Abstract

The effect of 1030nm single picosecond pulsed laser-induced modification of the bulk of crystalline sapphire using a combined process of laser amorphization and selective wet chemical etching is studied. Pulse durations of more than 1 picosecond are not commonly used for this subsurface process. We examine the effect of 7 picosecond pulses on the morphology of the unetched, as well as etched, single pulse modifications, showing the variation of shape and size when varying the pulse energy and the depth of processing. In addition, a qualitative analysis of the material transformation after irradiation is provided as well as an analysis of cracking phenomena. Finally, a calculated laser intensity profile inside sapphire, using the Point Spread Function (PSF), is compared to the shape of the modifications. This comparison is employed to calculate the intensity threshold leading to amorphization, which equals 2.5⋅1014 ± 0.4⋅1014 W/cm2.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High speed cleaving of crystals with ultrafast Bessel beams

L. Rapp, R. Meyer, L. Furfaro, C. Billet, R. Giust, and F. Courvoisier
Opt. Express 25(8) 9312-9317 (2017)

Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass

Costantino Corbari, Audrey Champion, Mindaugas Gecevičius, Martynas Beresna, Yves Bellouard, and Peter G. Kazansky
Opt. Express 21(4) 3946-3958 (2013)

Role of light intensification by cracks in optical breakdown on surfaces

F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase
J. Opt. Soc. Am. A 18(10) 2607-2616 (2001)

References

  • View by:
  • |
  • |
  • |

  1. E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, “Application of Sapphire,” in Sapphire (Springer US, 2009), pp. 1–54.
  2. I. P. Batra, “Electronic structure of α-Al 2 O 3,” J. Phys. C Solid State Phys. 15(26), 5399–5410 (1982).
    [Crossref]
  3. J.-T. Chen, W.-C. Lai, Y.-J. Kao, Y.-Y. Yang, and J.-K. Sheu, “Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes,” Opt. Express 20(5), 5689–5695 (2012).
    [Crossref] [PubMed]
  4. T.-L. Chang, Z.-C. Chen, and Y.-C. Lee, “Micro/nano structures induced by femtosecond laser to enhance light extraction of GaN-based LEDs,” Opt. Express 20(14), 15997–16002 (2012).
    [Crossref] [PubMed]
  5. Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
    [Crossref]
  6. B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy, J. Bang, and J. Kim, “Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications,” Thin Solid Films 516(21), 7744–7747 (2008).
    [Crossref]
  7. Y. Sohn and C. Kim, “Nucleation characteristics of GaN nanorods grown on etched sapphire substrates by hydride vapor phase epitaxy,” J. Cryst. Growth 311(10), 2953–2955 (2009).
    [Crossref]
  8. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc. 153(8), G765–G770 (2006).
    [Crossref]
  9. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
    [Crossref] [PubMed]
  10. S. J. Saggese, J. A. Harrington, and G. H. Sigel, “Attenuation of incoherent infrared radiation in hollow sapphire and silica waveguides,” Opt. Lett. 16(1), 27–29 (1991).
    [Crossref] [PubMed]
  11. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS (2008).
    [Crossref]
  12. R. Moser, N. Ojha, M. Kunzer, and U. T. Schwarz, “Sub-surface channels in sapphire made by ultraviolet picosecond laser irradiation and selective etching,” Opt. Express 19(24), 24738–24745 (2011).
    [Crossref] [PubMed]
  13. S. Juodkazis and H. Misawa, “Forming tiny 3D structures for micro- and nanofluidics,” SPIE Newsroom4–6 (2007).
  14. Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. H. Kuo, C. S. Chang, and S. C. Shei, “ICP etching of sapphire substrates,” Opt. Mater. (Amst) 27(6), 1171–1174 (2005).
    [Crossref]
  15. C. H. Jeong, D. W. Kim, H. Y. Lee, H. S. Kim, Y. J. Sung, and G. Y. Yeom, “Sapphire etching with BCl3/HBr/Ar plasma,” Surf. Coat. Tech. 171(1-3), 280–284 (2003).
    [Crossref]
  16. H. Furuya, N. Okada, and K. Tadatomo, “Growth of {11-22} GaN on shallowly etched r -plane patterned sapphire substrates,” Phys. Status Solidi Curr. Top. Solid State Phys. 9(3-4), 568–571 (2012).
    [Crossref]
  17. T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C. H. Hong, E. K. Sun, H. K. Cho, and B. H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning,” Appl. Phys. Lett. 90(13), 131107 (2007).
    [Crossref]
  18. K. Matsumaru, A. Takata, and K. Ishizaki, “Advanced thin dicing blade for sapphire substrate,” Sci. Technol. Adv. Mater. 6(2), 120–122 (2005).
    [Crossref]
  19. Kyocera, “Single crystal sapphire datasheet - Kyocera,” https://global.kyocera.com/prdct/fc/product/pdf/s_c_sapphire.pdf .
  20. S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the crystalline state of sapphire,” Adv. Mater. 18(11), 1361–1364 (2006).
    [Crossref]
  21. M. Hörstmann-Jungemann, J. Gottmann, and M. Keggenhoff, “3D-microstructuring of sapphire using fs-laser irradiation and selective etching,” J. Laser Micro Nanoeng. 5(2), 145–149 (2010).
    [Crossref]
  22. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
    [Crossref] [PubMed]
  23. H. Misawa and S. Juodkazis, “3D Laser Microfabrication,” Wiley-Vch Verlag GmbH Co.KGaA 387–388 (2006).
    [Crossref]
  24. E. Gamaly, B. Luther-Davies, A. Rode, S. Joudkazis, H. Misawa, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of transparent dielectrics: Confined micro-explosion,” J. Phys. Conf. Ser. 59, 5–10 (2007).
    [Crossref]
  25. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B Condens. Matter Mater. Phys. 73(21), 214101 (2006).
    [Crossref]
  26. S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural Characterization of Femtosecond Laser Modified Regions Inside Sapphire,” J. Nanosci. Nanotechnol. 11(4), 2931–2936 (2011).
    [Crossref] [PubMed]
  27. S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picosecond pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
    [Crossref]
  28. N. M. Bulgakova, “Theoretical Models and Qualitative Interpretations of Fs Laser Material Processing,” J. Laser Micro Nanoeng. 2(1), 76–86 (2007).
    [Crossref]
  29. D. von der Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser–solid interaction,” J. Opt. Soc. Am. B 13(1), 216 (1996).
    [Crossref]
  30. S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
  31. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
    [Crossref]
  32. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2(1), 445 (2011).
    [Crossref] [PubMed]
  33. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
    [Crossref]
  34. M. J. Nasse and J. C. Woehl, “Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” J. Opt. Soc. Am. A 27(2), 295–302 (2010).
    [Crossref] [PubMed]
  35. I. H. Malitson, “Refraction and Dispersion of Synthetic Sapphire,” J. Opt. Soc. Am. 52(12), 1377 (1962).
    [Crossref]
  36. The Mathworks Inc., “Matlab®, Interactive environment for algorithm development, data visualization, data analysis, and numeric computation,” (n.d.).
  37. Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2008), pp. 822–827.
    [Crossref]
  38. E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
    [Crossref]
  39. A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Dispersion of the nonlinear refractive index in sapphire,” Opt. Lett. 29(6), 602–604 (2004).
    [Crossref] [PubMed]

