Abstract

In most fiber-optic gas sensing applications where the interested refractive index (RI) is ~1.0, the sensitivities are greatly constrained by the large mismatch between the effective RI of the guided mode and the RI of the surrounding gaseous medium. This fundamental challenge necessitates the development of a promising fiber-optic sensing mechanism with the outstanding RI sensitivity to achieve reliable remote gas sensors. In this work, we report a highly sensitive gas refractometer based on a tapered optical microfiber modal interferometer working at the dispersion turning point (DTP). First, we theoretically analyze the essential conditions to achieve the DTP, the spectral characteristics, and the sensing performance at the DTP. Results show that nonadiabatic tapered optical microfibers with diameters of 1.8-2.4 µm possess the DTPs in the near-infrared range and the RI sensitivities can be improved significantly around the DTPs. Second, we experimentally verify the ultrahigh RI sensitivity around the DTP using a nonadiabatic tapered optical microfiber with a waist diameter of ~2 μm. The experimental observations match well with the simulation results and our proposed gas refractometer provides an exceptional sensitivity as high as −69984.3 ± 2363.3 nm/RIU.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrasensitive optical sensing in aqueous solution based on microfiber modal interferometer

Jing Wang, Yipeng Liao, Shanshan Wang, and Xin Wang
Opt. Express 26(19) 24843-24853 (2018)

Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach–Zehnder interferometer

Haipeng Luo, Qizhen Sun, Xiaolei Li, Zhijun Yan, Yanpeng Li, Deming Liu, and Lin Zhang
Opt. Lett. 40(21) 5042-5045 (2015)

Numerical investigation of a microfiber-plane-grating composite optical waveguide for gas refractive index sensing

