Abstract

We present a 300 μm thick optical Söller collimator realized by X-ray lithography on a PMMA wafer which, when paired with luminescent concentrator films, forms the first complete prototype of a short-distance, flexible, scalable imaging system that is less than 1 mm thick. We describe two ways of increasing the light-gathering ability of the collimator by using hexagonal aperture cells and embedded micro-lenses, evaluate a new micro-lens aperture array (MLAA) for proof of concept, and analyze the optical imaging properties of flexible MLAAs when realized as thin films.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thin-film camera using luminescent concentrators and an optical Söller collimator

Alexander Koppelhuber and Oliver Bimber
Opt. Express 25(16) 18526-18536 (2017)

Towards a transparent, flexible, scalable and disposable image sensor using thin-film luminescent concentrators

Alexander Koppelhuber and Oliver Bimber
Opt. Express 21(4) 4796-4810 (2013)

Enhanced learning-based imaging with thin-film luminescent concentrators

Alexander Koppelhuber, Sean Fanello, Clemens Birklbauer, David Schedl, Shahram Izadi, and Oliver Bimber
Opt. Express 22(24) 29531-29543 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Koppal, “A survey of computational photography in the small: Creating intelligent cameras for the next wave of miniature devices,” IEEE Signal Process. Mag. 33, 16–22 (2016).
    [Crossref]
  2. E. E. Fenimore and T. Cannon, “Coded aperture imaging with uniformly redundant arrays,” Appl. Opt. 17, 337–347 (1978).
    [Crossref] [PubMed]
  3. R. Dicke, “Scatter-hole cameras for x-rays and gamma rays,” Astrophys. J. 153, L101 (1968).
    [Crossref]
  4. M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in Proceedings of IEEE International Conference on Computer Vision Workshop, (IEEE, 2015), pp. 663–666.
  5. M. J. DeWeert and B. P. Farm, “Lensless coded-aperture imaging with separable doubly-toeplitz masks,” Opt. Eng. 54, 023102 (2015).
    [Crossref]
  6. G. Kuo, N. Antipa, R. Ng, and L. Waller, “Diffusercam: diffuser-based lensless cameras,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2017).
  7. N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2016), pp. 1–11.
  8. S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv.3 (2017).
    [Crossref] [PubMed]
  9. D. C. Sims, Y. Yue, and S. K. Nayar, “Towards flexible sheet cameras: Deformable lens arrays with intrinsic optical adaptation,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2016), pp. 1–11.
  10. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
    [Crossref]
  11. G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10, 1431–1434 (1998).
    [Crossref]
  12. T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
    [Crossref]
  13. H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes Iii, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748 (2008).
    [Crossref] [PubMed]
  14. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
    [Crossref] [PubMed]
  15. A. Koppelhuber and O. Bimber, “Towards a transparent, flexible, scalable and disposable image sensor using thin-film luminescent concentrators,” Opt. Express 21, 4796–4810 (2013).
    [Crossref] [PubMed]
  16. A. Koppelhuber, C. Birklbauer, S. Izadi, and O. Bimber, “A transparent thin-film sensor for multi-focal image reconstruction and depth estimation,” Opt. Express 22, 8928–8942 (2014).
    [Crossref] [PubMed]
  17. A. Koppelhuber, S. Fanello, C. Birklbauer, D. Schedl, S. Izadi, and O. Bimber, “Enhanced learning-based imaging with thin-film luminescent concentrators,” Opt. Express 22, 29531–29543 (2014).
    [Crossref]
  18. A. Koppelhuber and O. Bimber, “A classification sensor based on compressed optical radon transform,” Opt. Express 23, 9397–9406 (2015).
    [Crossref] [PubMed]
  19. A. Koppelhuber and O. Bimber, “Multi-exposure color imaging with stacked thin-film luminescent concentrators,” Opt. Express 23, 33713–33720 (2015).
    [Crossref]
  20. A. Koppelhuber and O. Bimber, “Computational imaging, relighting and depth sensing using flexible thin-film sensors,” Opt. Express 25, 2694–2702 (2017).
    [Crossref]
  21. O. Bimber and A. Koppelhuber, “Toward a flexible, scalable, and transparent thin-film camera,” Proc. IEEE 105, 960–969 (2017).
    [Crossref]
  22. A. Koppelhuber and O. Bimber, “Thin-film camera using luminescent concentrators and an optical söller collimator,” Opt. Express 25, 18526–18536 (2017).
    [Crossref] [PubMed]
  23. V. Saile, U. Wallrabe, O. Tabata, and J. G. Korvink, LIGA and its Applications, vol. 7 (John Wiley & Sons, 2009).
  24. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
    [Crossref] [PubMed]
  25. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
    [Crossref] [PubMed]
  26. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
    [Crossref] [PubMed]

