Abstract

Reducing the noise below the shot-noise limit in sensing devices is one of the key promises of quantum technologies. Here, we study quantum plasmonic sensing based on an attenuated total reflection configuration with single photons as input. Our sensor is the Kretschmann configuration with a gold film, and a blood protein in an aqueous solution with different concentrations serves as an analyte. The estimation of the refractive index is performed using heralded single photons. We also determine the estimation error from a statistical analysis over a number of repetitions of identical and independent experiments. We show that the errors of our plasmonic sensor with single photons are below the shot-noise limit even in the presence of various experimental imperfections. Our results demonstrate a practical application of quantum plasmonic sensing is possible given certain improvements are made to the setup investigated, and pave the way for a future generation of quantum plasmonic applications based on similar techniques.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantum-enhanced plasmonic sensing

Mohammadjavad Dowran, Ashok Kumar, Benjamin J. Lawrie, Raphael C. Pooser, and Alberto M. Marino
Optica 5(5) 628-633 (2018)

Long-range surface plasmon polaritons

Pierre Berini
Adv. Opt. Photon. 1(3) 484-588 (2009)

Label-free detection of bovine serum albumin based on an in-fiber Mach-Zehnder interferometric biosensor

Zhengyong Li, Changrui Liao, Danni Chen, Jun Song, Wei Jin, Gang-Ding Peng, Feng Zhu, Ying Wang, Jun He, and Yiping Wang
Opt. Express 25(15) 17105-17113 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actua. B 54, 3 (1999).
    [Crossref]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641 (2007).
    [Crossref]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
    [Crossref] [PubMed]
  4. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings(Springer, Berlin, Germany, 1988).
  5. B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615 (1988).
    [Crossref]
  6. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actua. B 12, 213 (1993).
    [Crossref]
  7. J. Homola, I. Koudela, and S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actua. B: Chem. 54, 16 (1999).
    [Crossref]
  8. J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actua. B: Chem. 107, 154 (2005).
    [Crossref]
  9. B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive mach-zehnder interferometer devices,” J. Opt. A: Pure Appl. Opt. 8, S561 (2006).
    [Crossref]
  10. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actua. B 125, 688 (2007).
    [Crossref]
  11. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9, 4428 (2009).
    [Crossref] [PubMed]
  12. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828 (2011).
    [Crossref] [PubMed]
  13. E. B. Bahadir and M. K. Sezgintürk, “Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses,” Anal. Biochem. 478, 107 (2015).
    [Crossref] [PubMed]
  14. B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14, 5641 (2006).
    [Crossref] [PubMed]
  15. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505 (2009).
    [Crossref] [PubMed]
  16. X. Wang, M. Jefferson, P. C. D. Hobbs, W. P. Risk, B. E. Feller, R. D. Miller, and A. Knoesen, “Shot-noise limited detection for surface plasmon sensing,” Opt. Express 19, 107 (2011).
    [Crossref] [PubMed]
  17. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical trops,” Biophys. J. 77, 2856 (1999).
    [Crossref] [PubMed]
  18. E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308 (2003).
    [Crossref] [PubMed]
  19. M. Taylor, Quantum Microscopy of Biological Systems(Springer, Berlin, Germany, 2015).
  20. M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1 (2016).
    [Crossref]
  21. M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329 (2013).
    [Crossref]
  22. D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4, 011049 (2014).
  23. W. Fan, B. J. Lawrie, and R. C. Pooser, “Quantum plasmonic sensing,” Phys. Rev. A 92, 053812 (2015).
    [Crossref]
  24. R. C. Pooser and B. Lawrie, “Plasmonic trace sensing below the photon shot noise limit,” ACS Photon. 10, 1021 (2015).
  25. C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. Tame, “Quantum plasmonic sensing: Beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992 (2016).
    [Crossref]
  26. J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
    [Crossref]
  27. M. Dowran, A. Kumar, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Quantum-enhanced plasmonic sensing,” Optica 5, 628 (2018).
    [Crossref]
  28. Y. Chen, C. Lee, L. Lu, D. Liu, Y. Wu, L. Feng, M. Li, C. Rockstuhl, G. Guo, G. Guo, M. Tame, and X. Ren, “Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing,” arXiv:1805.06764v1.
  29. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science 306, 1330 (2004).
    [Crossref] [PubMed]
  30. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733 (2000).
    [Crossref] [PubMed]
  31. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
    [Crossref] [PubMed]
  32. V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photon. 5, 222 (2011).
    [Crossref]
  33. A. Monras and M. G. A. Paris, “Optimal quantum estimation of loss in bosonic channels,” Phys. Rev. Lett. 98, 160401 (2007).
    [Crossref] [PubMed]
  34. G. Adesso, F. Dell’Anno, S. D. Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-gaussian states,” Phys. Rev. A. 79, 040305 (2009).
    [Crossref]
  35. S. Alipour, M. Mehboudi, and A. T. Rezakhani, “Quantum metrology in open systems: Dissipative cramér-rao bound,” Phys. Rev. Lett. 112, 120405 (2014).
    [Crossref]
  36. A. Meda, E. Losero, N. Samantaray, S. Pradyumna, A. Avella, I. Ruo-Berchera, and M. Genovese, “Photon-number correlation for quantum enhanced imaging and sensing,” J. Opt. 19, 094002 (2017).
    [Crossref]
  37. T. Peters, The Plasma Proteins (Academic, 1975).
  38. M. Singh, H. Chand, and K. C. Gupta, “The studies of density, apparent molar volume, and viscosity of bovine serum albumin, egg albumin, and lysozyme in aqueous and rbi, csi, and dtab aqueous solutions at 303.15 k,” Chem. Biodivers. 2, 809 (2005).
    [Crossref]
  39. M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101, 190504 (2008).
    [Crossref] [PubMed]
  40. D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. Kim, “Long-range surface plasmon polariton excitation at the quantum level,” Phys. Rev. A 79, 053845 (2009).
    [Crossref]
  41. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811 (2007).
    [Crossref] [PubMed]
  42. R. Loudon, The Quantum Theory of Light(Oxford University, Oxford, UK, 2000).
  43. R. Whittaker, C. Erven, A. Nevill, M. Berry, J. L. O’Brien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
    [Crossref]
  44. H. Cramér, Mathematical Methods of Statistics(Princeton University Press, Princeton, 1946).
  45. R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173, 821 (1954).
    [Crossref] [PubMed]
  46. S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett. 72, 3439 (1994).
    [Crossref] [PubMed]
  47. S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photon. 11, 700 (2017).
    [Crossref]
  48. K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108 (2013).
    [Crossref] [PubMed]
  49. P. K. Sahoo, S. Sarkar, and J. Joseph, “High sensitivity guided-mode-resonance optical sensor employing phase detection,” Sci. Rep. 7, 7607 (2017).
    [Crossref] [PubMed]