Chengju Ma, Liyong Ren, Wenge Guo, Haiwei Fu, Yiping Xu, Yinggang Liu, and Jin Wen
Appl. Opt. 56(14) 3984-3988 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
    [Crossref] [PubMed]
  2. S. Asaduzzaman and K. Ahmed, “Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring,” Sens. Biosensing Res. 10, 20–26 (2016).
    [Crossref]
  3. N. Shehada, G. Brönstrup, K. Funka, S. Christiansen, M. Leja, and H. Haick, “Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome,” Nano Lett. 15(2), 1288–1295 (2015).
    [Crossref] [PubMed]
  4. M.-K. Bae, J. A. Lim, S. Kim, and Y.-W. Song, “Ultra-highly sensitive optical gas sensors based on chemomechanical polymer-incorporated fiber interferometer,” Opt. Express 21(2), 2018–2023 (2013).
    [Crossref] [PubMed]
  5. Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: A review,” Sensors (Basel) 18(4), 941 (2018).
    [Crossref] [PubMed]
  6. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol. 24(1), 012004 (2013).
    [Crossref]
  7. W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
    [Crossref]
  8. F. Tian, J. Kanka, and H. Du, “Long-period grating and its cascaded counterpart in photonic crystal fiber for gas phase measurement,” Opt. Express 20(19), 20951–20961 (2012).
    [Crossref] [PubMed]
  9. L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett. 96(24), 241104 (2010).
    [Crossref]
  10. N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
    [Crossref]
  11. N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
    [Crossref] [PubMed]
  12. M. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” ACS Photonics 5(2), 347–352 (2018).
    [Crossref]
  13. N. Zhang, K. Li, Y. Cui, Z. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels,” Lab Chip 18(4), 655–661 (2018).
    [Crossref] [PubMed]
  14. C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13(3), 975–979 (2013).
    [Crossref] [PubMed]
  15. S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534(7608), 529–533 (2016).
    [Crossref] [PubMed]
  16. T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35–42 (2017).
    [Crossref]
  17. J. Zhang, K. Li, T. Zhang, P. J. Buenconsejo, M. Chen, Z. Wang, M. Zhang, Z. Wang, and L. Wei, “Laser induced in-fiber fluid dynamical instabilities for precise and scalable fabrication of spherical particles,” Adv. Funct. Mater. 27(43), 1703245 (2017).
    [Crossref]
  18. K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
    [Crossref] [PubMed]
  19. J. Wu, M. Yao, F. Xiong, A. Ping Zhang, H. Y. Tam, and P. K. A. Wai, “Optical Fiber-Tip Fabry-Pérot Interferometric Pressure Sensor Based on an in Situ μ-Printed Air Cavity,” J. Light. Technol.  36(17) 3618-3623 (2018).
  20. N. L. P. Andrews, R. Ross, D. Munzke, C. van Hoorn, A. Brzezinski, J. A. Barnes, O. Reich, and H.-P. Loock, “In-fiber Mach-Zehnder interferometer for gas refractive index measurements based on a hollow-core photonic crystal fiber,” Opt. Express 24(13), 14086–14099 (2016).
    [Crossref] [PubMed]
  21. M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
    [Crossref] [PubMed]
  22. S. Lacroix, F. Gonthier, R. J. Black, and J. Bures, “Tapered-fiber interferometric wavelength response: the achromatic fringe,” Opt. Lett. 13(5), 395–397 (1988).
    [Crossref] [PubMed]
  23. P. Pilla, C. Trono, F. Baldini, F. Chiavaioli, M. Giordano, and A. Cusano, “Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach,” Opt. Lett. 37(19), 4152–4154 (2012).
    [Crossref] [PubMed]
  24. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics near the dispersion turning points of long-period fiber gratings in B/Ge codoped fiber,” Opt. Lett. 26(22), 1755–1757 (2001).
    [Crossref] [PubMed]
  25. C. Lu, X. Dong, and J. Su, “Detection of Refractive Index Change from the Critical Wavelength of an Etched Few Mode Fiber,” J. Lit. Technol. 35(13), 2593–2597 (2017).
    [Crossref]
  26. E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
    [Crossref]
  27. J. Su, X. Dong, and C. Lu, “Intensity detection scheme of sensors based on the modal interference effect of few mode fiber,” Measurement 79, 182–187 (2016).
    [Crossref]
  28. H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
    [Crossref] [PubMed]
  29. K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lit. Technol. 36(12), 2409–2415 (2018).
    [Crossref]
  30. K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
    [Crossref]
  31. W. B. Ji, Y. C. Tan, B. Lin, S. C. Tjin, and K. K. Chow, “Nonadiabatically tapered microfiber sensor with ultrashort waist,” IEEE Photonics Technol. Lett. 26(22), 2303–2306 (2014).
    [Crossref]
  32. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [Crossref] [PubMed]
  33. S. W. Yang, T. L. Wu, C. W. Wu, and H. C. Chang, “Numerical modeling of weakly fused fiber-optic polarization beamsplitters - Part II: The three-dimensional electromagnetic model,” J. Lit. Technol. 16(4), 691–696 (1998).
    [Crossref]
  34. J. Villatoro, D. Monzón-Hernández, and E. Mejía, “Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors,” Appl. Opt. 42(13), 2278–2283 (2003).
    [Crossref] [PubMed]

2018 (6)

Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: A review,” Sensors (Basel) 18(4), 941 (2018).
[Crossref] [PubMed]

M. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” ACS Photonics 5(2), 347–352 (2018).
[Crossref]

N. Zhang, K. Li, Y. Cui, Z. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref] [PubMed]

J. Wu, M. Yao, F. Xiong, A. Ping Zhang, H. Y. Tam, and P. K. A. Wai, “Optical Fiber-Tip Fabry-Pérot Interferometric Pressure Sensor Based on an in Situ μ-Printed Air Cavity,” J. Light. Technol.  36(17) 3618-3623 (2018).

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lit. Technol. 36(12), 2409–2415 (2018).
[Crossref]

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref] [PubMed]

2017 (3)

C. Lu, X. Dong, and J. Su, “Detection of Refractive Index Change from the Critical Wavelength of an Etched Few Mode Fiber,” J. Lit. Technol. 35(13), 2593–2597 (2017).
[Crossref]

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35–42 (2017).
[Crossref]

J. Zhang, K. Li, T. Zhang, P. J. Buenconsejo, M. Chen, Z. Wang, M. Zhang, Z. Wang, and L. Wei, “Laser induced in-fiber fluid dynamical instabilities for precise and scalable fabrication of spherical particles,” Adv. Funct. Mater. 27(43), 1703245 (2017).
[Crossref]

2016 (8)

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534(7608), 529–533 (2016).
[Crossref] [PubMed]