2018 (1)

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (3)

S. J. Koppal, “A survey of computational photography in the small: Creating intelligent cameras for the next wave of miniature devices,” IEEE Signal Process. Mag. 33, 16–22 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (2)

2013 (2)

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

A. Koppelhuber and O. Bimber, “Towards a transparent, flexible, scalable and disposable image sensor using thin-film luminescent concentrators,” Opt. Express 21, 4796–4810 (2013).
[Crossref] [PubMed]

2008 (1)

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes Iii, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748 (2008).
[Crossref] [PubMed]

2005 (1)

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

2004 (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

1998 (1)

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10, 1431–1434 (1998).
[Crossref]

1978 (1)

1968 (1)

R. Dicke, “Scatter-hole cameras for x-rays and gamma rays,” Astrophys. J. 153, L101 (1968).
[Crossref]

Antipa, N.

G. Kuo, N. Antipa, R. Ng, and L. Waller, “Diffusercam: diffuser-based lensless cameras,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2017).

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2016), pp. 1–11.

Arzenbacher, K.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv.3 (2017).
[Crossref] [PubMed]

Asif, M. S.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in Proceedings of IEEE International Conference on Computer Vision Workshop, (IEEE, 2015), pp. 663–666.

Ayremlou, A.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in Proceedings of IEEE International Conference on Computer Vision Workshop, (IEEE, 2015), pp. 663–666.

Baraniuk, R.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in Proceedings of IEEE International Conference on Computer Vision Workshop, (IEEE, 2015), pp. 663–666.

Bimber, O.

Birklbauer, C.

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

Cannon, T.

Capasso, F.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

Choi, K.-J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

Choi, W. M.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes Iii, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748 (2008).
[Crossref] [PubMed]

Crozier, K. B.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

DeWeert, M. J.

M. J. DeWeert and B. P. Farm, “Lensless coded-aperture imaging with separable doubly-toeplitz masks,” Opt. Eng. 54, 023102 (2015).
[Crossref]

Dicke, R.

R. Dicke, “Scatter-hole cameras for x-rays and gamma rays,” Astrophys. J. 153, L101 (1968).
[Crossref]

Fanello, S.

Farm, B. P.

M. J. DeWeert and B. P. Farm, “Lensless coded-aperture imaging with separable doubly-toeplitz masks,” Opt. Eng. 54, 023102 (2015).
[Crossref]

Fenimore, E. E.

Geddes Iii, J. B.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes Iii, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748 (2008).
[Crossref] [PubMed]

Giessen, H.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv.3 (2017).
[Crossref] [PubMed]

Gissibl, T.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv.3 (2017).
[Crossref] [PubMed]

Heeger, A. J.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10, 1431–1434 (1998).
[Crossref]

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Herkommer, A. M.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv.3 (2017).
[Crossref] [PubMed]

Huang, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes Iii, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748 (2008).
[Crossref] [PubMed]

Iba, S.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

Izadi, S.

Jung, I.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

Kato, Y.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

Kawaguchi, H.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

Kim, R. H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

Ko, H. C.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes Iii, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748 (2008).
[Crossref] [PubMed]

Koppal, S. J.

S. J. Koppal, “A survey of computational photography in the small: Creating intelligent cameras for the next wave of miniature devices,” IEEE Signal Process. Mag. 33, 16–22 (2016).
[Crossref]

Koppelhuber, A.