2018 (1)

2017 (5)

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photon. 11, 700 (2017).
[Crossref]

P. K. Sahoo, S. Sarkar, and J. Joseph, “High sensitivity guided-mode-resonance optical sensor employing phase detection,” Sci. Rep. 7, 7607 (2017).
[Crossref] [PubMed]

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

A. Meda, E. Losero, N. Samantaray, S. Pradyumna, A. Avella, I. Ruo-Berchera, and M. Genovese, “Photon-number correlation for quantum enhanced imaging and sensing,” J. Opt. 19, 094002 (2017).
[Crossref]

R. Whittaker, C. Erven, A. Nevill, M. Berry, J. L. O’Brien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

2016 (2)

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. Tame, “Quantum plasmonic sensing: Beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992 (2016).
[Crossref]

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1 (2016).
[Crossref]

2015 (3)

E. B. Bahadir and M. K. Sezgintürk, “Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses,” Anal. Biochem. 478, 107 (2015).
[Crossref] [PubMed]

W. Fan, B. J. Lawrie, and R. C. Pooser, “Quantum plasmonic sensing,” Phys. Rev. A 92, 053812 (2015).
[Crossref]

R. C. Pooser and B. Lawrie, “Plasmonic trace sensing below the photon shot noise limit,” ACS Photon. 10, 1021 (2015).

2014 (2)

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4, 011049 (2014).

S. Alipour, M. Mehboudi, and A. T. Rezakhani, “Quantum metrology in open systems: Dissipative cramér-rao bound,” Phys. Rev. Lett. 112, 120405 (2014).
[Crossref]

2013 (2)

M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329 (2013).
[Crossref]

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108 (2013).
[Crossref] [PubMed]

2011 (3)

X. Wang, M. Jefferson, P. C. D. Hobbs, W. P. Risk, B. E. Feller, R. D. Miller, and A. Knoesen, “Shot-noise limited detection for surface plasmon sensing,” Opt. Express 19, 107 (2011).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828 (2011).
[Crossref] [PubMed]

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photon. 5, 222 (2011).
[Crossref]

2009 (4)

G. Adesso, F. Dell’Anno, S. D. Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-gaussian states,” Phys. Rev. A. 79, 040305 (2009).
[Crossref]

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9, 4428 (2009).
[Crossref] [PubMed]

D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. Kim, “Long-range surface plasmon polariton excitation at the quantum level,” Phys. Rev. A 79, 053845 (2009).
[Crossref]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505 (2009).
[Crossref] [PubMed]

2008 (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[Crossref] [PubMed]

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101, 190504 (2008).
[Crossref] [PubMed]

2007 (4)

A. Monras and M. G. A. Paris, “Optimal quantum estimation of loss in bosonic channels,” Phys. Rev. Lett. 98, 160401 (2007).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641 (2007).
[Crossref]

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actua. B 125, 688 (2007).
[Crossref]

M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811 (2007).
[Crossref] [PubMed]

2006 (3)

B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14, 5641 (2006).
[Crossref] [PubMed]

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive mach-zehnder interferometer devices,” J. Opt. A: Pure Appl. Opt. 8, S561 (2006).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

2005 (2)

M. Singh, H. Chand, and K. C. Gupta, “The studies of density, apparent molar volume, and viscosity of bovine serum albumin, egg albumin, and lysozyme in aqueous and rbi, csi, and dtab aqueous solutions at 303.15 k,” Chem. Biodivers. 2, 809 (2005).
[Crossref]

J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actua. B: Chem. 107, 154 (2005).
[Crossref]

2004 (1)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science 306, 1330 (2004).
[Crossref] [PubMed]