S. Asaduzzaman and K. Ahmed, “Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring,” Sens. Biosensing Res. 10, 20–26 (2016).
[Crossref]

N. L. P. Andrews, R. Ross, D. Munzke, C. van Hoorn, A. Brzezinski, J. A. Barnes, O. Reich, and H.-P. Loock, “In-fiber Mach-Zehnder interferometer for gas refractive index measurements based on a hollow-core photonic crystal fiber,” Opt. Express 24(13), 14086–14099 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref] [PubMed]

N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref] [PubMed]

J. Su, X. Dong, and C. Lu, “Intensity detection scheme of sensors based on the modal interference effect of few mode fiber,” Measurement 79, 182–187 (2016).
[Crossref]

2015 (3)

2014 (1)

W. B. Ji, Y. C. Tan, B. Lin, S. C. Tjin, and K. K. Chow, “Nonadiabatically tapered microfiber sensor with ultrashort waist,” IEEE Photonics Technol. Lett. 26(22), 2303–2306 (2014).
[Crossref]

2013 (4)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13(3), 975–979 (2013).
[Crossref] [PubMed]

M.-K. Bae, J. A. Lim, S. Kim, and Y.-W. Song, “Ultra-highly sensitive optical gas sensors based on chemomechanical polymer-incorporated fiber interferometer,” Opt. Express 21(2), 2018–2023 (2013).
[Crossref] [PubMed]

2012 (3)

2010 (1)

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett. 96(24), 241104 (2010).
[Crossref]

2004 (1)

2003 (1)

2001 (1)

1998 (1)

S. W. Yang, T. L. Wu, C. W. Wu, and H. C. Chang, “Numerical modeling of weakly fused fiber-optic polarization beamsplitters - Part II: The three-dimensional electromagnetic model,” J. Lit. Technol. 16(4), 691–696 (1998).
[Crossref]

1988 (1)

Abouraddy, A. F.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534(7608), 529–533 (2016).
[Crossref] [PubMed]

Ahmed, K.

S. Asaduzzaman and K. Ahmed, “Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring,” Sens. Biosensing Res. 10, 20–26 (2016).
[Crossref]

Alkeskjold, T. T.

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett. 96(24), 241104 (2010).
[Crossref]

Andrews, N. L. P.

Asaduzzaman, S.

S. Asaduzzaman and K. Ahmed, “Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring,” Sens. Biosensing Res. 10, 20–26 (2016).
[Crossref]

Auguste, J.

N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Auguste, J. L.

N. Zhang, K. Li, Y. Cui, Z. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref] [PubMed]

N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref] [PubMed]

Bae, M.-K.

Bai, Y.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534(7608), 529–533 (2016).
[Crossref] [PubMed]

Baldini, F.

Barnes, J. A.

Bennion, I.

Bjarklev, A.

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett. 96(24), 241104 (2010).
[Crossref]

Black, R. J.

Bouchenot, T.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534(7608), 529–533 (2016).
[Crossref] [PubMed]

Boyter, C.

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

Brönstrup, G.

N. Shehada, G. Brönstrup, K. Funka, S. Christiansen, M. Leja, and H. Haick, “Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome,” Nano Lett. 15(2), 1288–1295 (2015).
[Crossref] [PubMed]

Brzezinski, A.

Buenconsejo, P. J.

J. Zhang, K. Li, T. Zhang, P. J. Buenconsejo, M. Chen, Z. Wang, M. Zhang, Z. Wang, and L. Wei, “Laser induced in-fiber fluid dynamical instabilities for precise and scalable fabrication of spherical particles,” Adv. Funct. Mater. 27(43), 1703245 (2017).
[Crossref]

Bures, J.

Cao, Y. C.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Chang, H. C.

S. W. Yang, T. L. Wu, C. W. Wu, and H. C. Chang, “Numerical modeling of weakly fused fiber-optic polarization beamsplitters - Part II: The three-dimensional electromagnetic model,” J. Lit. Technol. 16(4), 691–696 (1998).
[Crossref]

Chen, M.

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35–42 (2017).
[Crossref]

J. Zhang, K. Li, T. Zhang, P. J. Buenconsejo, M. Chen, Z. Wang, M. Zhang, Z. Wang, and L. Wei, “Laser induced in-fiber fluid dynamical instabilities for precise and scalable fabrication of spherical particles,” Adv. Funct. Mater. 27(43), 1703245 (2017).
[Crossref]

Chiavaioli, F.

