “Ultra wideband polarization–selective conversions of electromagnetic waves by metasurface under large-range incident angles,” Sci. Rep. 5(1), 12476 (2015).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Cui, X.

Q. Zhang, M. Li, T. Liao, and X. Cui, “Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface,” Opt. Commun. 411, 93–100 (2018).
[Crossref]

Deng, L.

Deng, Y.

H. Wei, D. Hu, Y. Deng, X. Wu, X. Xiao, Y. Hou, Y. Wang, R. Shi, D. Wang, and J. Du, “Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips,” AIP Adv. 6(12), 125304 (2016).
[Crossref]

Deshpande, R.

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref]

Ding, F.

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref]

Dong, J.

W. Pan, T. Cai, S. Tang, L. Zhou, and J. Dong, “Trifunctional metasurfaces: concept and characterizations,” Opt. Express 26(13), 17447–17457 (2018).
[Crossref] [PubMed]

L. Yao, M. Li, X. Zhai, H. Wang, and J. Dong, “On the miniaturization of polarization insensitive wide angle metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 122(2), 61 (2016).
[Crossref]

Du, J.

H. Wei, D. Hu, Y. Deng, X. Wu, X. Xiao, Y. Hou, Y. Wang, R. Shi, D. Wang, and J. Du, “Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips,” AIP Adv. 6(12), 125304 (2016).
[Crossref]

Erfani, E.

E. Erfani, M. Niroo-Jazi, and S. Tatu, “A high gain broadband gradient index metasurface lens antenna,” IEEE Trans. Antenn. Propag. 64(5), 1968–1973 (2016).
[Crossref]

Fan, Y.

Y. Fan, J. Wang, Y. Li, J. Zhang, S. Qu, Y. Han, and H. Chen, “Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface,” IEEE Trans. Antenn. Propag. 66(1), 203–208 (2018).
[Crossref]

Fraz, Q.

M. I. Khan, Q. Fraz, and F. A. Tahir, “Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle,” J. Appl. Phys. 121(4), 045103 (2017).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, J.

Y. Zhou, X. Cao, J. Gao, S. Li, and Y. Zheng, “In-band RCS reduction and gain enhancement of a dual-band PRMS-antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 2716–2720 (2017).
[Crossref]

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6(1), 23896 (2016).
[Crossref] [PubMed]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin, and polarization–insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).
[Crossref]

Gao, N.

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genovesi, S.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “Low-cost metamaterial absorbers for sub-GHz wireless systems,” IEEE Antennas Wirel. Propag. Lett. 13, 27–30 (2014).
[Crossref]

Gong, S.

M. Long, W. Jiang, and S. Gong, “Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface,” IEEE Antennas Wirel. Propag. Lett. 16, 2534–2537 (2017).
[Crossref]

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Guo, G. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Guo, Y. J.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Han, C.

C. Han, E. P. J. Parrott, and E. Pickwell-MacPherson, “Tailoring metamaterial microstructures to realize broadband polarization modulation of terahertz waves,” IEEE J. Sel. Top. Quant. 23(4), 4700806 (2017).
[Crossref]

Han, T.

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6(1), 23896 (2016).
[Crossref] [PubMed]

Han, Y.

Y. Fan, J. Wang, Y. Li, J. Zhang, S. Qu, Y. Han, and H. Chen, “Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface,” IEEE Trans. Antenn. Propag. 66(1), 203–208 (2018).
[Crossref]

Hao, Y.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

He, Q.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

He, X.

W. Zuo, Y. Yang, X. He, D. Zhan, and Q. Zhang, “A miniaturized metamaterial absorber for ultrahigh-frequency RFID system,” IEEE Antennas Wirel. Propag. Lett. 16, 928–931 (2017).
[Crossref]

He, Y.

Y. He, J. Jiang, M. Chen, S. Li, L. Miao, and S. Bie, “Design of an adjustable polarization-independent and wideband electromagnetic absorber,” J. Appl. Phys. 119(10), 105103 (2016).
[Crossref]

Heidari, A. A.

M. D. Banadaki, A. A. Heidari, and M. Nakhkash, “A metamaterial absorber with a new compact unit cell,” IEEE Antennas Wirel. Propag. Lett. 17(2), 205–208 (2018).
[Crossref]

Hou, Y.

