Abstract

We report a multi-pass tunable diode laser absorption spectrometer based on the frequency-modulation spectroscopy (FMS) technique. It has the advantage of high scan speed and is immune to the etalon effect. A multi-pass Herriott-type cell was used in the spectrometer to increase the effective optical length to 17.5 m and compact the physical dimensions of the spectrometer to 60×30×30 cm3. Noise due to low-frequency fluctuation of the laser power and the 1/f noise in the rapid detection are sufficiently reduced by FMS. Interference fringes are effectively suppressed when the modulation frequency equals to integer or half-integer times of their free spectral range (FSR). An absorption line of C2H2 around 1.51 µm was recorded with the spectrometer to demonstrate its capabilities. The response frequency of the spectrometer is up to 100 kHz (10 µs) thanks to the high modulation frequency of FMS. The detection sensitivity of the spectrometer is about 240 ppb (3σ) at 100 kHz measurement repetition rate. The amplitude of the absorption signal is highly linear to the C2H2 concentration in the range of 300 ppb -100 ppm. Based on the Allan variation, the detection limit was determined to be 18 ppb with a detection time of 166 s.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Development of an IR tunable diode laser absorption spectrometer for trace humidity measurements at atmospheric pressure

Christopher S. Edwards, Geoffrey P. Barwood, Patrick Gill, Bernd Schirmer, Holger Venzke, and Adrian Melling
Appl. Opt. 38(21) 4699-4704 (1999)

Characterization of fiber-laser-based sub-Doppler NICE-OHMS for quantitative trace gas detection

Aleksandra Foltynowicz, Weiguang Ma, and Ove Axner
Opt. Express 16(19) 14689-14702 (2008)

High-resolution trace gas detection by sub-Doppler noise-immune cavity-enhanced optical heterodyne molecular spectrometry: application to detection of acetylene in human breath