Chieco, L.

Chow, K. K.

W. B. Ji, Y. C. Tan, B. Lin, S. C. Tjin, and K. K. Chow, “Nonadiabatically tapered microfiber sensor with ultrashort waist,” IEEE Photonics Technol. Lett. 26(22), 2303–2306 (2014).
[Crossref]

Christiansen, S.

N. Shehada, G. Brönstrup, K. Funka, S. Christiansen, M. Leja, and H. Haick, “Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome,” Nano Lett. 15(2), 1288–1295 (2015).
[Crossref] [PubMed]

Cohoon, G.

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

Cui, Y.

N. Zhang, K. Li, Y. Cui, Z. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref] [PubMed]

N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref] [PubMed]

Cusano, A.

Dinh, Q. X.

N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Dinh, X. Q.

N. Zhang, K. Li, Y. Cui, Z. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref] [PubMed]

N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref] [PubMed]

Dong, X.

C. Lu, X. Dong, and J. Su, “Detection of Refractive Index Change from the Critical Wavelength of an Etched Few Mode Fiber,” J. Lit. Technol. 35(13), 2593–2597 (2017).
[Crossref]

J. Su, X. Dong, and C. Lu, “Intensity detection scheme of sensors based on the modal interference effect of few mode fiber,” Measurement 79, 182–187 (2016).
[Crossref]

Du, H.

Fink, Y.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534(7608), 529–533 (2016).
[Crossref] [PubMed]

C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13(3), 975–979 (2013).
[Crossref] [PubMed]

Funka, K.

N. Shehada, G. Brönstrup, K. Funka, S. Christiansen, M. Leja, and H. Haick, “Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome,” Nano Lett. 15(2), 1288–1295 (2015).
[Crossref] [PubMed]

Giglio, M.

Giordano, M.

Gong, T.

N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Gonthier, F.

Gordon, A. P.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534(7608), 529–533 (2016).
[Crossref] [PubMed]

Haick, H.

N. Shehada, G. Brönstrup, K. Funka, S. Christiansen, M. Leja, and H. Haick, “Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome,” Nano Lett. 15(2), 1288–1295 (2015).
[Crossref] [PubMed]

Ho, H. L.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Hou, C.

C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13(3), 975–979 (2013).
[Crossref] [PubMed]

Hoy, R. S.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534(7608), 529–533 (2016).
[Crossref] [PubMed]

Hu, J.

N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Humbert, G.

N. Zhang, K. Li, Y. Cui, Z. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref] [PubMed]

N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref] [PubMed]

Ji, W. B.

W. B. Ji, Y. C. Tan, B. Lin, S. C. Tjin, and K. K. Chow, “Nonadiabatically tapered microfiber sensor with ultrashort waist,” IEEE Photonics Technol. Lett. 26(22), 2303–2306 (2014).
[Crossref]

Jia, X.

C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13(3), 975–979 (2013).
[Crossref] [PubMed]

Jin, W.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Joannopoulos, J. D.

C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13(3), 975–979 (2013).
[Crossref] [PubMed]

Ju, J.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Kanka, J.

Kaufman, J. J.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534(7608), 529–533 (2016).
[Crossref] [PubMed]

Kim, S.

Koh, J.

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

Lacroix, S.

Leja, M.

N. Shehada, G. Brönstrup, K. Funka, S. Christiansen, M. Leja, and H. Haick, “Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome,” Nano Lett. 15(2), 1288–1295 (2015).
[Crossref] [PubMed]

Li, K.

M. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” ACS Photonics 5(2), 347–352 (2018).
[Crossref]

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref] [PubMed]

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lit. Technol. 36(12), 2409–2415 (2018).
[Crossref]

N. Zhang, K. Li, Y. Cui, Z. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref] [PubMed]

J. Zhang, K. Li, T. Zhang, P. J. Buenconsejo, M. Chen, Z. Wang, M. Zhang, Z. Wang, and L. Wei, “Laser induced in-fiber fluid dynamical instabilities for precise and scalable fabrication of spherical particles,” Adv. Funct. Mater. 27(43), 1703245 (2017).
[Crossref]

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35–42 (2017).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref] [PubMed]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Li, X.