H. Wei, D. Hu, Y. Deng, X. Wu, X. Xiao, Y. Hou, Y. Wang, R. Shi, D. Wang, and J. Du, “Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips,” AIP Adv. 6(12), 125304 (2016).
[Crossref]

Hu, D.

H. Wei, D. Hu, Y. Deng, X. Wu, X. Xiao, Y. Hou, Y. Wang, R. Shi, D. Wang, and J. Du, “Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips,” AIP Adv. 6(12), 125304 (2016).
[Crossref]

Jia, Y.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Jiang, J.

Y. He, J. Jiang, M. Chen, S. Li, L. Miao, and S. Bie, “Design of an adjustable polarization-independent and wideband electromagnetic absorber,” J. Appl. Phys. 119(10), 105103 (2016).
[Crossref]

Jiang, W.

M. Long, W. Jiang, and S. Gong, “Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface,” IEEE Antennas Wirel. Propag. Lett. 16, 2534–2537 (2017).
[Crossref]

Jiang, Y.

J. Wang and Y. Jiang, “Gradient metasurface for four-direction anomalous reflection in terahertz,” Opt. Commun. 416, 125–129 (2018).
[Crossref]

Juan, T. K.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Karaaslan, M.

O. Akgol, E. Unal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, “Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal,” Optik (Stuttg.) 161, 12–19 (2018).
[Crossref]

Karadag, F.

O. Akgol, E. Unal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, “Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal,” Optik (Stuttg.) 161, 12–19 (2018).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Khan, M. I.

M. I. Khan, Q. Fraz, and F. A. Tahir, “Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle,” J. Appl. Phys. 121(4), 045103 (2017).
[Crossref]

Kim, H. K.

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

Kong, C.

J. Su, C. Kong, Z. Li, H. Yin, and Y. L. Yang, “Wideband diffuse scattering and RCS reduction of microstrip antenna array based on coding metasurface,” Electron. Lett. 53(16), 2534–2537 (2017).
[Crossref]

Kundtz, N.

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[Crossref] [PubMed]

Kung, W. T.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, D.

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

Li, J.

Li, K.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Li, M.

Q. Zhang, M. Li, T. Liao, and X. Cui, “Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface,” Opt. Commun. 411, 93–100 (2018).
[Crossref]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

L. Yao, M. Li, X. Zhai, H. Wang, and J. Dong, “On the miniaturization of polarization insensitive wide angle metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 122(2), 61 (2016).
[Crossref]

Li, S.

Y. Zhou, X. Cao, J. Gao, S. Li, and Y. Zheng, “In-band RCS reduction and gain enhancement of a dual-band PRMS-antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 2716–2720 (2017).
[Crossref]

Y. He, J. Jiang, M. Chen, S. Li, L. Miao, and S. Bie, “Design of an adjustable polarization-independent and wideband electromagnetic absorber,” J. Appl. Phys. 119(10), 105103 (2016).
[Crossref]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin, and polarization–insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).
[Crossref]

Li, W.

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin, and polarization–insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).
[Crossref]

Li, Y.

Y. Fan, J. Wang, Y. Li, J. Zhang, S. Qu, Y. Han, and H. Chen, “Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface,” IEEE Trans. Antenn. Propag. 66(1), 203–208 (2018).
[Crossref]

Li, Z.

J. Su, C. Kong, Z. Li, H. Yin, and Y. L. Yang, “Wideband diffuse scattering and RCS reduction of microstrip antenna array based on coding metasurface,” Electron. Lett. 53(16), 2534–2537 (2017).
[Crossref]

Liang, J.

Y. Zhuang, G. Wang, J. Liang, and Q. Zhang, “Dual-band low-scattering metasurface based on combination of diffusion and absorption,” IEEE Antennas Wirel. Propag. Lett. 16, 2606–2609 (2017).
[Crossref]

Liang, J. G.

Liao, C. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Liao, T.

Q. Zhang, M. Li, T. Liao, and X. Cui, “Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface,” Opt. Commun. 411, 93–100 (2018).
[Crossref]

Lim, S.

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

Liu, S.

L. Zhang, X. Wan, S. Liu, J. Y. Yin, Q. Zhang, H. T. Wu, and T. J. Cui, “Realization of low scattering for a high-gain Fabry–Perot antenna using coding metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3374–3383 (2017).
[Crossref]

Liu, X.

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6(1), 23896 (2016).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Long, M.