2013 (1)

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
[Crossref]

2012 (3)

2011 (4)

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural Characterization of Femtosecond Laser Modified Regions Inside Sapphire,” J. Nanosci. Nanotechnol. 11(4), 2931–2936 (2011).
[Crossref] [PubMed]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
[Crossref] [PubMed]

R. Moser, N. Ojha, M. Kunzer, and U. T. Schwarz, “Sub-surface channels in sapphire made by ultraviolet picosecond laser irradiation and selective etching,” Opt. Express 19(24), 24738–24745 (2011).
[Crossref] [PubMed]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2(1), 445 (2011).
[Crossref] [PubMed]

2010 (2)

M. J. Nasse and J. C. Woehl, “Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” J. Opt. Soc. Am. A 27(2), 295–302 (2010).
[Crossref] [PubMed]

M. Hörstmann-Jungemann, J. Gottmann, and M. Keggenhoff, “3D-microstructuring of sapphire using fs-laser irradiation and selective etching,” J. Laser Micro Nanoeng. 5(2), 145–149 (2010).
[Crossref]

2009 (1)

Y. Sohn and C. Kim, “Nucleation characteristics of GaN nanorods grown on etched sapphire substrates by hydride vapor phase epitaxy,” J. Cryst. Growth 311(10), 2953–2955 (2009).
[Crossref]

2008 (1)

B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy, J. Bang, and J. Kim, “Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications,” Thin Solid Films 516(21), 7744–7747 (2008).
[Crossref]

2007 (3)

T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C. H. Hong, E. K. Sun, H. K. Cho, and B. H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning,” Appl. Phys. Lett. 90(13), 131107 (2007).
[Crossref]