2003 (1)

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308 (2003).
[Crossref] [PubMed]

2000 (1)

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733 (2000).
[Crossref] [PubMed]

1999 (3)

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical trops,” Biophys. J. 77, 2856 (1999).
[Crossref] [PubMed]

J. Homola, I. Koudela, and S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actua. B: Chem. 54, 16 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actua. B 54, 3 (1999).
[Crossref]

1994 (1)

S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett. 72, 3439 (1994).
[Crossref] [PubMed]

1993 (1)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actua. B 12, 213 (1993).
[Crossref]

1988 (1)

B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615 (1988).
[Crossref]

1954 (1)

R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173, 821 (1954).
[Crossref] [PubMed]

Abrams, D. S.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733 (2000).
[Crossref] [PubMed]

Adesso, G.

G. Adesso, F. Dell’Anno, S. D. Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-gaussian states,” Phys. Rev. A. 79, 040305 (2009).
[Crossref]

Alipour, S.

S. Alipour, M. Mehboudi, and A. T. Rezakhani, “Quantum metrology in open systems: Dissipative cramér-rao bound,” Phys. Rev. Lett. 112, 120405 (2014).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[Crossref] [PubMed]

Avella, A.

A. Meda, E. Losero, N. Samantaray, S. Pradyumna, A. Avella, I. Ruo-Berchera, and M. Genovese, “Photon-number correlation for quantum enhanced imaging and sensing,” J. Opt. 19, 094002 (2017).
[Crossref]

Bahadir, E. B.

E. B. Bahadir and M. K. Sezgintürk, “Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses,” Anal. Biochem. 478, 107 (2015).
[Crossref] [PubMed]

Ballarini, M.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108 (2013).
[Crossref] [PubMed]

Ballester, D.

D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. Kim, “Long-range surface plasmon polariton excitation at the quantum level,” Phys. Rev. A 79, 053845 (2009).
[Crossref]

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101, 190504 (2008).
[Crossref] [PubMed]

Barer, R.

R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173, 821 (1954).
[Crossref] [PubMed]

Bergman, K.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical trops,” Biophys. J. 77, 2856 (1999).
[Crossref] [PubMed]

Berry, M.

R. Whittaker, C. Erven, A. Nevill, M. Berry, J. L. O’Brien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

Blanco, F. J.

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive mach-zehnder interferometer devices,” J. Opt. A: Pure Appl. Opt. 8, S561 (2006).
[Crossref]

Block, S. M.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical trops,” Biophys. J. 77, 2856 (1999).
[Crossref] [PubMed]

Boto, A. N.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733 (2000).
[Crossref] [PubMed]

Bowen, W. P.

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1 (2016).
[Crossref]

Braunstein, S. L.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733 (2000).
[Crossref] [PubMed]

S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett. 72, 3439 (1994).
[Crossref] [PubMed]

Cable, H.

R. Whittaker, C. Erven, A. Nevill, M. Berry, J. L. O’Brien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

Caves, C. M.

S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett. 72, 3439 (1994).
[Crossref] [PubMed]

Chadd, E. H.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical trops,” Biophys. J. 77, 2856 (1999).
[Crossref] [PubMed]

Chand, H.

M. Singh, H. Chand, and K. C. Gupta, “The studies of density, apparent molar volume, and viscosity of bovine serum albumin, egg albumin, and lysozyme in aqueous and rbi, csi, and dtab aqueous solutions at 303.15 k,” Chem. Biodivers. 2, 809 (2005).
[Crossref]

Chen, S.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9, 4428 (2009).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, C. Lee, L. Lu, D. Liu, Y. Wu, L. Feng, M. Li, C. Rockstuhl, G. Guo, G. Guo, M. Tame, and X. Ren, “Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing,” arXiv:1805.06764v1.

Chrzanowski, H. M.

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photon. 11, 700 (2017).
[Crossref]

Cramér, H.

H. Cramér, Mathematical Methods of Statistics(Princeton University Press, Princeton, 1946).

Daimon, M.

del Rio, J. S.

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive mach-zehnder interferometer devices,” J. Opt. A: Pure Appl. Opt. 8, S561 (2006).
[Crossref]

Dell’Anno, F.

G. Adesso, F. Dell’Anno, S. D. Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-gaussian states,” Phys. Rev. A. 79, 040305 (2009).
[Crossref]

Descrovi, E.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108 (2013).
[Crossref] [PubMed]

Dieleman, F.

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. Tame, “Quantum plasmonic sensing: Beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992 (2016).
[Crossref]

Dmitriev, A.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9, 4428 (2009).
[Crossref] [PubMed]

Dominguez, C.

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive mach-zehnder interferometer devices,” J. Opt. A: Pure Appl. Opt. 8, S561 (2006).
[Crossref]

Dostálek, J.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108 (2013).
[Crossref] [PubMed]

J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actua. B: Chem. 107, 154 (2005).
[Crossref]

Dowling, J. P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733 (2000).
[Crossref] [PubMed]

Dowran, M.

Duyne, R. P. V.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[Crossref] [PubMed]

Erven, C.

R. Whittaker, C. Erven, A. Nevill, M. Berry, J. L. O’Brien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

Fan, W.