M. Long, W. Jiang, and S. Gong, “Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface,” IEEE Antennas Wirel. Propag. Lett. 16, 2534–2537 (2017).
[Crossref]

Lovat, G.

R. Araneo, G. Lovat, and S. Celozzi, “Compact electromagnetic absorbers for frequencies below 1 GHz,” Progrss In Electromagnetic Research 143, 67–86 (2013).
[Crossref]

Lu, H.

Manara, G.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “Low-cost metamaterial absorbers for sub-GHz wireless systems,” IEEE Antennas Wirel. Propag. Lett. 13, 27–30 (2014).
[Crossref]

Massa, G. D.

F. Venneri, S. Costanzo, and G. D. Massa, “Fractal-shaped metamaterial absorbers for multi-reflections mitigation in the UHF-band,” IEEE Antennas Wirel. Propag. Lett. 17(2), 255–258 (2018).
[Crossref]

Miao, L.

Y. He, J. Jiang, M. Chen, S. Li, L. Miao, and S. Bie, “Design of an adjustable polarization-independent and wideband electromagnetic absorber,” J. Appl. Phys. 119(10), 105103 (2016).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Monorchio, A.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “Low-cost metamaterial absorbers for sub-GHz wireless systems,” IEEE Antennas Wirel. Propag. Lett. 13, 27–30 (2014).
[Crossref]

Nakhkash, M.

M. D. Banadaki, A. A. Heidari, and M. Nakhkash, “A metamaterial absorber with a new compact unit cell,” IEEE Antennas Wirel. Propag. Lett. 17(2), 205–208 (2018).
[Crossref]

Niroo-Jazi, M.

E. Erfani, M. Niroo-Jazi, and S. Tatu, “A high gain broadband gradient index metasurface lens antenna,” IEEE Trans. Antenn. Propag. 64(5), 1968–1973 (2016).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pan, W.

Parrott, E. P. J.

C. Han, E. P. J. Parrott, and E. Pickwell-MacPherson, “Tailoring metamaterial microstructures to realize broadband polarization modulation of terahertz waves,” IEEE J. Sel. Top. Quant. 23(4), 4700806 (2017).
[Crossref]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Pickwell-MacPherson, E.

C. Han, E. P. J. Parrott, and E. Pickwell-MacPherson, “Tailoring metamaterial microstructures to realize broadband polarization modulation of terahertz waves,” IEEE J. Sel. Top. Quant. 23(4), 4700806 (2017).
[Crossref]

Qi, M. Q.

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Qu, S.

Y. Fan, J. Wang, Y. Li, J. Zhang, S. Qu, Y. Han, and H. Chen, “Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface,” IEEE Trans. Antenn. Propag. 66(1), 203–208 (2018).
[Crossref]

Ramya, S.

S. Ramya and I. S. Rao, “A compact ultra-thin ultra-wideband microwave metamaterial absorber,” Microw. Opt. Technol. Lett. 59(8), 1837–1845 (2017).
[Crossref]

Rao, I. S.

S. Ramya and I. S. Rao, “A compact ultra-thin ultra-wideband microwave metamaterial absorber,” Microw. Opt. Technol. Lett. 59(8), 1837–1845 (2017).
[Crossref]

Ren, M.

Sabah, C.

O. Akgol, E. Unal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, “Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal,” Optik (Stuttg.) 161, 12–19 (2018).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Shi, H.

Shi, R.

H. Wei, D. Hu, Y. Deng, X. Wu, X. Xiao, Y. Hou, Y. Wang, R. Shi, D. Wang, and J. Du, “Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips,” AIP Adv. 6(12), 125304 (2016).
[Crossref]

Smith, D. R.

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Su, J.

J. Su, C. Kong, Z. Li, H. Yin, and Y. L. Yang, “Wideband diffuse scattering and RCS reduction of microstrip antenna array based on coding metasurface,” Electron. Lett. 53(16), 2534–2537 (2017).
[Crossref]

Sun, S.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Sun, Y.

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6(1), 23896 (2016).
[Crossref] [PubMed]

Tahir, F. A.

M. I. Khan, Q. Fraz, and F. A. Tahir, “Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle,” J. Appl. Phys. 121(4), 045103 (2017).
[Crossref]

Tang, S.

Tang, S. W.

Tatu, S.

E. Erfani, M. Niroo-Jazi, and S. Tatu, “A high gain broadband gradient index metasurface lens antenna,” IEEE Trans. Antenn. Propag. 64(5), 1968–1973 (2016).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tsai, D. P.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Unal, E.