Gang Zhao, Thomas Hausmaninger, Florian M. Schmidt, Weiguang Ma, and Ove Axner
Opt. Express 27(13) 17940-17953 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
    [Crossref] [PubMed]
  2. M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors 9, 10447–10512 (2009).
    [Crossref] [PubMed]
  3. C. Li, L. Dong, C. Zheng, and F. K. Tittela, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 µ m room-temperature CW interband cascade laser,” Sens. Actuators B: Chem. 232, 188–194 (2016).
    [Crossref]
  4. A. Pogány, S. Wagner, O. Werhahn, and V. Ebert, “Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor,” Appl. Spectrosc. 69, 257–268 (2015).
    [Crossref] [PubMed]
  5. P. Zhimin, D. Yanjun, C. Lu, L. Xiaohang, and Z. Kangjie, “Calibration-free wavelength modulated TDLAS under high absorbance conditions,” Opt. Express 19, 23104–23110 (2011).
    [Crossref] [PubMed]
  6. W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
    [Crossref]
  7. Z. Li, W. Ma, X. Fu, W. Tan, G. Zhao, L. Dong, L. Zhang, W. Yin, and S. Jia, “Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection,” Opt. Express 15, 17961–17971 (2013).
    [Crossref]
  8. L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
    [Crossref]
  9. W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
    [Crossref]
  10. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
    [Crossref]
  11. D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002).
    [Crossref]
  12. W. Zhao, X. Gao, L. Hao, M. Huang, T. Huang, T. Wu, W. Zhang, and W. Chen, “Use of integrated cavity output spectroscopy for studying gas phase chemistry in a smog chamber: Characterizing the photolysis of methyl nitrite (CH3ONO),” Vib. Spectrosc. 44, 388–393 (2007).
    [Crossref]
  13. K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B: Chem. 220, 1000–1005 (2015).
    [Crossref]
  14. S.-Q. Wu, T. Kimishima, H. Kuze, and N. Takeuchi, “Efficient reduction of fringe noise in trace gas detection with diode laser multipass absorption spectroscopy,” Jpn. J. Appl. Phys. 39, 4034–4040 (2000).
    [Crossref]
  15. J. A. Silver and A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988).
    [Crossref] [PubMed]
  16. J. A. Silver, D. S. Bomse, and A. C. Stanton, “Diode laser measurements of trace concentrations of ammonia in an entrained-flow coal reactor,” Appl. Opt. 30, 1505–1511 (1991).
    [Crossref] [PubMed]
  17. B. Xiong, Z. Du, and J. Li, “Modulation index optimization for optical fringe suppression in wavelength modulation spectroscopy,” Rev. Sci. Instrum. 86, 113104 (2015).
    [Crossref] [PubMed]
  18. J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation-Part 2: Experimental investigation,” J. Light. Technol. 29, 987–996 (2011).
    [Crossref]
  19. L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
    [Crossref] [PubMed]
  20. C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53, 356–367 (2014).
    [Crossref] [PubMed]
  21. H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407–416 (2007).
    [Crossref]
  22. P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102, 313–329 (2011).
    [Crossref]
  23. A. Hartmann, R. Strzoda, R. Schrobenhauser, and R. Weigel, “Ultra-compact TDLAS humidity measurement cell with advanced signal processing,” Appl. Phys. B 115, 263–268 (2014).
    [Crossref]
  24. J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells,” Appl. Phys. B 100, 291–302 (2010).
    [Crossref]
  25. P. W. Werle, B. Scheumann, and J. Schandl, “Real-time signal-processing concepts for trace-gas analysis by diode-laser spectroscopy,” SPIE Opt. Eng. 33, 3093–3106 (1994).
    [Crossref]
  26. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54, 197–236 (1998).
    [Crossref]
  27. D. T. Cassidy and J. Reid, “Harmonic detection with tunable diode lasers-two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
    [Crossref]
  28. P. Ehlers, A. C. Johansson, I. Silander, A. Foltynowicz, and O. Axner, “Use of etalon-immune distances to reduce the influence of background signals in frequency-modulation spectroscopy and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 31, 2938–2945 (2014).
    [Crossref]
  29. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [Crossref] [PubMed]
  30. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [Crossref] [PubMed]
  31. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
    [Crossref] [PubMed]
  32. W. Armerding, M. Spiekermann, J. Walter, and F. J. Comes, “Multipass optical absorption spectroscopy: a fast-scanning laser spectrometer for the in situ determination of atmospheric trace-gas components, in particular OH,” Appl. Opt. 35, 4206–4219 (1996).
    [Crossref] [PubMed]
  33. S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129–2135 (1996).
    [Crossref]
  34. G. E. Hall and S. W. North, “Transient laser frequency modulation spectroscopy,” Ann. Rev. Phys. Chem. 51, 243–274 (2000).
    [Crossref]
  35. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985).
    [Crossref]
  36. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy; Theory of lineshapes and signal-tonoise analysis,” Appl. Phys. B 32, 145–152 (1983).
    [Crossref]
  37. P. Ehlers, J. Wang, I. Silander, and O. Axner, “Doppler broadened NICE-OHMS beyond the triplet formalism: assessment of optimum modulation index,” J. Opt. Soc. Am. B 31, 1499–1507 (2014).
    [Crossref]
  38. H. Deng, J. Sun, P. Li, Y. Liu, B. Yu, and J. Li, “Sensitive detection of acetylene by second derivative spectra with tunable diode laser absorption spectroscopy,” Opt. Appl. 46, 353–363 (2016).

2016 (2)

C. Li, L. Dong, C. Zheng, and F. K. Tittela, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 µ m room-temperature CW interband cascade laser,” Sens. Actuators B: Chem. 232, 188–194 (2016).
[Crossref]

H. Deng, J. Sun, P. Li, Y. Liu, B. Yu, and J. Li, “Sensitive detection of acetylene by second derivative spectra with tunable diode laser absorption spectroscopy,” Opt. Appl. 46, 353–363 (2016).

2015 (3)

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B: Chem. 220, 1000–1005 (2015).
[Crossref]

B. Xiong, Z. Du, and J. Li, “Modulation index optimization for optical fringe suppression in wavelength modulation spectroscopy,” Rev. Sci. Instrum. 86, 113104 (2015).
[Crossref] [PubMed]

A. Pogány, S. Wagner, O. Werhahn, and V. Ebert, “Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor,” Appl. Spectrosc. 69, 257–268 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (1)

Z. Li, W. Ma, X. Fu, W. Tan, G. Zhao, L. Dong, L. Zhang, W. Yin, and S. Jia, “Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection,” Opt. Express 15, 17961–17971 (2013).
[Crossref]

2011 (3)

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation-Part 2: Experimental investigation,” J. Light. Technol. 29, 987–996 (2011).
[Crossref]

P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102, 313–329 (2011).
[Crossref]