E. Gamaly, B. Luther-Davies, A. Rode, S. Joudkazis, H. Misawa, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of transparent dielectrics: Confined micro-explosion,” J. Phys. Conf. Ser. 59, 5–10 (2007).
[Crossref]

N. M. Bulgakova, “Theoretical Models and Qualitative Interpretations of Fs Laser Material Processing,” J. Laser Micro Nanoeng. 2(1), 76–86 (2007).
[Crossref]

2006 (6)

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc. 153(8), G765–G770 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the crystalline state of sapphire,” Adv. Mater. 18(11), 1361–1364 (2006).
[Crossref]

2005 (3)

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

K. Matsumaru, A. Takata, and K. Ishizaki, “Advanced thin dicing blade for sapphire substrate,” Sci. Technol. Adv. Mater. 6(2), 120–122 (2005).
[Crossref]

Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. H. Kuo, C. S. Chang, and S. C. Shei, “ICP etching of sapphire substrates,” Opt. Mater. (Amst) 27(6), 1171–1174 (2005).
[Crossref]

2004 (3)

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picosecond pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[Crossref]

A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Dispersion of the nonlinear refractive index in sapphire,” Opt. Lett. 29(6), 602–604 (2004).
[Crossref] [PubMed]

2003 (1)

C. H. Jeong, D. W. Kim, H. Y. Lee, H. S. Kim, Y. J. Sung, and G. Y. Yeom, “Sapphire etching with BCl3/HBr/Ar plasma,” Surf. Coat. Tech. 171(1-3), 280–284 (2003).
[Crossref]

1996 (1)

1991 (1)

1982 (1)

I. P. Batra, “Electronic structure of α-Al 2 O 3,” J. Phys. C Solid State Phys. 15(26), 5399–5410 (1982).
[Crossref]

1962 (1)

Aitchison, J. S.

Ashkenasi, D.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).

Atanackovic, P.

Bang, J.

B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy, J. Bang, and J. Kim, “Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications,” Thin Solid Films 516(21), 7744–7747 (2008).
[Crossref]

Batra, I. P.

I. P. Batra, “Electronic structure of α-Al 2 O 3,” J. Phys. C Solid State Phys. 15(26), 5399–5410 (1982).
[Crossref]

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Brandt, N.

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS (2008).
[Crossref]

Bulgakova, N. M.

N. M. Bulgakova, “Theoretical Models and Qualitative Interpretations of Fs Laser Material Processing,” J. Laser Micro Nanoeng. 2(1), 76–86 (2007).
[Crossref]

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).

Burakov, I. M.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).

Chang, C. S.

Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. H. Kuo, C. S. Chang, and S. C. Shei, “ICP etching of sapphire substrates,” Opt. Mater. (Amst) 27(6), 1171–1174 (2005).
[Crossref]

Chang, S. J.

Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. H. Kuo, C. S. Chang, and S. C. Shei, “ICP etching of sapphire substrates,” Opt. Mater. (Amst) 27(6), 1171–1174 (2005).
[Crossref]

Chang, T.-L.

Chen, J.-T.

Chen, Z.-C.

Cheong, H. S.

T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C. H. Hong, E. K. Sun, H. K. Cho, and B. H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning,” Appl. Phys. Lett. 90(13), 131107 (2007).
[Crossref]

Cho, H. K.

T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C. H. Hong, E. K. Sun, H. K. Cho, and B. H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning,” Appl. Phys. Lett. 90(13), 131107 (2007).
[Crossref]

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Cuong, T. V.

T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C. H. Hong, E. K. Sun, H. K. Cho, and B. H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning,” Appl. Phys. Lett. 90(13), 131107 (2007).
[Crossref]

Duvall, S. G.

Ebisui, T.

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the crystalline state of sapphire,” Adv. Mater. 18(11), 1361–1364 (2006).
[Crossref]

Eddy, C. R.

B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy, J. Bang, and J. Kim, “Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications,” Thin Solid Films 516(21), 7744–7747 (2008).
[Crossref]

Eggleton, B. J.

Esashi, M.

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2008), pp. 822–827.
[Crossref]

Fujita, M.

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2008), pp. 822–827.
[Crossref]

Furuya, H.

H. Furuya, N. Okada, and K. Tadatomo, “Growth of {11-22} GaN on shallowly etched r -plane patterned sapphire substrates,” Phys. Status Solidi Curr. Top. Solid State Phys. 9(3-4), 568–571 (2012).
[Crossref]

Gamaly, E.

E. Gamaly, B. Luther-Davies, A. Rode, S. Joudkazis, H. Misawa, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of transparent dielectrics: Confined micro-explosion,” J. Phys. Conf. Ser. 59, 5–10 (2007).
[Crossref]

Gamaly, E. G.