W. Fan, B. J. Lawrie, and R. C. Pooser, “Quantum plasmonic sensing,” Phys. Rev. A 92, 053812 (2015).
[Crossref]

Feller, B. E.

Feng, L.

Y. Chen, C. Lee, L. Lu, D. Liu, Y. Wu, L. Feng, M. Li, C. Rockstuhl, G. Guo, G. Guo, M. Tame, and X. Ren, “Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing,” arXiv:1805.06764v1.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actua. B 54, 3 (1999).
[Crossref]

Genovese, M.

A. Meda, E. Losero, N. Samantaray, S. Pradyumna, A. Avella, I. Ruo-Berchera, and M. Genovese, “Photon-number correlation for quantum enhanced imaging and sensing,” J. Opt. 19, 094002 (2017).
[Crossref]

Giorgis, F.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108 (2013).
[Crossref] [PubMed]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photon. 5, 222 (2011).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science 306, 1330 (2004).
[Crossref] [PubMed]

Gittes, F.

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308 (2003).
[Crossref] [PubMed]

Guo, G.

Y. Chen, C. Lee, L. Lu, D. Liu, Y. Wu, L. Feng, M. Li, C. Rockstuhl, G. Guo, G. Guo, M. Tame, and X. Ren, “Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing,” arXiv:1805.06764v1.

Y. Chen, C. Lee, L. Lu, D. Liu, Y. Wu, L. Feng, M. Li, C. Rockstuhl, G. Guo, G. Guo, M. Tame, and X. Ren, “Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing,” arXiv:1805.06764v1.

Gupta, K. C.

M. Singh, H. Chand, and K. C. Gupta, “The studies of density, apparent molar volume, and viscosity of bovine serum albumin, egg albumin, and lysozyme in aqueous and rbi, csi, and dtab aqueous solutions at 303.15 k,” Chem. Biodivers. 2, 809 (2005).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828 (2011).
[Crossref] [PubMed]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641 (2007).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[Crossref] [PubMed]

Hobbs, P. C. D.

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505 (2009).
[Crossref] [PubMed]

J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actua. B: Chem. 107, 154 (2005).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actua. B 54, 3 (1999).
[Crossref]

J. Homola, I. Koudela, and S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actua. B: Chem. 54, 16 (1999).
[Crossref]

Huynh, T.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

Illuminati, F.

G. Adesso, F. Dell’Anno, S. D. Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-gaussian states,” Phys. Rev. A. 79, 040305 (2009).
[Crossref]

Jefferson, M.

Jonas, U.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108 (2013).
[Crossref] [PubMed]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actua. B 12, 213 (1993).
[Crossref]

Joseph, J.

P. K. Sahoo, S. Sarkar, and J. Joseph, “High sensitivity guided-mode-resonance optical sensor employing phase detection,” Sci. Rep. 7, 7607 (2017).
[Crossref] [PubMed]

Kalashnikov, D. A.

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4, 011049 (2014).

Käll, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9, 4428 (2009).
[Crossref] [PubMed]

Kim, M.

D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. Kim, “Long-range surface plasmon polariton excitation at the quantum level,” Phys. Rev. A 79, 053845 (2009).
[Crossref]

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101, 190504 (2008).
[Crossref] [PubMed]

Kim, M. S.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329 (2013).
[Crossref]

Knoesen, A.

Knoll, W.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108 (2013).
[Crossref] [PubMed]

B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615 (1988).
[Crossref]

Kok, P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733 (2000).
[Crossref] [PubMed]

Koudela, I.

J. Homola, I. Koudela, and S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actua. B: Chem. 54, 16 (1999).
[Crossref]

Krivitsky, L. A.

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4, 011049 (2014).

Kumar, A.

Kuznetsov, A. I.

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4, 011049 (2014).

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641 (2007).
[Crossref]

Lawrie, B.

R. C. Pooser and B. Lawrie, “Plasmonic trace sensing below the photon shot noise limit,” ACS Photon. 10, 1021 (2015).

Lawrie, B. J.

M. Dowran, A. Kumar, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Quantum-enhanced plasmonic sensing,” Optica 5, 628 (2018).
[Crossref]

W. Fan, B. J. Lawrie, and R. C. Pooser, “Quantum plasmonic sensing,” Phys. Rev. A 92, 053812 (2015).
[Crossref]

Lechuga, L. M.

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive mach-zehnder interferometer devices,” J. Opt. A: Pure Appl. Opt. 8, S561 (2006).
[Crossref]

Lee, C.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. Tame, “Quantum plasmonic sensing: Beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992 (2016).
[Crossref]

D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. Kim, “Long-range surface plasmon polariton excitation at the quantum level,” Phys. Rev. A 79, 053845 (2009).
[Crossref]

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101, 190504 (2008).
[Crossref] [PubMed]

Y. Chen, C. Lee, L. Lu, D. Liu, Y. Wu, L. Feng, M. Li, C. Rockstuhl, G. Guo, G. Guo, M. Tame, and X. Ren, “Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing,” arXiv:1805.06764v1.