Li, Y.

Lim, J. A.

Lin, B.

W. B. Ji, Y. C. Tan, B. Lin, S. C. Tjin, and K. K. Chow, “Nonadiabatically tapered microfiber sensor with ultrashort waist,” IEEE Photonics Technol. Lett. 26(22), 2303–2306 (2014).
[Crossref]

Liu, D.

Liu, G.

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref] [PubMed]

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lit. Technol. 36(12), 2409–2415 (2018).
[Crossref]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Loock, H.-P.

Lou, J.

Lu, C.

C. Lu, X. Dong, and J. Su, “Detection of Refractive Index Change from the Critical Wavelength of an Etched Few Mode Fiber,” J. Lit. Technol. 35(13), 2593–2597 (2017).
[Crossref]

J. Su, X. Dong, and C. Lu, “Intensity detection scheme of sensors based on the modal interference effect of few mode fiber,” Measurement 79, 182–187 (2016).
[Crossref]

Luan, F.

N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Luo, H.

Ma, S.

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35–42 (2017).
[Crossref]

Mazur, E.

Medrano, M.

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

Mejía, E.

Miller, J.

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

Monzón-Hernández, D.

Munzke, D.

Olivo, M.

N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Patimisco, P.

Pilla, P.

Ping Zhang, A.

J. Wu, M. Yao, F. Xiong, A. Ping Zhang, H. Y. Tam, and P. K. A. Wai, “Optical Fiber-Tip Fabry-Pérot Interferometric Pressure Sensor Based on an in Situ μ-Printed Air Cavity,” J. Light. Technol.  36(17) 3618-3623 (2018).

Qi, L. F.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Qiao, Y.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534(7608), 529–533 (2016).
[Crossref] [PubMed]

Quan, M.

Rao, Y.

Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: A review,” Sensors (Basel) 18(4), 941 (2018).
[Crossref] [PubMed]

Reich, O.

Ross, R.

Salik, E.

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

Sampaolo, A.

Scamarcio, G.

Shabahang, S.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534(7608), 529–533 (2016).
[Crossref] [PubMed]

Shapira, O.

C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13(3), 975–979 (2013).
[Crossref] [PubMed]

Shehada, N.

N. Shehada, G. Brönstrup, K. Funka, S. Christiansen, M. Leja, and H. Haick, “Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome,” Nano Lett. 15(2), 1288–1295 (2015).
[Crossref] [PubMed]

Shu, X.

Shum, P.

M. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” ACS Photonics 5(2), 347–352 (2018).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Shum, P. P.

N. Zhang, K. Li, Y. Cui, Z. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref] [PubMed]

N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref] [PubMed]

Song, Y.-W.

Spagnolo, V.

Stolyarov, A. M.

C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13(3), 975–979 (2013).
[Crossref] [PubMed]

Su, J.

C. Lu, X. Dong, and J. Su, “Detection of Refractive Index Change from the Critical Wavelength of an Etched Few Mode Fiber,” J. Lit. Technol. 35(13), 2593–2597 (2017).
[Crossref]

J. Su, X. Dong, and C. Lu, “Intensity detection scheme of sensors based on the modal interference effect of few mode fiber,” Measurement 79, 182–187 (2016).
[Crossref]

Sun, Q.

Tam, H. Y.

J. Wu, M. Yao, F. Xiong, A. Ping Zhang, H. Y. Tam, and P. K. A. Wai, “Optical Fiber-Tip Fabry-Pérot Interferometric Pressure Sensor Based on an in Situ μ-Printed Air Cavity,” J. Light. Technol.  36(17) 3618-3623 (2018).

Tan, Y. C.

W. B. Ji, Y. C. Tan, B. Lin, S. C. Tjin, and K. K. Chow, “Nonadiabatically tapered microfiber sensor with ultrashort waist,” IEEE Photonics Technol. Lett. 26(22), 2303–2306 (2014).
[Crossref]

Tao, G.

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534(7608), 529–533 (2016).
[Crossref] [PubMed]

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Tian, F.

Tian, J.

Tittel, F. K.

Tjin, S. C.

W. B. Ji, Y. C. Tan, B. Lin, S. C. Tjin, and K. K. Chow, “Nonadiabatically tapered microfiber sensor with ultrashort waist,” IEEE Photonics Technol. Lett. 26(22), 2303–2306 (2014).
[Crossref]

Tong, L.