P. Zhimin, D. Yanjun, C. Lu, L. Xiaohang, and Z. Kangjie, “Calibration-free wavelength modulated TDLAS under high absorbance conditions,” Opt. Express 19, 23104–23110 (2011).
[Crossref] [PubMed]

2010 (1)

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells,” Appl. Phys. B 100, 291–302 (2010).
[Crossref]

2009 (1)

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors 9, 10447–10512 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (4)

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref] [PubMed]

W. Zhao, X. Gao, L. Hao, M. Huang, T. Huang, T. Wu, W. Zhang, and W. Chen, “Use of integrated cavity output spectroscopy for studying gas phase chemistry in a smog chamber: Characterizing the photolysis of methyl nitrite (CH3ONO),” Vib. Spectrosc. 44, 388–393 (2007).
[Crossref]

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407–416 (2007).
[Crossref]

2002 (1)

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002).
[Crossref]

2000 (2)

S.-Q. Wu, T. Kimishima, H. Kuze, and N. Takeuchi, “Efficient reduction of fringe noise in trace gas detection with diode laser multipass absorption spectroscopy,” Jpn. J. Appl. Phys. 39, 4034–4040 (2000).
[Crossref]

G. E. Hall and S. W. North, “Transient laser frequency modulation spectroscopy,” Ann. Rev. Phys. Chem. 51, 243–274 (2000).
[Crossref]

1999 (1)

1998 (2)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54, 197–236 (1998).
[Crossref]

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
[Crossref]

1996 (2)

1994 (2)

J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
[Crossref] [PubMed]

P. W. Werle, B. Scheumann, and J. Schandl, “Real-time signal-processing concepts for trace-gas analysis by diode-laser spectroscopy,” SPIE Opt. Eng. 33, 3093–3106 (1994).
[Crossref]

1993 (1)

1992 (1)

1991 (1)

1988 (1)

1985 (1)

1983 (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy; Theory of lineshapes and signal-tonoise analysis,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

1982 (1)

D. T. Cassidy and J. Reid, “Harmonic detection with tunable diode lasers-two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
[Crossref]

1980 (1)

Armerding, W.

Ashfold, M. N. R.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
[Crossref]

Assefa, Z.

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors 9, 10447–10512 (2009).
[Crossref] [PubMed]

Axner, O.

Baer, D. S.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002).
[Crossref]

Bain, J. R. P.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation-Part 2: Experimental investigation,” J. Light. Technol. 29, 987–996 (2011).
[Crossref]

Bakhirkin, Y.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref] [PubMed]

Begashaw, I.

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors 9, 10447–10512 (2009).
[Crossref] [PubMed]

Bililign, S.

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors 9, 10447–10512 (2009).
[Crossref] [PubMed]

Bjorklund, G. C.

Bomse, D. S.

Cassidy, D. T.

D. T. Cassidy and J. Reid, “Harmonic detection with tunable diode lasers-two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
[Crossref]

Cha, H.

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

Chen, W.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B: Chem. 220, 1000–1005 (2015).
[Crossref]

W. Zhao, X. Gao, L. Hao, M. Huang, T. Huang, T. Wu, W. Zhang, and W. Chen, “Use of integrated cavity output spectroscopy for studying gas phase chemistry in a smog chamber: Characterizing the photolysis of methyl nitrite (CH3ONO),” Vib. Spectrosc. 44, 388–393 (2007).
[Crossref]

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

Collingwood, M. S.

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors 9, 10447–10512 (2009).
[Crossref] [PubMed]

Comes, F. J.

Deng, H.

H. Deng, J. Sun, P. Li, Y. Liu, B. Yu, and J. Li, “Sensitive detection of acetylene by second derivative spectra with tunable diode laser absorption spectroscopy,” Opt. Appl. 46, 353–363 (2016).

Dong, L.

C. Li, L. Dong, C. Zheng, and F. K. Tittela, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 µ m room-temperature CW interband cascade laser,” Sens. Actuators B: Chem. 232, 188–194 (2016).
[Crossref]

Z. Li, W. Ma, X. Fu, W. Tan, G. Zhao, L. Dong, L. Zhang, W. Yin, and S. Jia, “Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection,” Opt. Express 15, 17961–17971 (2013).
[Crossref]

Du, Z.

B. Xiong, Z. Du, and J. Li, “Modulation index optimization for optical fringe suppression in wavelength modulation spectroscopy,” Rev. Sci. Instrum. 86, 113104 (2015).
[Crossref] [PubMed]

Dubé, P.