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
[Crossref]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2(1), 445 (2011).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Gottmann, J.

M. Hörstmann-Jungemann, J. Gottmann, and M. Keggenhoff, “3D-microstructuring of sapphire using fs-laser irradiation and selective etching,” J. Laser Micro Nanoeng. 5(2), 145–149 (2010).
[Crossref]

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS (2008).
[Crossref]

Grillet, C.

Guizard, S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

Hallo, L.

E. Gamaly, B. Luther-Davies, A. Rode, S. Joudkazis, H. Misawa, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of transparent dielectrics: Confined micro-explosion,” J. Phys. Conf. Ser. 59, 5–10 (2007).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

Harrington, J. A.

Hertel, I. V.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).

Hirao, N.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural Characterization of Femtosecond Laser Modified Regions Inside Sapphire,” J. Nanosci. Nanotechnol. 11(4), 2931–2936 (2011).
[Crossref] [PubMed]

Hite, J.

B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy, J. Bang, and J. Kim, “Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications,” Thin Solid Films 516(21), 7744–7747 (2008).
[Crossref]

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Holm, R. T.

B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy, J. Bang, and J. Kim, “Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications,” Thin Solid Films 516(21), 7744–7747 (2008).
[Crossref]

Hong, C. H.

T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C. H. Hong, E. K. Sun, H. K. Cho, and B. H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning,” Appl. Phys. Lett. 90(13), 131107 (2007).
[Crossref]

Horng, R. H.

D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc. 153(8), G765–G770 (2006).
[Crossref]

Horn-Solle, H.

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS (2008).
[Crossref]

Hörstmann-Jungemann, M.

M. Hörstmann-Jungemann, J. Gottmann, and M. Keggenhoff, “3D-microstructuring of sapphire using fs-laser irradiation and selective etching,” J. Laser Micro Nanoeng. 5(2), 145–149 (2010).
[Crossref]

Hsieh, M. H.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Hsu, T. C.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Hsu, Y. P.

Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. H. Kuo, C. S. Chang, and S. C. Shei, “ICP etching of sapphire substrates,” Opt. Mater. (Amst) 27(6), 1171–1174 (2005).
[Crossref]

Huang, S. C.

D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc. 153(8), G765–G770 (2006).
[Crossref]

Hudson, D.

Husakou, A.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).

Hwang, J. M.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Ishizaki, K.

K. Matsumaru, A. Takata, and K. Ishizaki, “Advanced thin dicing blade for sapphire substrate,” Sci. Technol. Adv. Mater. 6(2), 120–122 (2005).
[Crossref]

Izawa, Y.

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2008), pp. 822–827.
[Crossref]

Jackson, S. D.

Jeong, C. H.

C. H. Jeong, D. W. Kim, H. Y. Lee, H. S. Kim, Y. J. Sung, and G. Y. Yeom, “Sapphire etching with BCl3/HBr/Ar plasma,” Surf. Coat. Tech. 171(1-3), 280–284 (2003).
[Crossref]

Jou, M. J.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Joudkazis, S.

E. Gamaly, B. Luther-Davies, A. Rode, S. Joudkazis, H. Misawa, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of transparent dielectrics: Confined micro-explosion,” J. Phys. Conf. Ser. 59, 5–10 (2007).
[Crossref]

Jung, H.

B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy, J. Bang, and J. Kim, “Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications,” Thin Solid Films 516(21), 7744–7747 (2008).
[Crossref]

Juodkazis, S.

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
[Crossref]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2(1), 445 (2011).
[Crossref] [PubMed]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural Characterization of Femtosecond Laser Modified Regions Inside Sapphire,” J. Nanosci. Nanotechnol. 11(4), 2931–2936 (2011).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the crystalline state of sapphire,” Adv. Mater. 18(11), 1361–1364 (2006).
[Crossref]

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picosecond pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[Crossref]

S. Juodkazis and H. Misawa, “Forming tiny 3D structures for micro- and nanofluidics,” SPIE Newsroom4–6 (2007).

Kao, Y.-J.

Keggenhoff, M.

M. Hörstmann-Jungemann, J. Gottmann, and M. Keggenhoff, “3D-microstructuring of sapphire using fs-laser irradiation and selective etching,” J. Laser Micro Nanoeng. 5(2), 145–149 (2010).
[Crossref]

Kikuchi, H.

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2008), pp. 822–827.
[Crossref]

Kim, B. J.

B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy, J. Bang, and J. Kim, “Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications,” Thin Solid Films 516(21), 7744–7747 (2008).
[Crossref]

Kim, C.