Lee, J.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. Tame, “Quantum plasmonic sensing: Beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992 (2016).
[Crossref]

D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. Kim, “Long-range surface plasmon polariton excitation at the quantum level,” Phys. Rev. A 79, 053845 (2009).
[Crossref]

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101, 190504 (2008).
[Crossref] [PubMed]

Lee, J.-S.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

Lee, K.-G.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

Lee, S.-Y.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

Leung, A.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actua. B 125, 688 (2007).
[Crossref]

Li, M.

Y. Chen, C. Lee, L. Lu, D. Liu, Y. Wu, L. Feng, M. Li, C. Rockstuhl, G. Guo, G. Guo, M. Tame, and X. Ren, “Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing,” arXiv:1805.06764v1.

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641 (2007).
[Crossref]

Liou, G. F.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical trops,” Biophys. J. 77, 2856 (1999).
[Crossref] [PubMed]

Lipson, S. G.

Liu, D.

Y. Chen, C. Lee, L. Lu, D. Liu, Y. Wu, L. Feng, M. Li, C. Rockstuhl, G. Guo, G. Guo, M. Tame, and X. Ren, “Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing,” arXiv:1805.06764v1.

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photon. 5, 222 (2011).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science 306, 1330 (2004).
[Crossref] [PubMed]

Losero, E.

A. Meda, E. Losero, N. Samantaray, S. Pradyumna, A. Avella, I. Ruo-Berchera, and M. Genovese, “Photon-number correlation for quantum enhanced imaging and sensing,” J. Opt. 19, 094002 (2017).
[Crossref]

Loudon, R.

R. Loudon, The Quantum Theory of Light(Oxford University, Oxford, UK, 2000).

Lu, L.

Y. Chen, C. Lee, L. Lu, D. Liu, Y. Wu, L. Feng, M. Li, C. Rockstuhl, G. Guo, G. Guo, M. Tame, and X. Ren, “Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing,” arXiv:1805.06764v1.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[Crossref] [PubMed]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photon. 5, 222 (2011).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science 306, 1330 (2004).
[Crossref] [PubMed]

Maier, S. A.

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. Tame, “Quantum plasmonic sensing: Beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992 (2016).
[Crossref]

M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329 (2013).
[Crossref]

Mandracci, P.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108 (2013).
[Crossref] [PubMed]

Marino, A. M.

Masumura, A.

Mateescu, A.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108 (2013).
[Crossref] [PubMed]

Matthews, J. C. F.

R. Whittaker, C. Erven, A. Nevill, M. Berry, J. L. O’Brien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828 (2011).
[Crossref] [PubMed]

Mayora, K.

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive mach-zehnder interferometer devices,” J. Opt. A: Pure Appl. Opt. 8, S561 (2006).
[Crossref]

McEnery, K. R.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329 (2013).
[Crossref]

Meda, A.

A. Meda, E. Losero, N. Samantaray, S. Pradyumna, A. Avella, I. Ruo-Berchera, and M. Genovese, “Photon-number correlation for quantum enhanced imaging and sensing,” J. Opt. 19, 094002 (2017).
[Crossref]

Mehboudi, M.

S. Alipour, M. Mehboudi, and A. T. Rezakhani, “Quantum metrology in open systems: Dissipative cramér-rao bound,” Phys. Rev. Lett. 112, 120405 (2014).
[Crossref]

Miler, M.

J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actua. B: Chem. 107, 154 (2005).
[Crossref]

Miller, R. D.

Monras, A.

A. Monras and M. G. A. Paris, “Optimal quantum estimation of loss in bosonic channels,” Phys. Rev. Lett. 98, 160401 (2007).
[Crossref] [PubMed]

Moreno, M.

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive mach-zehnder interferometer devices,” J. Opt. A: Pure Appl. Opt. 8, S561 (2006).
[Crossref]

Mutharasan, R.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actua. B 125, 688 (2007).
[Crossref]

Nam, S. W.

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photon. 11, 700 (2017).
[Crossref]

Neuman, K. C.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical trops,” Biophys. J. 77, 2856 (1999).
[Crossref] [PubMed]

Nevill, A.

R. Whittaker, C. Erven, A. Nevill, M. Berry, J. L. O’Brien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

O’Brien, J. L.

R. Whittaker, C. Erven, A. Nevill, M. Berry, J. L. O’Brien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

Ozdemir, S. K.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329 (2013).
[Crossref]

Pan, Z.

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4, 011049 (2014).

Paris, M. G. A.

A. Monras and M. G. A. Paris, “Optimal quantum estimation of loss in bosonic channels,” Phys. Rev. Lett. 98, 160401 (2007).
[Crossref] [PubMed]

Paternostro, M.

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101, 190504 (2008).
[Crossref] [PubMed]

Peterman, E. J.

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308 (2003).
[Crossref] [PubMed]

Peters, T.

T. Peters, The Plasma Proteins (Academic, 1975).

Piliarik, M.

Pooser, R. C.

M. Dowran, A. Kumar, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Quantum-enhanced plasmonic sensing,” Optica 5, 628 (2018).
[Crossref]

W. Fan, B. J. Lawrie, and R. C. Pooser, “Quantum plasmonic sensing,” Phys. Rev. A 92, 053812 (2015).
[Crossref]

R. C. Pooser and B. Lawrie, “Plasmonic trace sensing below the photon shot noise limit,” ACS Photon. 10, 1021 (2015).

Pradyumna, S.