Duffin, K.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation-Part 2: Experimental investigation,” J. Light. Technol. 29, 987–996 (2011).
[Crossref]

Ebert, V.

Ehlers, P.

Farooq, A.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407–416 (2007).
[Crossref]

Fei, R.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129–2135 (1996).
[Crossref]

Fiddler, M. N.

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors 9, 10447–10512 (2009).
[Crossref] [PubMed]

Foltynowicz, A.

Fu, X.

Z. Li, W. Ma, X. Fu, W. Tan, G. Zhao, L. Dong, L. Zhang, W. Yin, and S. Jia, “Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection,” Opt. Express 15, 17961–17971 (2013).
[Crossref]

Gao, X.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B: Chem. 220, 1000–1005 (2015).
[Crossref]

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

W. Zhao, X. Gao, L. Hao, M. Huang, T. Huang, T. Wu, W. Zhang, and W. Chen, “Use of integrated cavity output spectroscopy for studying gas phase chemistry in a smog chamber: Characterizing the photolysis of methyl nitrite (CH3ONO),” Vib. Spectrosc. 44, 388–393 (2007).
[Crossref]

Gehrtz, M.

Goldenstein, C. S.

Gupta, M.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002).
[Crossref]

Hall, G. E.

G. E. Hall and S. W. North, “Transient laser frequency modulation spectroscopy,” Ann. Rev. Phys. Chem. 51, 243–274 (2000).
[Crossref]

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129–2135 (1996).
[Crossref]

Hall, J. L.

Hanson, R. K.

Hao, L.

W. Zhao, X. Gao, L. Hao, M. Huang, T. Huang, T. Wu, W. Zhang, and W. Chen, “Use of integrated cavity output spectroscopy for studying gas phase chemistry in a smog chamber: Characterizing the photolysis of methyl nitrite (CH3ONO),” Vib. Spectrosc. 44, 388–393 (2007).
[Crossref]

Hartmann, A.

A. Hartmann, R. Strzoda, R. Schrobenhauser, and R. Weigel, “Ultra-compact TDLAS humidity measurement cell with advanced signal processing,” Appl. Phys. B 115, 263–268 (2014).
[Crossref]

Hodgkinson, J.

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells,” Appl. Phys. B 100, 291–302 (2010).
[Crossref]

Huang, M.

W. Zhao, X. Gao, L. Hao, M. Huang, T. Huang, T. Wu, W. Zhang, and W. Chen, “Use of integrated cavity output spectroscopy for studying gas phase chemistry in a smog chamber: Characterizing the photolysis of methyl nitrite (CH3ONO),” Vib. Spectrosc. 44, 388–393 (2007).
[Crossref]

Huang, T.

W. Zhao, X. Gao, L. Hao, M. Huang, T. Huang, T. Wu, W. Zhang, and W. Chen, “Use of integrated cavity output spectroscopy for studying gas phase chemistry in a smog chamber: Characterizing the photolysis of methyl nitrite (CH3ONO),” Vib. Spectrosc. 44, 388–393 (2007).
[Crossref]

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

Jeffries, J. B.

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53, 356–367 (2014).
[Crossref] [PubMed]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407–416 (2007).
[Crossref]

Jia, S.

Z. Li, W. Ma, X. Fu, W. Tan, G. Zhao, L. Dong, L. Zhang, W. Yin, and S. Jia, “Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection,” Opt. Express 15, 17961–17971 (2013).
[Crossref]

Johansson, A. C.

Johnstone, W.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation-Part 2: Experimental investigation,” J. Light. Technol. 29, 987–996 (2011).
[Crossref]

Kangjie, Z.

Kimishima, T.

S.-Q. Wu, T. Kimishima, H. Kuze, and N. Takeuchi, “Efficient reduction of fringe noise in trace gas detection with diode laser multipass absorption spectroscopy,” Jpn. J. Appl. Phys. 39, 4034–4040 (2000).
[Crossref]

Kuze, H.

S.-Q. Wu, T. Kimishima, H. Kuze, and N. Takeuchi, “Efficient reduction of fringe noise in trace gas detection with diode laser multipass absorption spectroscopy,” Jpn. J. Appl. Phys. 39, 4034–4040 (2000).
[Crossref]

Lengden, M.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation-Part 2: Experimental investigation,” J. Light. Technol. 29, 987–996 (2011).
[Crossref]

Lenth, W.