Korvink, J. G.

V. Saile, U. Wallrabe, O. Tabata, and J. G. Korvink, LIGA and its Applications, vol. 7 (John Wiley & Sons, 2009).

Kuo, G.

G. Kuo, N. Antipa, R. Ng, and L. Waller, “Diffusercam: diffuser-based lensless cameras,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2017).

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

Li, R.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

Liu, Z.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

Lu, C.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

Malyarchuk, V.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes Iii, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748 (2008).
[Crossref] [PubMed]

McElvain, J.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10, 1431–1434 (1998).
[Crossref]

Nayar, S. K.

D. C. Sims, Y. Yue, and S. K. Nayar, “Towards flexible sheet cameras: Deformable lens arrays with intrinsic optical adaptation,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2016), pp. 1–11.

Necula, S.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2016), pp. 1–11.

Ng, R.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2016), pp. 1–11.

G. Kuo, N. Antipa, R. Ng, and L. Waller, “Diffusercam: diffuser-based lensless cameras,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2017).

Noguchi, Y.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

Park, H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

Rogers, J. A.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes Iii, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748 (2008).
[Crossref] [PubMed]

Saile, V.

V. Saile, U. Wallrabe, O. Tabata, and J. G. Korvink, LIGA and its Applications, vol. 7 (John Wiley & Sons, 2009).

Sakurai, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

Sankaranarayanan, A.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in Proceedings of IEEE International Conference on Computer Vision Workshop, (IEEE, 2015), pp. 663–666.

Schedl, D.

Sekitani, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

Sims, D. C.

D. C. Sims, Y. Yue, and S. K. Nayar, “Towards flexible sheet cameras: Deformable lens arrays with intrinsic optical adaptation,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2016), pp. 1–11.

Someya, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

Song, J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes Iii, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748 (2008).
[Crossref] [PubMed]

Song, Y. M.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

Stoykovich, M. P.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes Iii, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748 (2008).
[Crossref] [PubMed]

Tabata, O.

V. Saile, U. Wallrabe, O. Tabata, and J. G. Korvink, LIGA and its Applications, vol. 7 (John Wiley & Sons, 2009).

Thiele, S.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv.3 (2017).
[Crossref] [PubMed]

Veeraraghavan, A.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in Proceedings of IEEE International Conference on Computer Vision Workshop, (IEEE, 2015), pp. 663–666.

Waller, L.

G. Kuo, N. Antipa, R. Ng, and L. Waller, “Diffusercam: diffuser-based lensless cameras,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2017).

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2016), pp. 1–11.

Wallrabe, U.

V. Saile, U. Wallrabe, O. Tabata, and J. G. Korvink, LIGA and its Applications, vol. 7 (John Wiley & Sons, 2009).

Wang, J.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10, 1431–1434 (1998).
[Crossref]

Wang, S.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes Iii, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748 (2008).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

Xiao, J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes Iii, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748 (2008).
[Crossref] [PubMed]

Xie, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

Yu, C.-J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes Iii, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748 (2008).
[Crossref] [PubMed]

Yu, G.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10, 1431–1434 (1998).
[Crossref]

Yue, Y.

D. C. Sims, Y. Yue, and S. K. Nayar, “Towards flexible sheet cameras: Deformable lens arrays with intrinsic optical adaptation,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2016), pp. 1–11.

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10, 1431–1434 (1998).
[Crossref]

Appl. Opt. (1)

Astrophys. J. (1)

R. Dicke, “Scatter-hole cameras for x-rays and gamma rays,” Astrophys. J. 153, L101 (1968).
[Crossref]

IEEE Signal Process. Mag. (1)

S. J. Koppal, “A survey of computational photography in the small: Creating intelligent cameras for the next wave of miniature devices,” IEEE Signal Process. Mag. 33, 16–22 (2016).
[Crossref]

IEEE Trans. Electron Devices (1)

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

IEEE Trans. Image Process. (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Nature (2)

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes Iii, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748 (2008).
[Crossref] [PubMed]

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95 (2013).
[Crossref] [PubMed]