O. Akgol, E. Unal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, “Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal,” Optik (Stuttg.) 161, 12–19 (2018).
[Crossref]

Venneri, F.

F. Venneri, S. Costanzo, and G. D. Massa, “Fractal-shaped metamaterial absorbers for multi-reflections mitigation in the UHF-band,” IEEE Antennas Wirel. Propag. Lett. 17(2), 255–258 (2018).
[Crossref]

Wan, X.

L. Zhang, X. Wan, S. Liu, J. Y. Yin, Q. Zhang, H. T. Wu, and T. J. Cui, “Realization of low scattering for a high-gain Fabry–Perot antenna using coding metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3374–3383 (2017).
[Crossref]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

J. Y. Yin, X. Wan, Q. Zhang, and T. J. Cui, “Ultra wideband polarization–selective conversions of electromagnetic waves by metasurface under large-range incident angles,” Sci. Rep. 5(1), 12476 (2015).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, C. M.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Wang, D.

H. Wei, D. Hu, Y. Deng, X. Wu, X. Xiao, Y. Hou, Y. Wang, R. Shi, D. Wang, and J. Du, “Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips,” AIP Adv. 6(12), 125304 (2016).
[Crossref]

Wang, G.

Y. Zhuang, G. Wang, J. Liang, and Q. Zhang, “Dual-band low-scattering metasurface based on combination of diffusion and absorption,” IEEE Antennas Wirel. Propag. Lett. 16, 2606–2609 (2017).
[Crossref]

Wang, G. M.

Wang, H.

L. Yao, M. Li, X. Zhai, H. Wang, and J. Dong, “On the miniaturization of polarization insensitive wide angle metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 122(2), 61 (2016).
[Crossref]

Wang, J.

J. Wang and Y. Jiang, “Gradient metasurface for four-direction anomalous reflection in terahertz,” Opt. Commun. 416, 125–129 (2018).
[Crossref]

Y. Fan, J. Wang, Y. Li, J. Zhang, S. Qu, Y. Han, and H. Chen, “Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface,” IEEE Trans. Antenn. Propag. 66(1), 203–208 (2018).
[Crossref]

H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014).
[Crossref] [PubMed]

Wang, Y.

H. Wei, D. Hu, Y. Deng, X. Wu, X. Xiao, Y. Hou, Y. Wang, R. Shi, D. Wang, and J. Du, “Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips,” AIP Adv. 6(12), 125304 (2016).
[Crossref]

Wei, H.

H. Wei, D. Hu, Y. Deng, X. Wu, X. Xiao, Y. Hou, Y. Wang, R. Shi, D. Wang, and J. Du, “Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips,” AIP Adv. 6(12), 125304 (2016).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Wu, H. T.

L. Zhang, X. Wan, S. Liu, J. Y. Yin, Q. Zhang, H. T. Wu, and T. J. Cui, “Realization of low scattering for a high-gain Fabry–Perot antenna using coding metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3374–3383 (2017).
[Crossref]

Wu, W.

Wu, X.

H. Wei, D. Hu, Y. Deng, X. Wu, X. Xiao, Y. Hou, Y. Wang, R. Shi, D. Wang, and J. Du, “Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips,” AIP Adv. 6(12), 125304 (2016).
[Crossref]

Xiao, S.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Xiao, X.

H. Wei, D. Hu, Y. Deng, X. Wu, X. Xiao, Y. Hou, Y. Wang, R. Shi, D. Wang, and J. Du, “Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips,” AIP Adv. 6(12), 125304 (2016).
[Crossref]

Xie, J.

Xu, H. X.

Xu, J.

Xu, S.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Xu, Z.

Yang, F.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Yang, H.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6(1), 23896 (2016).
[Crossref] [PubMed]

Yang, J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Yang, K. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Yang, Y.

W. Zuo, Y. Yang, X. He, D. Zhan, and Q. Zhang, “A miniaturized metamaterial absorber for ultrahigh-frequency RFID system,” IEEE Antennas Wirel. Propag. Lett. 16, 928–931 (2017).
[Crossref]

Yang, Y. L.

J. Su, C. Kong, Z. Li, H. Yin, and Y. L. Yang, “Wideband diffuse scattering and RCS reduction of microstrip antenna array based on coding metasurface,” Electron. Lett. 53(16), 2534–2537 (2017).
[Crossref]

Yao, L.