J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
[Crossref] [PubMed]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy; Theory of lineshapes and signal-tonoise analysis,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy; Theory of lineshapes and signal-tonoise analysis,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Lewicki, R.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref] [PubMed]

Li, C.

C. Li, L. Dong, C. Zheng, and F. K. Tittela, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 µ m room-temperature CW interband cascade laser,” Sens. Actuators B: Chem. 232, 188–194 (2016).
[Crossref]

Li, H.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407–416 (2007).
[Crossref]

Li, J.

H. Deng, J. Sun, P. Li, Y. Liu, B. Yu, and J. Li, “Sensitive detection of acetylene by second derivative spectra with tunable diode laser absorption spectroscopy,” Opt. Appl. 46, 353–363 (2016).

B. Xiong, Z. Du, and J. Li, “Modulation index optimization for optical fringe suppression in wavelength modulation spectroscopy,” Rev. Sci. Instrum. 86, 113104 (2015).
[Crossref] [PubMed]

Li, P.

H. Deng, J. Sun, P. Li, Y. Liu, B. Yu, and J. Li, “Sensitive detection of acetylene by second derivative spectra with tunable diode laser absorption spectroscopy,” Opt. Appl. 46, 353–363 (2016).

Li, Z.

Z. Li, W. Ma, X. Fu, W. Tan, G. Zhao, L. Dong, L. Zhang, W. Yin, and S. Jia, “Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection,” Opt. Express 15, 17961–17971 (2013).
[Crossref]

Liu, K.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B: Chem. 220, 1000–1005 (2015).
[Crossref]

Liu, Y.

H. Deng, J. Sun, P. Li, Y. Liu, B. Yu, and J. Li, “Sensitive detection of acetylene by second derivative spectra with tunable diode laser absorption spectroscopy,” Opt. Appl. 46, 353–363 (2016).

Lu, C.

Ma, L.-S.

Ma, W.

Z. Li, W. Ma, X. Fu, W. Tan, G. Zhao, L. Dong, L. Zhang, W. Yin, and S. Jia, “Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection,” Opt. Express 15, 17961–17971 (2013).
[Crossref]

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
[Crossref]

Masiyano, D.

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells,” Appl. Phys. B 100, 291–302 (2010).
[Crossref]

McCurdy, M. R.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref] [PubMed]

Mickens, M. A.

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors 9, 10447–10512 (2009).
[Crossref] [PubMed]

Newman, S. M.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
[Crossref]

North, S. W.

G. E. Hall and S. W. North, “Transient laser frequency modulation spectroscopy,” Ann. Rev. Phys. Chem. 51, 243–274 (2000).
[Crossref]

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129–2135 (1996).
[Crossref]

O’Keefe, A.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002).
[Crossref]

Orr-Ewing, A. J.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
[Crossref]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy; Theory of lineshapes and signal-tonoise analysis,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Paul, J. B.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002).
[Crossref]

Philippe, L. C.

Pogány, A.

Reid, J.

D. T. Cassidy and J. Reid, “Harmonic detection with tunable diode lasers-two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
[Crossref]

Ruxton, K.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation-Part 2: Experimental investigation,” J. Light. Technol. 29, 987–996 (2011).
[Crossref]

Schandl, J.

P. W. Werle, B. Scheumann, and J. Schandl, “Real-time signal-processing concepts for trace-gas analysis by diode-laser spectroscopy,” SPIE Opt. Eng. 33, 3093–3106 (1994).
[Crossref]

Scheumann, B.

P. W. Werle, B. Scheumann, and J. Schandl, “Real-time signal-processing concepts for trace-gas analysis by diode-laser spectroscopy,” SPIE Opt. Eng. 33, 3093–3106 (1994).
[Crossref]

Schrobenhauser, R.

A. Hartmann, R. Strzoda, R. Schrobenhauser, and R. Weigel, “Ultra-compact TDLAS humidity measurement cell with advanced signal processing,” Appl. Phys. B 115, 263–268 (2014).
[Crossref]

Schultz, I. A.

Silander, I.

Silver, J. A.

Spiekermann, M.

Stanton, A. C.

Stewart, G.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation-Part 2: Experimental investigation,” J. Light. Technol. 29, 987–996 (2011).
[Crossref]

Strand, C. L.

Strzoda, R.