A. Meda, E. Losero, N. Samantaray, S. Pradyumna, A. Avella, I. Ruo-Berchera, and M. Genovese, “Photon-number correlation for quantum enhanced imaging and sensing,” J. Opt. 19, 094002 (2017).
[Crossref]

Pryde, G. J.

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photon. 11, 700 (2017).
[Crossref]

Raether, H.

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings(Springer, Berlin, Germany, 1988).

Ran, B.

Ren, X.

Y. Chen, C. Lee, L. Lu, D. Liu, Y. Wu, L. Feng, M. Li, C. Rockstuhl, G. Guo, G. Guo, M. Tame, and X. Ren, “Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing,” arXiv:1805.06764v1.

Rezakhani, A. T.

S. Alipour, M. Mehboudi, and A. T. Rezakhani, “Quantum metrology in open systems: Dissipative cramér-rao bound,” Phys. Rev. Lett. 112, 120405 (2014).
[Crossref]

Risk, W. P.

Rockstuhl, C.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. Tame, “Quantum plasmonic sensing: Beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992 (2016).
[Crossref]

Y. Chen, C. Lee, L. Lu, D. Liu, Y. Wu, L. Feng, M. Li, C. Rockstuhl, G. Guo, G. Guo, M. Tame, and X. Ren, “Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing,” arXiv:1805.06764v1.

Rothenhausler, B.

B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615 (1988).
[Crossref]

Ruo-Berchera, I.

A. Meda, E. Losero, N. Samantaray, S. Pradyumna, A. Avella, I. Ruo-Berchera, and M. Genovese, “Photon-number correlation for quantum enhanced imaging and sensing,” J. Opt. 19, 094002 (2017).
[Crossref]

Sahoo, P. K.

P. K. Sahoo, S. Sarkar, and J. Joseph, “High sensitivity guided-mode-resonance optical sensor employing phase detection,” Sci. Rep. 7, 7607 (2017).
[Crossref] [PubMed]

Samantaray, N.

A. Meda, E. Losero, N. Samantaray, S. Pradyumna, A. Avella, I. Ruo-Berchera, and M. Genovese, “Photon-number correlation for quantum enhanced imaging and sensing,” J. Opt. 19, 094002 (2017).
[Crossref]

Sarkar, S.

P. K. Sahoo, S. Sarkar, and J. Joseph, “High sensitivity guided-mode-resonance optical sensor employing phase detection,” Sci. Rep. 7, 7607 (2017).
[Crossref] [PubMed]

Schmidt, C. F.

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308 (2003).
[Crossref] [PubMed]

Sepulveda, B.

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive mach-zehnder interferometer devices,” J. Opt. A: Pure Appl. Opt. 8, S561 (2006).
[Crossref]

Sezgintürk, M. K.

E. B. Bahadir and M. K. Sezgintürk, “Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses,” Anal. Biochem. 478, 107 (2015).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[Crossref] [PubMed]

Shalm, L. K.

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photon. 11, 700 (2017).
[Crossref]

Shankar, P. M.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actua. B 125, 688 (2007).
[Crossref]

Siena, S. D.

G. Adesso, F. Dell’Anno, S. D. Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-gaussian states,” Phys. Rev. A. 79, 040305 (2009).
[Crossref]

Singh, M.

M. Singh, H. Chand, and K. C. Gupta, “The studies of density, apparent molar volume, and viscosity of bovine serum albumin, egg albumin, and lysozyme in aqueous and rbi, csi, and dtab aqueous solutions at 303.15 k,” Chem. Biodivers. 2, 809 (2005).
[Crossref]

Slussarenko, S.

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photon. 11, 700 (2017).
[Crossref]

Souza, L. A. M.

G. Adesso, F. Dell’Anno, S. D. Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-gaussian states,” Phys. Rev. A. 79, 040305 (2009).
[Crossref]

Svedendahl, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9, 4428 (2009).
[Crossref] [PubMed]

Tame, M.

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. Tame, “Quantum plasmonic sensing: Beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992 (2016).
[Crossref]

Y. Chen, C. Lee, L. Lu, D. Liu, Y. Wu, L. Feng, M. Li, C. Rockstuhl, G. Guo, G. Guo, M. Tame, and X. Ren, “Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing,” arXiv:1805.06764v1.

Tame, M. S.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329 (2013).
[Crossref]

D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. Kim, “Long-range surface plasmon polariton excitation at the quantum level,” Phys. Rev. A 79, 053845 (2009).
[Crossref]

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101, 190504 (2008).
[Crossref] [PubMed]

Taylor, M.

M. Taylor, Quantum Microscopy of Biological Systems(Springer, Berlin, Germany, 2015).

Taylor, M. A.

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1 (2016).
[Crossref]

Tkaczyk, S.

R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173, 821 (1954).
[Crossref] [PubMed]

Toma, K.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108 (2013).
[Crossref] [PubMed]

Toma, M.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108 (2013).
[Crossref] [PubMed]

Verma, V. B.

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photon. 11, 700 (2017).
[Crossref]

Wang, X.

Weston, M. M.

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photon. 11, 700 (2017).
[Crossref]

Whittaker, R.

R. Whittaker, C. Erven, A. Nevill, M. Berry, J. L. O’Brien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

Williams, C. P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733 (2000).
[Crossref] [PubMed]

Wu, Y.