L. Yao, M. Li, X. Zhai, H. Wang, and J. Dong, “On the miniaturization of polarization insensitive wide angle metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 122(2), 61 (2016).
[Crossref]

Yin, H.

J. Su, C. Kong, Z. Li, H. Yin, and Y. L. Yang, “Wideband diffuse scattering and RCS reduction of microstrip antenna array based on coding metasurface,” Electron. Lett. 53(16), 2534–2537 (2017).
[Crossref]

Yin, J. Y.

L. Zhang, X. Wan, S. Liu, J. Y. Yin, Q. Zhang, H. T. Wu, and T. J. Cui, “Realization of low scattering for a high-gain Fabry–Perot antenna using coding metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3374–3383 (2017).
[Crossref]

J. Y. Yin, X. Wan, Q. Zhang, and T. J. Cui, “Ultra wideband polarization–selective conversions of electromagnetic waves by metasurface under large-range incident angles,” Sci. Rep. 5(1), 12476 (2015).
[Crossref] [PubMed]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, X.

Zhai, X.

L. Yao, M. Li, X. Zhai, H. Wang, and J. Dong, “On the miniaturization of polarization insensitive wide angle metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 122(2), 61 (2016).
[Crossref]

Zhan, D.

W. Zuo, Y. Yang, X. He, D. Zhan, and Q. Zhang, “A miniaturized metamaterial absorber for ultrahigh-frequency RFID system,” IEEE Antennas Wirel. Propag. Lett. 16, 928–931 (2017).
[Crossref]

Zhang, A.

Zhang, C.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Zhang, D.

D. Zhang, M. Ren, W. Wu, N. Gao, X. Yu, W. Cai, X. Zhang, and J. Xu, “Nanoscale beam splitters based on gradient metasurfaces,” Opt. Lett. 43(2), 267–270 (2018).
[Crossref] [PubMed]

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin, and polarization–insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).
[Crossref]

Zhang, J.

Y. Fan, J. Wang, Y. Li, J. Zhang, S. Qu, Y. Han, and H. Chen, “Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface,” IEEE Trans. Antenn. Propag. 66(1), 203–208 (2018).
[Crossref]

Zhang, L.

Zhang, Q.

Q. Zhang, M. Li, T. Liao, and X. Cui, “Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface,” Opt. Commun. 411, 93–100 (2018).
[Crossref]

Y. Zhuang, G. Wang, J. Liang, and Q. Zhang, “Dual-band low-scattering metasurface based on combination of diffusion and absorption,” IEEE Antennas Wirel. Propag. Lett. 16, 2606–2609 (2017).
[Crossref]

L. Zhang, X. Wan, S. Liu, J. Y. Yin, Q. Zhang, H. T. Wu, and T. J. Cui, “Realization of low scattering for a high-gain Fabry–Perot antenna using coding metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3374–3383 (2017).
[Crossref]

W. Zuo, Y. Yang, X. He, D. Zhan, and Q. Zhang, “A miniaturized metamaterial absorber for ultrahigh-frequency RFID system,” IEEE Antennas Wirel. Propag. Lett. 16, 928–931 (2017).
[Crossref]

J. Y. Yin, X. Wan, Q. Zhang, and T. J. Cui, “Ultra wideband polarization–selective conversions of electromagnetic waves by metasurface under large-range incident angles,” Sci. Rep. 5(1), 12476 (2015).
[Crossref] [PubMed]

Zhang, X.

Zhang, Z.

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin, and polarization–insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).
[Crossref]

Zhao, J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zhao, Y.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6(1), 23896 (2016).
[Crossref] [PubMed]

Zheng, Y.

Y. Zhou, X. Cao, J. Gao, S. Li, and Y. Zheng, “In-band RCS reduction and gain enhancement of a dual-band PRMS-antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 2716–2720 (2017).
[Crossref]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Zhou, L.

W. Pan, T. Cai, S. Tang, L. Zhou, and J. Dong, “Trifunctional metasurfaces: concept and characterizations,” Opt. Express 26(13), 17447–17457 (2018).
[Crossref] [PubMed]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Zhou, P.

Zhou, Y.

Y. Zhou, X. Cao, J. Gao, S. Li, and Y. Zheng, “In-band RCS reduction and gain enhancement of a dual-band PRMS-antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 2716–2720 (2017).
[Crossref]

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6(1), 23896 (2016).
[Crossref] [PubMed]

Zhuang, Y.