A. Hartmann, R. Strzoda, R. Schrobenhauser, and R. Weigel, “Ultra-compact TDLAS humidity measurement cell with advanced signal processing,” Appl. Phys. B 115, 263–268 (2014).
[Crossref]

Sun, J.

H. Deng, J. Sun, P. Li, Y. Liu, B. Yu, and J. Li, “Sensitive detection of acetylene by second derivative spectra with tunable diode laser absorption spectroscopy,” Opt. Appl. 46, 353–363 (2016).

Sun, K.

Supplee, J. M.

Takeuchi, N.

S.-Q. Wu, T. Kimishima, H. Kuze, and N. Takeuchi, “Efficient reduction of fringe noise in trace gas detection with diode laser multipass absorption spectroscopy,” Jpn. J. Appl. Phys. 39, 4034–4040 (2000).
[Crossref]

Tan, T.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B: Chem. 220, 1000–1005 (2015).
[Crossref]

Tan, W.

Z. Li, W. Ma, X. Fu, W. Tan, G. Zhao, L. Dong, L. Zhang, W. Yin, and S. Jia, “Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection,” Opt. Express 15, 17961–17971 (2013).
[Crossref]

Tatam, R. P.

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells,” Appl. Phys. B 100, 291–302 (2010).
[Crossref]

Tittel, F. K.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref] [PubMed]

Tittela, F. K.

C. Li, L. Dong, C. Zheng, and F. K. Tittela, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 µ m room-temperature CW interband cascade laser,” Sens. Actuators B: Chem. 232, 188–194 (2016).
[Crossref]

Wagner, S.

Walter, J.

Wang, G.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B: Chem. 220, 1000–1005 (2015).
[Crossref]

Wang, J.

Wang, L.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B: Chem. 220, 1000–1005 (2015).
[Crossref]

Weigel, R.

A. Hartmann, R. Strzoda, R. Schrobenhauser, and R. Weigel, “Ultra-compact TDLAS humidity measurement cell with advanced signal processing,” Appl. Phys. B 115, 263–268 (2014).
[Crossref]

Werhahn, O.

Werle, P.

P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102, 313–329 (2011).
[Crossref]

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54, 197–236 (1998).
[Crossref]

Werle, P. W.

P. W. Werle, B. Scheumann, and J. Schandl, “Real-time signal-processing concepts for trace-gas analysis by diode-laser spectroscopy,” SPIE Opt. Eng. 33, 3093–3106 (1994).
[Crossref]

Wheeler, M. D.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
[Crossref]

Whittaker, E. A.

Wu, S.-Q.

S.-Q. Wu, T. Kimishima, H. Kuze, and N. Takeuchi, “Efficient reduction of fringe noise in trace gas detection with diode laser multipass absorption spectroscopy,” Jpn. J. Appl. Phys. 39, 4034–4040 (2000).
[Crossref]

Wu, T.

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

W. Zhao, X. Gao, L. Hao, M. Huang, T. Huang, T. Wu, W. Zhang, and W. Chen, “Use of integrated cavity output spectroscopy for studying gas phase chemistry in a smog chamber: Characterizing the photolysis of methyl nitrite (CH3ONO),” Vib. Spectrosc. 44, 388–393 (2007).
[Crossref]

Wysocki, G.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref] [PubMed]

Xiaohang, L.

Xiong, B.

B. Xiong, Z. Du, and J. Li, “Modulation index optimization for optical fringe suppression in wavelength modulation spectroscopy,” Rev. Sci. Instrum. 86, 113104 (2015).
[Crossref] [PubMed]

Yanjun, D.

Ye, J.

Yin, W.

Z. Li, W. Ma, X. Fu, W. Tan, G. Zhao, L. Dong, L. Zhang, W. Yin, and S. Jia, “Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection,” Opt. Express 15, 17961–17971 (2013).
[Crossref]

Yu, B.

H. Deng, J. Sun, P. Li, Y. Liu, B. Yu, and J. Li, “Sensitive detection of acetylene by second derivative spectra with tunable diode laser absorption spectroscopy,” Opt. Appl. 46, 353–363 (2016).

Zhang, L.