Y. Sohn and C. Kim, “Nucleation characteristics of GaN nanorods grown on etched sapphire substrates by hydride vapor phase epitaxy,” J. Cryst. Growth 311(10), 2953–2955 (2009).
[Crossref]

Kim, D. W.

C. H. Jeong, D. W. Kim, H. Y. Lee, H. S. Kim, Y. J. Sung, and G. Y. Yeom, “Sapphire etching with BCl3/HBr/Ar plasma,” Surf. Coat. Tech. 171(1-3), 280–284 (2003).
[Crossref]

Kim, H. G.

T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C. H. Hong, E. K. Sun, H. K. Cho, and B. H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning,” Appl. Phys. Lett. 90(13), 131107 (2007).
[Crossref]

Kim, H. S.

C. H. Jeong, D. W. Kim, H. Y. Lee, H. S. Kim, Y. J. Sung, and G. Y. Yeom, “Sapphire etching with BCl3/HBr/Ar plasma,” Surf. Coat. Tech. 171(1-3), 280–284 (2003).
[Crossref]

Kim, H. Y.

B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy, J. Bang, and J. Kim, “Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications,” Thin Solid Films 516(21), 7744–7747 (2008).
[Crossref]

T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C. H. Hong, E. K. Sun, H. K. Cho, and B. H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning,” Appl. Phys. Lett. 90(13), 131107 (2007).
[Crossref]

Kim, J.

B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy, J. Bang, and J. Kim, “Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications,” Thin Solid Films 516(21), 7744–7747 (2008).
[Crossref]

Kim, S. H.

B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy, J. Bang, and J. Kim, “Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications,” Thin Solid Films 516(21), 7744–7747 (2008).
[Crossref]

Kohara, S.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural Characterization of Femtosecond Laser Modified Regions Inside Sapphire,” J. Nanosci. Nanotechnol. 11(4), 2931–2936 (2011).
[Crossref] [PubMed]

Kong, B. H.

T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C. H. Hong, E. K. Sun, H. K. Cho, and B. H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning,” Appl. Phys. Lett. 90(13), 131107 (2007).
[Crossref]

Kunzer, M.

Kuo, C. H.

Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. H. Kuo, C. S. Chang, and S. C. Shei, “ICP etching of sapphire substrates,” Opt. Mater. (Amst) 27(6), 1171–1174 (2005).
[Crossref]

Kuo, H. C.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Lai, W.-C.

Lee, B. J.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Lee, H. Y.

C. H. Jeong, D. W. Kim, H. Y. Lee, H. S. Kim, Y. J. Sung, and G. Y. Yeom, “Sapphire etching with BCl3/HBr/Ar plasma,” Surf. Coat. Tech. 171(1-3), 280–284 (2003).
[Crossref]

Lee, Y. J.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Lee, Y.-C.

Li, F.

Lin, S. H.

D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc. 153(8), G765–G770 (2006).
[Crossref]

Lu, T. C.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Luther Davies, B.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

Luther-Davies, B.

E. Gamaly, B. Luther-Davies, A. Rode, S. Joudkazis, H. Misawa, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of transparent dielectrics: Confined micro-explosion,” J. Phys. Conf. Ser. 59, 5–10 (2007).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Madden, S. J.

Magi, E.

Major, A.

Maksimov, I.

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picosecond pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[Crossref]

Malitson, I. H.

Mao, S. S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

Mao, X.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

Martin, P.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

Mastro, M. A.

B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy, J. Bang, and J. Kim, “Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications,” Thin Solid Films 516(21), 7744–7747 (2008).
[Crossref]

Matsumaru, K.

K. Matsumaru, A. Takata, and K. Ishizaki, “Advanced thin dicing blade for sapphire substrate,” Sci. Technol. Adv. Mater. 6(2), 120–122 (2005).
[Crossref]

Matsuo, S.

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the crystalline state of sapphire,” Adv. Mater. 18(11), 1361–1364 (2006).
[Crossref]

Mermillod-Blondin, A.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).

Misawa, H.

E. Gamaly, B. Luther-Davies, A. Rode, S. Joudkazis, H. Misawa, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of transparent dielectrics: Confined micro-explosion,” J. Phys. Conf. Ser. 59, 5–10 (2007).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the crystalline state of sapphire,” Adv. Mater. 18(11), 1361–1364 (2006).
[Crossref]

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picosecond pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[Crossref]

S. Juodkazis and H. Misawa, “Forming tiny 3D structures for micro- and nanofluidics,” SPIE Newsroom4–6 (2007).

Miyanaga, N.