Y. Zhuang, G. Wang, J. Liang, and Q. Zhang, “Dual-band low-scattering metasurface based on combination of diffusion and absorption,” IEEE Antennas Wirel. Propag. Lett. 16, 2606–2609 (2017).
[Crossref]

Zuo, W.

W. Zuo, Y. Yang, X. He, D. Zhan, and Q. Zhang, “A miniaturized metamaterial absorber for ultrahigh-frequency RFID system,” IEEE Antennas Wirel. Propag. Lett. 16, 928–931 (2017).
[Crossref]

AIP Adv. (1)

H. Wei, D. Hu, Y. Deng, X. Wu, X. Xiao, Y. Hou, Y. Wang, R. Shi, D. Wang, and J. Du, “Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips,” AIP Adv. 6(12), 125304 (2016).
[Crossref]

Appl. Phys. Lett. (1)

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

L. Yao, M. Li, X. Zhai, H. Wang, and J. Dong, “On the miniaturization of polarization insensitive wide angle metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 122(2), 61 (2016).
[Crossref]

Electron. Lett. (1)

J. Su, C. Kong, Z. Li, H. Yin, and Y. L. Yang, “Wideband diffuse scattering and RCS reduction of microstrip antenna array based on coding metasurface,” Electron. Lett. 53(16), 2534–2537 (2017).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (7)

M. Long, W. Jiang, and S. Gong, “Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface,” IEEE Antennas Wirel. Propag. Lett. 16, 2534–2537 (2017).
[Crossref]

Y. Zhou, X. Cao, J. Gao, S. Li, and Y. Zheng, “In-band RCS reduction and gain enhancement of a dual-band PRMS-antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 2716–2720 (2017).
[Crossref]

F. Venneri, S. Costanzo, and G. D. Massa, “Fractal-shaped metamaterial absorbers for multi-reflections mitigation in the UHF-band,” IEEE Antennas Wirel. Propag. Lett. 17(2), 255–258 (2018).
[Crossref]

M. D. Banadaki, A. A. Heidari, and M. Nakhkash, “A metamaterial absorber with a new compact unit cell,” IEEE Antennas Wirel. Propag. Lett. 17(2), 205–208 (2018).
[Crossref]

W. Zuo, Y. Yang, X. He, D. Zhan, and Q. Zhang, “A miniaturized metamaterial absorber for ultrahigh-frequency RFID system,” IEEE Antennas Wirel. Propag. Lett. 16, 928–931 (2017).
[Crossref]

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “Low-cost metamaterial absorbers for sub-GHz wireless systems,” IEEE Antennas Wirel. Propag. Lett. 13, 27–30 (2014).
[Crossref]

Y. Zhuang, G. Wang, J. Liang, and Q. Zhang, “Dual-band low-scattering metasurface based on combination of diffusion and absorption,” IEEE Antennas Wirel. Propag. Lett. 16, 2606–2609 (2017).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

C. Han, E. P. J. Parrott, and E. Pickwell-MacPherson, “Tailoring metamaterial microstructures to realize broadband polarization modulation of terahertz waves,” IEEE J. Sel. Top. Quant. 23(4), 4700806 (2017).
[Crossref]

IEEE Trans. Antenn. Propag. (4)

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

E. Erfani, M. Niroo-Jazi, and S. Tatu, “A high gain broadband gradient index metasurface lens antenna,” IEEE Trans. Antenn. Propag. 64(5), 1968–1973 (2016).
[Crossref]

Y. Fan, J. Wang, Y. Li, J. Zhang, S. Qu, Y. Han, and H. Chen, “Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface,” IEEE Trans. Antenn. Propag. 66(1), 203–208 (2018).
[Crossref]

L. Zhang, X. Wan, S. Liu, J. Y. Yin, Q. Zhang, H. T. Wu, and T. J. Cui, “Realization of low scattering for a high-gain Fabry–Perot antenna using coding metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3374–3383 (2017).
[Crossref]

J. Appl. Phys. (3)

Y. He, J. Jiang, M. Chen, S. Li, L. Miao, and S. Bie, “Design of an adjustable polarization-independent and wideband electromagnetic absorber,” J. Appl. Phys. 119(10), 105103 (2016).
[Crossref]