Z. Li, W. Ma, X. Fu, W. Tan, G. Zhao, L. Dong, L. Zhang, W. Yin, and S. Jia, “Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection,” Opt. Express 15, 17961–17971 (2013).
[Crossref]

Zhang, W.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B: Chem. 220, 1000–1005 (2015).
[Crossref]

W. Zhao, X. Gao, L. Hao, M. Huang, T. Huang, T. Wu, W. Zhang, and W. Chen, “Use of integrated cavity output spectroscopy for studying gas phase chemistry in a smog chamber: Characterizing the photolysis of methyl nitrite (CH3ONO),” Vib. Spectrosc. 44, 388–393 (2007).
[Crossref]

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

Zhao, G.

Z. Li, W. Ma, X. Fu, W. Tan, G. Zhao, L. Dong, L. Zhang, W. Yin, and S. Jia, “Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection,” Opt. Express 15, 17961–17971 (2013).
[Crossref]

Zhao, W.

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

W. Zhao, X. Gao, L. Hao, M. Huang, T. Huang, T. Wu, W. Zhang, and W. Chen, “Use of integrated cavity output spectroscopy for studying gas phase chemistry in a smog chamber: Characterizing the photolysis of methyl nitrite (CH3ONO),” Vib. Spectrosc. 44, 388–393 (2007).
[Crossref]

Zheng, C.

C. Li, L. Dong, C. Zheng, and F. K. Tittela, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 µ m room-temperature CW interband cascade laser,” Sens. Actuators B: Chem. 232, 188–194 (2016).
[Crossref]

Zheng, X. S.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129–2135 (1996).
[Crossref]

Zhimin, P.

Ann. Rev. Phys. Chem. (1)

G. E. Hall and S. W. North, “Transient laser frequency modulation spectroscopy,” Ann. Rev. Phys. Chem. 51, 243–274 (2000).
[Crossref]

Appl. Opt. (7)

D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[Crossref] [PubMed]

J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
[Crossref] [PubMed]

W. Armerding, M. Spiekermann, J. Walter, and F. J. Comes, “Multipass optical absorption spectroscopy: a fast-scanning laser spectrometer for the in situ determination of atmospheric trace-gas components, in particular OH,” Appl. Opt. 35, 4206–4219 (1996).
[Crossref] [PubMed]

L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[Crossref] [PubMed]

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53, 356–367 (2014).
[Crossref] [PubMed]

J. A. Silver and A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988).
[Crossref] [PubMed]

J. A. Silver, D. S. Bomse, and A. C. Stanton, “Diode laser measurements of trace concentrations of ammonia in an entrained-flow coal reactor,” Appl. Opt. 30, 1505–1511 (1991).
[Crossref] [PubMed]

Appl. Phys. B (8)

W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, and H. Cha, “Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared,” Appl. Phys. B 86, 353–359 (2007).
[Crossref]

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002).
[Crossref]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407–416 (2007).
[Crossref]

P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102, 313–329 (2011).
[Crossref]

A. Hartmann, R. Strzoda, R. Schrobenhauser, and R. Weigel, “Ultra-compact TDLAS humidity measurement cell with advanced signal processing,” Appl. Phys. B 115, 263–268 (2014).
[Crossref]

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells,” Appl. Phys. B 100, 291–302 (2010).
[Crossref]

D. T. Cassidy and J. Reid, “Harmonic detection with tunable diode lasers-two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
[Crossref]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy; Theory of lineshapes and signal-tonoise analysis,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Appl. Spectrosc. (1)

J. Breath Res. (1)

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref] [PubMed]

J. Chem. Phys. (1)

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129–2135 (1996).
[Crossref]

J. Chem. Soc., Faraday Trans. (1)

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
[Crossref]

J. Light. Technol. (1)

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation-Part 2: Experimental investigation,” J. Light. Technol. 29, 987–996 (2011).
[Crossref]

J. Opt. Soc. Am. B (5)

Jpn. J. Appl. Phys. (1)

S.-Q. Wu, T. Kimishima, H. Kuze, and N. Takeuchi, “Efficient reduction of fringe noise in trace gas detection with diode laser multipass absorption spectroscopy,” Jpn. J. Appl. Phys. 39, 4034–4040 (2000).
[Crossref]

Opt. Appl. (1)

H. Deng, J. Sun, P. Li, Y. Liu, B. Yu, and J. Li, “Sensitive detection of acetylene by second derivative spectra with tunable diode laser absorption spectroscopy,” Opt. Appl. 46, 353–363 (2016).