Y. Chen, C. Lee, L. Lu, D. Liu, Y. Wu, L. Feng, M. Li, C. Rockstuhl, G. Guo, G. Guo, M. Tame, and X. Ren, “Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing,” arXiv:1805.06764v1.

Yee, S.

J. Homola, I. Koudela, and S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actua. B: Chem. 54, 16 (1999).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actua. B 54, 3 (1999).
[Crossref]

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actua. B 12, 213 (1993).
[Crossref]

Zayats, A. V.

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101, 190504 (2008).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[Crossref] [PubMed]

ACS Photon. (2)

R. C. Pooser and B. Lawrie, “Plasmonic trace sensing below the photon shot noise limit,” ACS Photon. 10, 1021 (2015).

C. Lee, F. Dieleman, J. Lee, C. Rockstuhl, S. A. Maier, and M. Tame, “Quantum plasmonic sensing: Beyond the shot-noise and diffraction limit,” ACS Photon. 3, 992 (2016).
[Crossref]

Anal. Biochem. (1)

E. B. Bahadir and M. K. Sezgintürk, “Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses,” Anal. Biochem. 478, 107 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Biophys. J. (2)

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical trops,” Biophys. J. 77, 2856 (1999).
[Crossref] [PubMed]

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308 (2003).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108 (2013).
[Crossref] [PubMed]

Chem. Biodivers. (1)

M. Singh, H. Chand, and K. C. Gupta, “The studies of density, apparent molar volume, and viscosity of bovine serum albumin, egg albumin, and lysozyme in aqueous and rbi, csi, and dtab aqueous solutions at 303.15 k,” Chem. Biodivers. 2, 809 (2005).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828 (2011).
[Crossref] [PubMed]

J. Opt. (1)

A. Meda, E. Losero, N. Samantaray, S. Pradyumna, A. Avella, I. Ruo-Berchera, and M. Genovese, “Photon-number correlation for quantum enhanced imaging and sensing,” J. Opt. 19, 094002 (2017).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive mach-zehnder interferometer devices,” J. Opt. A: Pure Appl. Opt. 8, S561 (2006).
[Crossref]

Nano Lett. (1)

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9, 4428 (2009).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[Crossref] [PubMed]

Nat. Photon. (3)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641 (2007).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photon. 5, 222 (2011).
[Crossref]

S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, “Unconditional violation of the shot-noise limit in photonic quantum metrology,” Nat. Photon. 11, 700 (2017).
[Crossref]

Nat. Phys. (1)

M. S. Tame, K. R. McEnery, S. K. Ozdemir, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329 (2013).
[Crossref]

Nature (2)

B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615 (1988).
[Crossref]

R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173, 821 (1954).
[Crossref] [PubMed]

New J. Phys. (1)

R. Whittaker, C. Erven, A. Nevill, M. Berry, J. L. O’Brien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

Opt. Express (3)

Optica (1)

Phys. Rep. (1)

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1 (2016).
[Crossref]

Phys. Rev. A (3)

W. Fan, B. J. Lawrie, and R. C. Pooser, “Quantum plasmonic sensing,” Phys. Rev. A 92, 053812 (2015).
[Crossref]

J.-S. Lee, T. Huynh, S.-Y. Lee, K.-G. Lee, J. Lee, M. Tame, C. Rockstuhl, and C. Lee, “Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors,” Phys. Rev. A 96, 033833 (2017).
[Crossref]

D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. Kim, “Long-range surface plasmon polariton excitation at the quantum level,” Phys. Rev. A 79, 053845 (2009).
[Crossref]

Phys. Rev. A. (1)

G. Adesso, F. Dell’Anno, S. D. Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-gaussian states,” Phys. Rev. A. 79, 040305 (2009).
[Crossref]

Phys. Rev. Lett. (6)

S. Alipour, M. Mehboudi, and A. T. Rezakhani, “Quantum metrology in open systems: Dissipative cramér-rao bound,” Phys. Rev. Lett. 112, 120405 (2014).
[Crossref]

A. Monras and M. G. A. Paris, “Optimal quantum estimation of loss in bosonic channels,” Phys. Rev. Lett. 98, 160401 (2007).
[Crossref] [PubMed]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733 (2000).
[Crossref] [PubMed]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101, 190504 (2008).
[Crossref] [PubMed]

S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett. 72, 3439 (1994).
[Crossref] [PubMed]

Phys. Rev. X (1)

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4, 011049 (2014).

Sci. Rep. (1)

P. K. Sahoo, S. Sarkar, and J. Joseph, “High sensitivity guided-mode-resonance optical sensor employing phase detection,” Sci. Rep. 7, 7607 (2017).
[Crossref] [PubMed]

Science (1)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science 306, 1330 (2004).
[Crossref] [PubMed]

Sens. Actua. B (3)

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actua. B 125, 688 (2007).
[Crossref]

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actua. B 12, 213 (1993).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actua. B 54, 3 (1999).
[Crossref]

Sens. Actua. B: Chem. (2)

J. Homola, I. Koudela, and S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actua. B: Chem. 54, 16 (1999).
[Crossref]

J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actua. B: Chem. 107, 154 (2005).
[Crossref]

Other (6)

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings(Springer, Berlin, Germany, 1988).