M. I. Khan, Q. Fraz, and F. A. Tahir, “Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle,” J. Appl. Phys. 121(4), 045103 (2017).
[Crossref]

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin, and polarization–insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).
[Crossref]

Light Sci. Appl. (2)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref]

Microw. Opt. Technol. Lett. (1)

S. Ramya and I. S. Rao, “A compact ultra-thin ultra-wideband microwave metamaterial absorber,” Microw. Opt. Technol. Lett. 59(8), 1837–1845 (2017).
[Crossref]

Nano Lett. (1)

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[Crossref] [PubMed]

Opt. Commun. (2)

Q. Zhang, M. Li, T. Liao, and X. Cui, “Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface,” Opt. Commun. 411, 93–100 (2018).
[Crossref]

J. Wang and Y. Jiang, “Gradient metasurface for four-direction anomalous reflection in terahertz,” Opt. Commun. 416, 125–129 (2018).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Optik (Stuttg.) (1)

O. Akgol, E. Unal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, “Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal,” Optik (Stuttg.) 161, 12–19 (2018).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Progrss In Electromagnetic Research (1)

R. Araneo, G. Lovat, and S. Celozzi, “Compact electromagnetic absorbers for frequencies below 1 GHz,” Progrss In Electromagnetic Research 143, 67–86 (2013).
[Crossref]

Sci. Rep. (5)

J. Y. Yin, X. Wan, Q. Zhang, and T. J. Cui, “Ultra wideband polarization–selective conversions of electromagnetic waves by metasurface under large-range incident angles,” Sci. Rep. 5(1), 12476 (2015).
[Crossref] [PubMed]

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6(1), 23896 (2016).
[Crossref] [PubMed]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Science (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The design method of the polarization conversion absorber (PCA).
Fig. 2
Fig. 2 Perspective view of the PCA.
Fig. 3
Fig. 3 Performance of the uniform layout. (a) Top view. (b) The reflected amplitude. (c) The reflected phase. (d) Absorption rate. (e) Polarization conversion ratio (PCR). (f) The azimuth angle ψ and ellipticity angle κ. (g) Axial ratio.
Fig. 4
Fig. 4 Performance of different lattices. (a) Top view. (b) Reflected magnitude. (c) Reflected phase. (d) Phase difference.
Fig. 5
Fig. 5 Design of coding layout. (a) Design flow. (b) Calculated metallic plate. (c) Calculated coding layout.
Fig. 6
Fig. 6 Scattering performance under x-polarized incidence. (a) Monostatic RCS under normal incidence. (b) Bistatic RCS reduction in the specular direction under different incident angles. (c) Metallic plate at 4.3GHz. (d) Metallic plate at 11.1GHz. (e) Metallic plate at 15.0GHz. (f) Metallic plate at 21.1GHz. (g) Coding layout at 4.3GHz. (h) Coding layout at 11.1GHz. (i) Coding layout at 15.0GHz. (j) Coding layout at 21.1GHz.
Fig. 7
Fig. 7 Fabricated reconfigurable metasurface and the measurement setup. (a) The partially completed state. (b, c) Completed states: (b) uniform layout, (c) coding layout. (d) The basic measurement setup.
Fig. 8
Fig. 8 Measured and simulated results. (a) The reflected amplitude of the uniform layout. (b) The reflection reduction magnitude of the irregular layout compared to full metal board.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

( R x R y ) = ( r x x r x y r y x r y y ) ( I x I y ) = R l i n ( I x I y )
A x ( f ) = 1 R x 2 ( f ) R y 2 ( f ) = 1 ( r x x I x ) 2 ( r y x I x ) 2
R x = r x x I x R y = r y x I x
P C R = R y 2 / ( R x 2 + R y 2 ) = r y x 2 / ( r x x 2 + r y x 2 )
tan 2 ψ = 2 r x x r y x cos ( ζ ) r x x 2 r y x 2
sin 2 κ = 2 r x x r y x cos ( ζ ) r x x 2 + r y x 2
ζ = P h a s e r y x P h a s e r x x
A R = | 1 tan κ |
F ( θ , φ ) = m , n A m , n e j φ θ , φ e j φ m , n
φ θ , φ = ( m 1 / 2 ) ( k d sin θ cos φ ) + ( n 1 / 2 ) ( k d sin θ sin φ )
F i t n e s s = m i n { F ( θ , φ ) max }

Metrics