Opt. Express (2)

Z. Li, W. Ma, X. Fu, W. Tan, G. Zhao, L. Dong, L. Zhang, W. Yin, and S. Jia, “Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection,” Opt. Express 15, 17961–17971 (2013).
[Crossref]

P. Zhimin, D. Yanjun, C. Lu, L. Xiaohang, and Z. Kangjie, “Calibration-free wavelength modulated TDLAS under high absorbance conditions,” Opt. Express 19, 23104–23110 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

B. Xiong, Z. Du, and J. Li, “Modulation index optimization for optical fringe suppression in wavelength modulation spectroscopy,” Rev. Sci. Instrum. 86, 113104 (2015).
[Crossref] [PubMed]

Sens. Actuators B: Chem. (2)

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B: Chem. 220, 1000–1005 (2015).
[Crossref]

C. Li, L. Dong, C. Zheng, and F. K. Tittela, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 µ m room-temperature CW interband cascade laser,” Sens. Actuators B: Chem. 232, 188–194 (2016).
[Crossref]

Sensors (1)

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors 9, 10447–10512 (2009).
[Crossref] [PubMed]

Spectrochim. Acta A (1)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54, 197–236 (1998).
[Crossref]

SPIE Opt. Eng. (1)

P. W. Werle, B. Scheumann, and J. Schandl, “Real-time signal-processing concepts for trace-gas analysis by diode-laser spectroscopy,” SPIE Opt. Eng. 33, 3093–3106 (1994).
[Crossref]

Vib. Spectrosc. (1)

W. Zhao, X. Gao, L. Hao, M. Huang, T. Huang, T. Wu, W. Zhang, and W. Chen, “Use of integrated cavity output spectroscopy for studying gas phase chemistry in a smog chamber: Characterizing the photolysis of methyl nitrite (CH3ONO),” Vib. Spectrosc. 44, 388–393 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The principle of etalon-effect-free FMS. (Upper) transmission of an etalon with R=4% and (lower) carrier frequency and sidebands with with k=2.5.
Fig. 2
Fig. 2 (a) Schematic diagram of the spectrometer. DFB laser: distributed feedback laser; EOM: electro-optic modulator; Ph: phase adjuster; ωm: radio frequency oscillator at ωm; (b) Picture of the spectrometer.
Fig. 3
Fig. 3 Amplitudes of FMS absorption signals of 20 ppm C2H2 in N2 at different total pressures.
Fig. 4
Fig. 4 Optical fringe and suppression. (a) Interference fringes observed in measurement with an FSR about 29.04 MHz. (b) Intensities of optical fringe and its fitting curve according to SFP . (c) Interference signals for modulated frequencies of 342, 345, and 348 MHz.
Fig. 5
Fig. 5 Absorption lines with three different modulation frequencies of (a) 342 MHz; (b) 345 MHz; (c) 348 MHz.
Fig. 6
Fig. 6 (a) Intensities of an absorption line of 20 ppm C2H2 with the scan frequency in the range of 0.1 Hz to 100 kHz, and (b) amplitude of the absorption signal as a function of C2H2 concentration that demonstrates the linearity of the spectrometer. Signals were averaged 16 times at each concentration with both 1 Hz and 100 kHz scan frequencies. Error bars represent 20 standard deviations.
Fig. 7
Fig. 7 Allan variance of absorption signal of 20 ppm C2H2 versus measurement time.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( ω ) = c E 0 2 8 π e 2 δ 0 [ 1 + M ( δ 1 δ 1 ) cos θ + M ( ϕ 1 2 ϕ 0 + ϕ 1 ) sin θ ]
δ n = α n L / 2
ϕ n = 2 η L ( ω c + n ω m ) / c
E F P = E 0 1 R 1 R e i ϕ 0 = E 0 exp [ δ F P ( ω ) i ϕ F P ( ω ) ]
δ F P ( ω c ) = ln ( 1 R ) + 1 2 ln ( 1 + R 2 2 R cos ϕ 0 ) = ln ( 1 R ) + 1 2 ln ( 1 + R 2 2 R cos 2 π ω c ω F S R )
ϕ F P ( ω c ) = arctan ( R sin 2 π ω c ω F S R 1 R cos 2 π ω c ω F S R )
S F P = η P 0 J 0 ( M ) J 1 ( M ) = × { [ δ F P ( ω c ω m ) δ F P ( ω c ω m ) ] cos ( θ ) = [ ϕ F P ( ω c ω m ) 2 ϕ F P ( ω c ) + ϕ F P ( ω c + ω m ) ] sin ( θ ) }
ω m = k ω F S R

Metrics