Trono, C.

van Hoorn, C.

Villatoro, J.

Wai, P. K. A.

J. Wu, M. Yao, F. Xiong, A. Ping Zhang, H. Y. Tam, and P. K. A. Wai, “Optical Fiber-Tip Fabry-Pérot Interferometric Pressure Sensor Based on an in Situ μ-Printed Air Cavity,” J. Light. Technol.  36(17) 3618-3623 (2018).

Wang, Z.

M. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” ACS Photonics 5(2), 347–352 (2018).
[Crossref]

M. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” ACS Photonics 5(2), 347–352 (2018).
[Crossref]

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35–42 (2017).
[Crossref]

J. Zhang, K. Li, T. Zhang, P. J. Buenconsejo, M. Chen, Z. Wang, M. Zhang, Z. Wang, and L. Wei, “Laser induced in-fiber fluid dynamical instabilities for precise and scalable fabrication of spherical particles,” Adv. Funct. Mater. 27(43), 1703245 (2017).
[Crossref]

J. Zhang, K. Li, T. Zhang, P. J. Buenconsejo, M. Chen, Z. Wang, M. Zhang, Z. Wang, and L. Wei, “Laser induced in-fiber fluid dynamical instabilities for precise and scalable fabrication of spherical particles,” Adv. Funct. Mater. 27(43), 1703245 (2017).
[Crossref]

Wei, L.

N. Zhang, K. Li, Y. Cui, Z. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref] [PubMed]

M. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” ACS Photonics 5(2), 347–352 (2018).
[Crossref]

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref] [PubMed]

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lit. Technol. 36(12), 2409–2415 (2018).
[Crossref]

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35–42 (2017).
[Crossref]

J. Zhang, K. Li, T. Zhang, P. J. Buenconsejo, M. Chen, Z. Wang, M. Zhang, Z. Wang, and L. Wei, “Laser induced in-fiber fluid dynamical instabilities for precise and scalable fabrication of spherical particles,” Adv. Funct. Mater. 27(43), 1703245 (2017).
[Crossref]

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534(7608), 529–533 (2016).
[Crossref] [PubMed]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref] [PubMed]

C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13(3), 975–979 (2013).
[Crossref] [PubMed]

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett. 96(24), 241104 (2010).
[Crossref]

Wu, C. W.

S. W. Yang, T. L. Wu, C. W. Wu, and H. C. Chang, “Numerical modeling of weakly fused fiber-optic polarization beamsplitters - Part II: The three-dimensional electromagnetic model,” J. Lit. Technol. 16(4), 691–696 (1998).
[Crossref]

Wu, J.

J. Wu, M. Yao, F. Xiong, A. Ping Zhang, H. Y. Tam, and P. K. A. Wai, “Optical Fiber-Tip Fabry-Pérot Interferometric Pressure Sensor Based on an in Situ μ-Printed Air Cavity,” J. Light. Technol.  36(17) 3618-3623 (2018).

Wu, T.

M. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” ACS Photonics 5(2), 347–352 (2018).
[Crossref]

Wu, T. L.

S. W. Yang, T. L. Wu, C. W. Wu, and H. C. Chang, “Numerical modeling of weakly fused fiber-optic polarization beamsplitters - Part II: The three-dimensional electromagnetic model,” J. Lit. Technol. 16(4), 691–696 (1998).
[Crossref]

Wu, Y.

Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: A review,” Sensors (Basel) 18(4), 941 (2018).
[Crossref] [PubMed]

Wu, Z.

N. Zhang, K. Li, Y. Cui, Z. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref] [PubMed]

N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref] [PubMed]

Xiong, F.

J. Wu, M. Yao, F. Xiong, A. Ping Zhang, H. Y. Tam, and P. K. A. Wai, “Optical Fiber-Tip Fabry-Pérot Interferometric Pressure Sensor Based on an in Situ μ-Printed Air Cavity,” J. Light. Technol.  36(17) 3618-3623 (2018).

Yan, Z.

Yang, S. W.