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2008), pp. 822–827.
[Crossref]

Mizeikis, V.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural Characterization of Femtosecond Laser Modified Regions Inside Sapphire,” J. Nanosci. Nanotechnol. 11(4), 2931–2936 (2011).
[Crossref] [PubMed]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2(1), 445 (2011).
[Crossref] [PubMed]

Moghe, Y.

Moser, R.

Moss, D. J.

Nasse, M. J.

Nicolai, P.

E. Gamaly, B. Luther-Davies, A. Rode, S. Joudkazis, H. Misawa, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of transparent dielectrics: Confined micro-explosion,” J. Phys. Conf. Ser. 59, 5–10 (2007).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

Nikolakakos, I.

Nishimura, K.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the crystalline state of sapphire,” Adv. Mater. 18(11), 1361–1364 (2006).
[Crossref]

O’Brien, C.

Ohishi, Y.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural Characterization of Femtosecond Laser Modified Regions Inside Sapphire,” J. Nanosci. Nanotechnol. 11(4), 2931–2936 (2011).
[Crossref] [PubMed]

Ojha, N.

Okada, N.

H. Furuya, N. Okada, and K. Tadatomo, “Growth of {11-22} GaN on shallowly etched r -plane patterned sapphire substrates,” Phys. Status Solidi Curr. Top. Solid State Phys. 9(3-4), 568–571 (2012).
[Crossref]

Okada, T.

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the crystalline state of sapphire,” Adv. Mater. 18(11), 1361–1364 (2006).
[Crossref]

Pan, M. H.

D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc. 153(8), G765–G770 (2006).
[Crossref]

Petite, G.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

Quéré, F.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

Rapp, L.

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
[Crossref]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Read, A.

Rode, A.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural Characterization of Femtosecond Laser Modified Regions Inside Sapphire,” J. Nanosci. Nanotechnol. 11(4), 2931–2936 (2011).
[Crossref] [PubMed]

E. Gamaly, B. Luther-Davies, A. Rode, S. Joudkazis, H. Misawa, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of transparent dielectrics: Confined micro-explosion,” J. Phys. Conf. Ser. 59, 5–10 (2007).
[Crossref]

Rode, A. V.

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
[Crossref]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2(1), 445 (2011).
[Crossref] [PubMed]

Roppo, V.

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
[Crossref]

Rosenfeld, A.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).

Russo, R. E.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

Saggese, S. J.

Saito, A.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural Characterization of Femtosecond Laser Modified Regions Inside Sapphire,” J. Nanosci. Nanotechnol. 11(4), 2931–2936 (2011).
[Crossref] [PubMed]

Schüler, H.

Schwarz, U. T.

Shei, S. C.

Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. H. Kuo, C. S. Chang, and S. C. Shei, “ICP etching of sapphire substrates,” Opt. Mater. (Amst) 27(6), 1171–1174 (2005).
[Crossref]

Sheu, J. K.

Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. H. Kuo, C. S. Chang, and S. C. Shei, “ICP etching of sapphire substrates,” Opt. Mater. (Amst) 27(6), 1171–1174 (2005).
[Crossref]

Sheu, J.-K.

Sigel, G. H.

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Smith, P. W. E.

Sohn, Y.

Y. Sohn and C. Kim, “Nucleation characteristics of GaN nanorods grown on etched sapphire substrates by hydride vapor phase epitaxy,” J. Cryst. Growth 311(10), 2953–2955 (2009).
[Crossref]

Stoian, R.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).

Su, Y. K.

Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. H. Kuo, C. S. Chang, and S. C. Shei, “ICP etching of sapphire substrates,” Opt. Mater. (Amst) 27(6), 1171–1174 (2005).
[Crossref]

Sun, E. K.

T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C. H. Hong, E. K. Sun, H. K. Cho, and B. H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning,” Appl. Phys. Lett. 90(13), 131107 (2007).
[Crossref]

Sung, Y. J.

C. H. Jeong, D. W. Kim, H. Y. Lee, H. S. Kim, Y. J. Sung, and G. Y. Yeom, “Sapphire etching with BCl3/HBr/Ar plasma,” Surf. Coat. Tech. 171(1-3), 280–284 (2003).
[Crossref]

Tadatomo, K.

H. Furuya, N. Okada, and K. Tadatomo, “Growth of {11-22} GaN on shallowly etched r -plane patterned sapphire substrates,” Phys. Status Solidi Curr. Top. Solid State Phys. 9(3-4), 568–571 (2012).
[Crossref]

Takata, A.