Opt. Eng. (1)

M. J. DeWeert and B. P. Farm, “Lensless coded-aperture imaging with separable doubly-toeplitz masks,” Opt. Eng. 54, 023102 (2015).
[Crossref]

Opt. Express (7)

Proc. IEEE (1)

O. Bimber and A. Koppelhuber, “Toward a flexible, scalable, and transparent thin-film camera,” Proc. IEEE 105, 960–969 (2017).
[Crossref]

Science (1)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref] [PubMed]

Other (6)

V. Saile, U. Wallrabe, O. Tabata, and J. G. Korvink, LIGA and its Applications, vol. 7 (John Wiley & Sons, 2009).

G. Kuo, N. Antipa, R. Ng, and L. Waller, “Diffusercam: diffuser-based lensless cameras,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2017).

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2016), pp. 1–11.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv.3 (2017).
[Crossref] [PubMed]

D. C. Sims, Y. Yue, and S. K. Nayar, “Towards flexible sheet cameras: Deformable lens arrays with intrinsic optical adaptation,” in Proceedings of IEEE International Conference on Computational Photography, (IEEE, 2016), pp. 1–11.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in Proceedings of IEEE International Conference on Computer Vision Workshop, (IEEE, 2015), pp. 663–666.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Prototypes: I: MAA with 3D-printed square aperture cells [22] (a–c), II: 300 μm thick MAA with hexagonal cells embedded in a PMMA wafer by means of 3D laser lithography (d–f), III: MLAA with 3D-printed hexagonal cells and round lens inlays (g–i). Thin-film camera concept with stacked LC and MAA / MLAA layers (a,d,g), implemented prototypes (b,e,h), and optics geometry (c,f,i).
Fig. 2
Fig. 2 Curved shapes: Geometric properties of positively/negatively curved MAAs (a,b) and MLAAs (c,d).
Fig. 3
Fig. 3 Grid topologies and scaling: Optical simulation of light-gathering ability L over depth of field (collimation angle α / f-number). Since the structural dimensions of the grid (H and w) remain constant for each plot, only the aperture diameter d varies to achieve a desired α.
Fig. 4
Fig. 4 MLAA vs. MAA: Optical simulations of light-gathering ability L over depth of field (collimation angle α / f-number). Grid-structure dimensions (H and w) of the prototypes (I,II,III) remain constant for each plot, while the aperture diameter d varies to achieve a desired α. Note that plot IV simulates a thin MLAA with the smallest structure (H = 300μm, w = 5μm) that we currently consider practical. The black dots indicate the optical performance of the implemented prototypes.
Fig. 5
Fig. 5 Image reconstruction results: Ground truth images and reconstruction results achieved with the three prototypes (I,II,III, Fig. 1). SSIM is shown below each image. Numbers at the top row indicate the chosen exposure times.

Tables (1)

Tables Icon

Table 1 Properties of the prototypes used in our experiments.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

l = T PSF p + η ,
p = ( T PSF ) 1 ( l η ) .
α = 2 tan 1 ( d H ) ,
d = { ( d H d 2 ( r + H ) ) 1 ( d 2 ( r + H ) ) 2 if r 0 ; 0 if r = 0 ,
f = d ( d + w ) 1 α 2 0 α 2 d f ( θ ) d d θ ,
f ( θ ) = { H 2 sin θ cos γ cos θ if θ < γ H sin ( θ + γ ) cos θ if γ θ α 2 ;
f ( θ ) = { 0 if θ < γ , H sin ( θ γ ) cos θ if γ θ α 2 ,
γ = ( ± sin 1 ( d 2 ( r + H ) ) ) .
L NA f 2 .
α = 2 tan 1 ( d 2 H ) .
d = { 2 ( d H d 2 ( r + H ) ) 1 ( d 2 ( r + H ) ) 2 d if r 0 ; 0 if r = 0 .
f ( θ ) = { 0 if θ β 2 , H tan θ tan ( β 2 ) sec γ 1 if β 2 < θ α 2 ,
β 2 = tan 1 ( d 2 ± H tan γ H ) .

Metrics