M. Taylor, Quantum Microscopy of Biological Systems(Springer, Berlin, Germany, 2015).

Y. Chen, C. Lee, L. Lu, D. Liu, Y. Wu, L. Feng, M. Li, C. Rockstuhl, G. Guo, G. Guo, M. Tame, and X. Ren, “Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing,” arXiv:1805.06764v1.

R. Loudon, The Quantum Theory of Light(Oxford University, Oxford, UK, 2000).

T. Peters, The Plasma Proteins (Academic, 1975).

H. Cramér, Mathematical Methods of Statistics(Princeton University Press, Princeton, 1946).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Experimental setup. A continuous wave pump beam at 401.5 nm is filtered to be a single mode with a particular polarization that maximizes the rate of the photon pair generation through the nonlinear crystal. Such initial filtering is carried out before being injected into the nonlinear crystal (PPKTP). The output beams from the crystal are also filtered via a band pass filter (Thorlabs FBH 800-40) centered at 800 nm with a width of 40 nm and then collimated by an iris. Orthogonally polarized pair of photons are split into separate arms through the polarization beam splitter. The photon in the idler mode is directly sent to an APD with a temporal resolution of about 1 ns, where the detection of a photon heralds the presence of a single photon in the signal mode, which is used as a signal for sensing. This heralded signal photon is sent to the ATR setup, which consists of a prism, a gold layer of about 57 nm, and an acrylic box that contains the fluidic analyte (see the inset for the layered structure). We then count the number of single photons in the signal mode over the sampling with a size of ν = 104, conditioned on the cases when a detection event is triggered in the idler mode within the time window of 25 ns (The time window of the coincidence detection is determined by a FPGA used. The count rate of the idler photon is about 2 × 105 cps, so that the probability for the twin photons to be detected in the different time windows is nearly zero). We repeat the sampling µ = 103 times to extract the statistical features of the estimation. (b) The spectrum of the output beams are measured by a spectrometer. The central wavelengths of the photon pairs are located at 799.16 nm and 803.47 nm with the FWHM of 6.67 nm and 5.01 nm, respectively. The wavelengths can be tuned via controlling the temperature of the oven.
Fig. 2
Fig. 2 (a) Dots show measured transmittances T prism ( meas ) of Eq. (3) over the incident angles from 66.5° to 69° for BSA concentrations of 0% and 2%. Solid lines represent the fitted curves using Eq. (2). The error bars are measured as a standard deviation of Tprism in the histogram over µ repetitions at each incident angle, see the inset for an example. (b) The errors Δ T total ( meas ) , corresponding to the errors Δ T prism ( meas ) shown in (a), are represented as a function of T total ( meas ) . The measured errors are compared with theoretically expected errors for classical and quantum sensing when N = 1, which are given as T total ( true ) / ν and T total ( true ) ( 1 T total ( true ) ) / ν, respectively. The comparison for the same input power of N and the sampling size of ν clearly demonstrates that the measured errors are below the SNL, defined as the error that would be obtained in classical sensing using a coherent state of light with N = 1. As the total transmittance of 〈Ttotal〉 moves close to zero, the enhancement is not so significant, but the quantum enhancement nevertheless always exists at any value of transmittance.
Fig. 3
Fig. 3 (a) At a fixed incident angle of θin = 67.5°, the transmittance through the prism changes with the refractive index nBSA of the BSA sample. By measuring the transmittance T prism ( meas ) , one may infer the refractive index. However, the measured transmittance has a fluctuation represented by Δ T prism ( meas ) , limiting the precision of estimating the refractive index of nBSA. The dots represent the average of Tprism and the estimated refractive index nBSA, whereas the error bars in the horizontal and vertical directions denote the SDs of the histograms for Tprism and the estimated n BSA, respectively. Here the BSA concentration varies from 0% to 2% in 0.25% steps. The inset shows a magnified region where the measured data are presented. (b) Over µ repetitions of the experiment, one constructs the histogram of the estimated refractive index nBSA for given concentrations. Dots and error bars show the mean and standard deviation of the histogram for the estimated nBSA over µ repetitions, respectively. The solid line represents the averaged dependence of the refractive index with respect to the BSA concentration, yielding the slope of dnBSA〉/dC = (1.933 ± 0.107) × 10−3. (c) The errors taken from (b) are compared with the theoretically expected errors for classical and quantum sensing, each of which is obtained by using the linear error propagation method where Δ T prism ( meas ) and the derivative of Rsp with nBSA are implemented. The comparison clearly shows that the estimation errors are below the SNL, implying the estimation of the refractive index nBSA is more precise when quantum resources are employed.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ T total ( meas ) = 1 μ j = 1 μ ( T total ( j ) T total ) 2 ,
R sp = | e i 2 k 2 d r 23 + r 12 e i 2 k 2 d r 23 r 12 + 1 | 2 ,
T prism = T total T total,air ,
Δ T total ( C ) = T total ( true ) ν ,
Δ T total ( Q ) = T total ( true ) ( 1 T total ( true ) ) ν ,
= Δ T prism ( C ) Δ T prism ( Q ) = 1 1 T total ( true ) ,
Δ n BSA ( LEPM ) = Δ T prism | T prism n BSA | .