K. Matsumaru, A. Takata, and K. Ishizaki, “Advanced thin dicing blade for sapphire substrate,” Sci. Technol. Adv. Mater. 6(2), 120–122 (2005).
[Crossref]

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2008), pp. 822–827.
[Crossref]

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Tikhonchuk, V.

E. Gamaly, B. Luther-Davies, A. Rode, S. Joudkazis, H. Misawa, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of transparent dielectrics: Confined micro-explosion,” J. Phys. Conf. Ser. 59, 5–10 (2007).
[Crossref]

Tikhonchuk, V. T.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

Tsurumi, Y.

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2008), pp. 822–827.
[Crossref]

Vailionis, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2(1), 445 (2011).
[Crossref] [PubMed]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural Characterization of Femtosecond Laser Modified Regions Inside Sapphire,” J. Nanosci. Nanotechnol. 11(4), 2931–2936 (2011).
[Crossref] [PubMed]

von der Linde, D.

Waki, R.

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the crystalline state of sapphire,” Adv. Mater. 18(11), 1361–1364 (2006).
[Crossref]

Wang, S. C.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Wang, W. K.

D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc. 153(8), G765–G770 (2006).
[Crossref]

Wen, K. S.

D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc. 153(8), G765–G770 (2006).
[Crossref]

Winkler, S. W.

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).

Woehl, J. C.

Wortmann, D.

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS (2008).
[Crossref]

Wuu, D. S.

D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc. 153(8), G765–G770 (2006).
[Crossref]

Yang, W.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2(1), 445 (2011).
[Crossref] [PubMed]

Yang, Y.-Y.

Yeom, G. Y.

C. H. Jeong, D. W. Kim, H. Y. Lee, H. S. Kim, Y. J. Sung, and G. Y. Yeom, “Sapphire etching with BCl3/HBr/Ar plasma,” Surf. Coat. Tech. 171(1-3), 280–284 (2003).
[Crossref]

Yoshino, F.

Yu, Y. S.

D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc. 153(8), G765–G770 (2006).
[Crossref]

Adv. Mater. (1)

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the crystalline state of sapphire,” Adv. Mater. 18(11), 1361–1364 (2006).
[Crossref]

Appl. Phys. A (1)

S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).

Appl. Phys. Lett. (2)

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picosecond pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[Crossref]

T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C. H. Hong, E. K. Sun, H. K. Cho, and B. H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning,” Appl. Phys. Lett. 90(13), 131107 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

J. Appl. Phys. (1)

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

J. Cryst. Growth (1)

Y. Sohn and C. Kim, “Nucleation characteristics of GaN nanorods grown on etched sapphire substrates by hydride vapor phase epitaxy,” J. Cryst. Growth 311(10), 2953–2955 (2009).
[Crossref]

J. Electrochem. Soc. (1)

D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc. 153(8), G765–G770 (2006).
[Crossref]

J. Laser Micro Nanoeng. (2)

N. M. Bulgakova, “Theoretical Models and Qualitative Interpretations of Fs Laser Material Processing,” J. Laser Micro Nanoeng. 2(1), 76–86 (2007).
[Crossref]

M. Hörstmann-Jungemann, J. Gottmann, and M. Keggenhoff, “3D-microstructuring of sapphire using fs-laser irradiation and selective etching,” J. Laser Micro Nanoeng. 5(2), 145–149 (2010).
[Crossref]

J. Nanosci. Nanotechnol. (1)

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural Characterization of Femtosecond Laser Modified Regions Inside Sapphire,” J. Nanosci. Nanotechnol. 11(4), 2931–2936 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. C Solid State Phys. (1)

I. P. Batra, “Electronic structure of α-Al 2 O 3,” J. Phys. C Solid State Phys. 15(26), 5399–5410 (1982).
[Crossref]

J. Phys. Conf. Ser. (1)

E. Gamaly, B. Luther-Davies, A. Rode, S. Joudkazis, H. Misawa, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of transparent dielectrics: Confined micro-explosion,” J. Phys. Conf. Ser. 59, 5–10 (2007).
[Crossref]

Nat. Commun. (1)

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2(1), 445 (2011).
[Crossref] [PubMed]

New J. Phys. (1)

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (Amst) (1)

Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. H. Kuo, C. S. Chang, and S. C. Shei, “ICP etching of sapphire substrates,” Opt. Mater. (Amst) 27(6), 1171–1174 (2005).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

Phys. Rev. Lett. (1)

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Phys. Status Solidi Curr. Top. Solid State Phys. (1)