S. W. Yang, T. L. Wu, C. W. Wu, and H. C. Chang, “Numerical modeling of weakly fused fiber-optic polarization beamsplitters - Part II: The three-dimensional electromagnetic model,” J. Lit. Technol. 16(4), 691–696 (1998).
[Crossref]

Yao, B.

Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: A review,” Sensors (Basel) 18(4), 941 (2018).
[Crossref] [PubMed]

Yao, M.

J. Wu, M. Yao, F. Xiong, A. Ping Zhang, H. Y. Tam, and P. K. A. Wai, “Optical Fiber-Tip Fabry-Pérot Interferometric Pressure Sensor Based on an in Situ μ-Printed Air Cavity,” J. Light. Technol.  36(17) 3618-3623 (2018).

Yao, Y.

Yu, C.

Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: A review,” Sensors (Basel) 18(4), 941 (2018).
[Crossref] [PubMed]

Zhang, J.

M. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” ACS Photonics 5(2), 347–352 (2018).
[Crossref]

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35–42 (2017).
[Crossref]

J. Zhang, K. Li, T. Zhang, P. J. Buenconsejo, M. Chen, Z. Wang, M. Zhang, Z. Wang, and L. Wei, “Laser induced in-fiber fluid dynamical instabilities for precise and scalable fabrication of spherical particles,” Adv. Funct. Mater. 27(43), 1703245 (2017).
[Crossref]

Zhang, L.

Zhang, M.

M. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” ACS Photonics 5(2), 347–352 (2018).
[Crossref]

J. Zhang, K. Li, T. Zhang, P. J. Buenconsejo, M. Chen, Z. Wang, M. Zhang, Z. Wang, and L. Wei, “Laser induced in-fiber fluid dynamical instabilities for precise and scalable fabrication of spherical particles,” Adv. Funct. Mater. 27(43), 1703245 (2017).
[Crossref]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Zhang, N.

N. Zhang, K. Li, Y. Cui, Z. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref] [PubMed]

M. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” ACS Photonics 5(2), 347–352 (2018).
[Crossref]

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref] [PubMed]

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lit. Technol. 36(12), 2409–2415 (2018).
[Crossref]

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35–42 (2017).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref] [PubMed]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Zhang, N. M.

Zhang, N. M. Y.

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref] [PubMed]

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lit. Technol. 36(12), 2409–2415 (2018).
[Crossref]

Zhang, T.

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lit. Technol. 36(12), 2409–2415 (2018).
[Crossref]

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref] [PubMed]

M. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” ACS Photonics 5(2), 347–352 (2018).
[Crossref]

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35–42 (2017).
[Crossref]

J. Zhang, K. Li, T. Zhang, P. J. Buenconsejo, M. Chen, Z. Wang, M. Zhang, Z. Wang, and L. Wei, “Laser induced in-fiber fluid dynamical instabilities for precise and scalable fabrication of spherical particles,” Adv. Funct. Mater. 27(43), 1703245 (2017).
[Crossref]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

ACS Photonics (1)

M. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, and L. Wei, “Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing,” ACS Photonics 5(2), 347–352 (2018).
[Crossref]

Adv. Funct. Mater. (1)

J. Zhang, K. Li, T. Zhang, P. J. Buenconsejo, M. Chen, Z. Wang, M. Zhang, Z. Wang, and L. Wei, “Laser induced in-fiber fluid dynamical instabilities for precise and scalable fabrication of spherical particles,” Adv. Funct. Mater. 27(43), 1703245 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett. 96(24), 241104 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

E. Salik, M. Medrano, G. Cohoon, J. Miller, C. Boyter, and J. Koh, “SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior,” IEEE Photonics Technol. Lett. 24(7), 593–595 (2012).
[Crossref]

W. B. Ji, Y. C. Tan, B. Lin, S. C. Tjin, and K. K. Chow, “Nonadiabatically tapered microfiber sensor with ultrashort waist,” IEEE Photonics Technol. Lett. 26(22), 2303–2306 (2014).
[Crossref]

J. Light. Technol (1)

J. Wu, M. Yao, F. Xiong, A. Ping Zhang, H. Y. Tam, and P. K. A. Wai, “Optical Fiber-Tip Fabry-Pérot Interferometric Pressure Sensor Based on an in Situ μ-Printed Air Cavity,” J. Light. Technol.  36(17) 3618-3623 (2018).