H. Furuya, N. Okada, and K. Tadatomo, “Growth of {11-22} GaN on shallowly etched r -plane patterned sapphire substrates,” Phys. Status Solidi Curr. Top. Solid State Phys. 9(3-4), 568–571 (2012).
[Crossref]

Sci. Technol. Adv. Mater. (1)

K. Matsumaru, A. Takata, and K. Ishizaki, “Advanced thin dicing blade for sapphire substrate,” Sci. Technol. Adv. Mater. 6(2), 120–122 (2005).
[Crossref]

Surf. Coat. Tech. (1)

C. H. Jeong, D. W. Kim, H. Y. Lee, H. S. Kim, Y. J. Sung, and G. Y. Yeom, “Sapphire etching with BCl3/HBr/Ar plasma,” Surf. Coat. Tech. 171(1-3), 280–284 (2003).
[Crossref]

Thin Solid Films (1)

B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy, J. Bang, and J. Kim, “Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications,” Thin Solid Films 516(21), 7744–7747 (2008).
[Crossref]

Other (7)

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS (2008).
[Crossref]

S. Juodkazis and H. Misawa, “Forming tiny 3D structures for micro- and nanofluidics,” SPIE Newsroom4–6 (2007).

Kyocera, “Single crystal sapphire datasheet - Kyocera,” https://global.kyocera.com/prdct/fc/product/pdf/s_c_sapphire.pdf .

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, “Application of Sapphire,” in Sapphire (Springer US, 2009), pp. 1–54.

H. Misawa and S. Juodkazis, “3D Laser Microfabrication,” Wiley-Vch Verlag GmbH Co.KGaA 387–388 (2006).
[Crossref]

The Mathworks Inc., “Matlab®, Interactive environment for algorithm development, data visualization, data analysis, and numeric computation,” (n.d.).

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2008), pp. 822–827.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) The sapphire specimen behaves like a non-corrected lens in the path of the focusing beam and the morphology of the modifications will change depending on the depth of focusing below the surface. (b) After the irradiation, a modified volume is created, enclosed inside the crystalline phase (light blue), which consists of amorphous material (dark blue). Depending on the experimental parameters, a void (black) may or may not occur in the amorphous region. Cracks typically originate from and surround the modified region.
Fig. 2
Fig. 2 Schematic of the experimental set-up used for the experiments
Fig. 3
Fig. 3 Schematic process sequence: (a) first, the sample is irradiated to form a pattern (array) of single modifications in rows, repeated at different depths beneath the surface of the sapphire specimen. Here, two rows are shown. The deepest row is formed first, (b) after laser processing the substrate is polished to remove bulk material (red in the graph) in order to “expose” cross-sections of the modifications.
Fig. 4
Fig. 4 SEM micrographs of typical modifications (not etched) induced by single 7 ps laser pulses at 30 µm below the sapphire surface, applying various pulse energies (Ep). On top, for an easy comparison, the micrographs are presented using the same scale. On bottom, to highlight the details of each modification, the pictures have different magnifications (see scale bars). The debris shown in (b) is a polishing particle. The laser beam propagated from top to bottom.
Fig. 5
Fig. 5 SEM micrographs of typical modifications (not etched) induced by single 7 ps laser pulses at various depths (depth of processing, DP) below the surface of sapphire, at a fixed pulse energy of 10 µJ. The laser beam propagated from top to bottom.
Fig. 6
Fig. 6 Cracks induced by single 7 ps laser pulses at various depths (depth of processing, DP) below the surface of sapphire and various pulse energies (Ep). The laser beam propagated from top to bottom. To show the details of the modifications, they were imaged at different magnifications, see scale bars.
Fig. 7
Fig. 7 Three SEM micrographs of modifications obtained at different processing conditions and overlaid calculated 2D laser intensity profiles (contour plots). To highlight the details of the comparison of the experimental data and the calculated data, the images were cropped and show different magnification in vertical and horizontal directions (see scale bars). The laser beam propagated from top to bottom.
Fig. 8
Fig. 8 The four areas (pink, blue, yellow, red, green for the overlapping area between blue and yellow) represent the length of the amorphized regions (including the confidence intervals) calculated using PSF tool varying the depth below the surface of the specimen. The plot lines are for easy visualization of the trends; the actual graphs were made by single points for each depth. The diamond shaped markers represent the measured values.
Fig. 9
Fig. 9 SEM micrographs of a modification produced by a 7 ps pulse at a pulse energy of 10 µJ, and a focus location at 30 µm below the sapphire surface, (a) before and (b) after etching for 20 min in stagnant 50% aqueous solution of hydrofluoric acid at room temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P crit = λ 0 2 2π n 0 n 2

Metrics