J. Lit. Technol. (3)

C. Lu, X. Dong, and J. Su, “Detection of Refractive Index Change from the Critical Wavelength of an Etched Few Mode Fiber,” J. Lit. Technol. 35(13), 2593–2597 (2017).
[Crossref]

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lit. Technol. 36(12), 2409–2415 (2018).
[Crossref]

S. W. Yang, T. L. Wu, C. W. Wu, and H. C. Chang, “Numerical modeling of weakly fused fiber-optic polarization beamsplitters - Part II: The three-dimensional electromagnetic model,” J. Lit. Technol. 16(4), 691–696 (1998).
[Crossref]

Lab Chip (1)

N. Zhang, K. Li, Y. Cui, Z. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Measurement (1)

J. Su, X. Dong, and C. Lu, “Intensity detection scheme of sensors based on the modal interference effect of few mode fiber,” Measurement 79, 182–187 (2016).
[Crossref]

Nano Energy (1)

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35–42 (2017).
[Crossref]

Nano Lett. (2)

N. Shehada, G. Brönstrup, K. Funka, S. Christiansen, M. Leja, and H. Haick, “Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome,” Nano Lett. 15(2), 1288–1295 (2015).
[Crossref] [PubMed]

C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13(3), 975–979 (2013).
[Crossref] [PubMed]

Nature (1)

S. Shabahang, G. Tao, J. J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. P. Gordon, Y. Fink, Y. Bai, R. S. Hoy, and A. F. Abouraddy, “Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing,” Nature 534(7608), 529–533 (2016).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Fiber Technol. (1)

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Opt. Lett. (6)

Sen. Actuators B Chem. (1)

N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing, ” Sen. Actuators B Chem. 223, 195–201 (2016).
[Crossref]

Sens. Biosensing Res. (1)

S. Asaduzzaman and K. Ahmed, “Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring,” Sens. Biosensing Res. 10, 20–26 (2016).
[Crossref]

Sensors (Basel) (1)

Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: A review,” Sensors (Basel) 18(4), 941 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The schematic illustration of the tapered optical microfiber modal interferometer based gas sensor. (b) The mode profiles of HE11 mode and HE12 mode.
Fig. 2
Fig. 2 (a) The G value as a function of wavelength at different waist diameters. (b) The sensitivities around the DTPs at each waist diameter. (c) The high-sensitivity, low-sensitivity and cutoff regions with respect to the DTP. (d) Variation of the interference spectrum of an optical microfiber along with decreasing SRI (d = 2 µm, L = 5 mm).
Fig. 3
Fig. 3 Calculated transmission spectra and phase differences for tapered optical fibers with different (a) taper length (d = 2 µm, Lw = 2 mm, and SRI = 1.00025) and (b) waist length (d = 2 µm, Lt = 3 mm, and SRI = 1.00025).
Fig. 4
Fig. 4 (a) The experimental setup for gas RI sensing. (b) The microscopic view of the tapered optical microfiber. (c) The diameter variation along the axial direction of the tapered fiber. (d) The original (black) and FFT filtered (red) transmission spectra of the tapered optical microfiber surrounded by air.
Fig. 5
Fig. 5 (a) The variation of the interference spectrum along with decremented air pressure and SRI. (b) The linear sensitivities of the six dips around the DTP. (c) The doubled sensitivities by tracing the distance between oppositely drifted twin dips. (d) The simulated spectrum using the measured profile of the tapered optical fiber. (e) Comparison of the sensitivities of the dips and peaks around the DTP between the measured results and the simulated results.
Fig. 6
Fig. 6 (a) The variation of modal interference spectrum along with incremented temperature from 25.0 °C to 32.0 °C. (b) The temperature sensitivities of the referenced six dips. (c) The doubled temperature sensitivities by tracing the distance between twin dips.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I= I 1 + I 2 +2 I 1 I 2 cosϕ
ϕ N =ΔβL=( Δ n eff × 2π λ N )L=( 2N1 )π
S RI =( λ N n )= λ N n g HE11 n g HE12 ( Δ n eff ) n = λ N G ( Δ n eff ) n
ϕ= w w Δβdz= 2π λ w w Δ n eff ( z ) dz
ρ= ρ 0 exp( z/2 L 0 )
n air =1+7.82× 10 7 P/( 273.6+T )

Metrics