Abstract

In this study, a method is proposed for the rapid fabrication of a hexagonal compound eye microlens array (HCE-MLA) using maskless lithography technique based on digital micromirror device (DMD), in which a hexahedron array is lithographed, and subsequently, a microlens structure is lithographed layer by layer upon the hexahedron. Owing to the high filling rate of the hexagon and the aspheric surface of the paraboloid profile of the microlens, after the distribution of the required exposure dose of HCE-MLA was calculated based on dose modulation, a series of circular pattern with different radius could be obtained by equal-arc-mean slicing strategy that can adapt to the variable curvature of the target contour and improve its reconstruction precision. Then, after a hexagonal photoresist island was fabricated on the substrate, and the dose accumulated over multiple exposures, the required exposure dose profiles were reconstructed on the hexagonal photoresist island. Finally, a high-quality HCE-MLA with a smooth surface was fabricated via thermal reflow. The fabrication of the designed HCE-MLA using this method was demonstrated in experiments. The results indicate that the actual profile of HCE-MLA shows good agreement with the design profile and that simultaneously increasing the number of the slicing layers can improve the quality of the profile. The research indicated that this method is feasible and convenient for the fabrication of high-quality HCE-MLA.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
User-defined microstructures array fabricated by DMD based multistep lithography with dose modulation

Ying Zhang, Jun Luo, Zheng Xiong, Hua Liu, Li Wang, Yingying Gu, Zifeng Lu, Jinhuan Li, and Jipeng Huang
Opt. Express 27(22) 31956-31966 (2019)

Fabrication of microlens arrays based on the mass transport effect of SU-8 photoresist using a multiexposure two-beam interference technique

Cheng Yi Wu, Ting Hsuan Chiang, Ngoc Diep Lai, Danh Bich Do, and Chia Chen Hsu
Appl. Opt. 48(13) 2473-2479 (2009)

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Huang, L. T. Chen, and G. Keiser, “A simple design approach of a micro-lens array for fiber optic applications,” in International Workshop on Fiber Optics in Access Network (2015), pp. 31–33.
  2. Z. Li and J. Xiao, “Mechanics and optics of stretchable microlenses for artificial compound eye camera,” J. Appl. Phys. 117, 557 (2015).
  3. X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
    [Crossref] [PubMed]
  4. T. H. Lin, M. C. Lin, and C. K. Chao, “A novel and rapid fabrication method for a high fill factor hexagonal microlens array using thermal reflow and repeating spin coating,” Int. J. Adv. Manuf. Technol. 92(9-12), 3329 (2017).
    [Crossref]
  5. T. Xing, “Lenses matching of compound eye for target positioning,” Proc. SPIE 8420, 84200B (2012).
  6. L. Li and A. Y. Yi, “Development of a 3D artificial compound eye,” Opt. Express 18(17), 18125–18137 (2010).
    [Crossref] [PubMed]
  7. K. Zhong, H. Zhang, and Y. Gao, “Fabrication of high fill-factor aspheric microlens array by digital maskless lithography,” Optik (Stuttg.) 142, 243–248 (2017).
    [Crossref]
  8. H. Gao, Y. Li, L. Chen, J. Jin, M. Pu, X. Li, P. Gao, C. Wang, X. Luo, and M. Hong, “Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design,” Nanoscale 10(2), 666–671 (2018).
    [Crossref] [PubMed]
  9. J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
    [Crossref]
  10. V. Grigaliūnas, A. Lazauskas, D. Jucius, D. Viržonis, B. Abakevičienė, S. Smetona, and S. Tamulevičius, “Microlens fabrication by 3D electron beam lithography combined with thermal reflow technique,” Microelectron. Eng. 164, 23–29 (2016).
    [Crossref]
  11. S. J. Zhang, S. To, Z. W. Zhu, and G. Q. Zhang, “A review of fly cutting applied to surface generation in ultra-precision machining,” Int. J. Mach. Tools Manuf. 103, 13–27 (2016).
    [Crossref]
  12. Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
    [Crossref]
  13. S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554 (2016).
  14. G. A. Cirino, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52(12), 125101 (2013).
    [Crossref]
  15. Z. Zhang, Y. Gao, N. Luo, and K. Zhong, “Fast fabrication of curved microlens array using DMD-based lithography,” AIP Adv. 6(1), 015319 (2016).
    [Crossref]
  16. J. B. Kim and K. H. Jeong, “Batch fabrication of functional optical elements on a fiber facet using DMD based maskless lithography,” Opt. Express 25(14), 16854–16859 (2017).
    [Crossref] [PubMed]
  17. J. G. Hur, “Maskless fabrication of three-dimensional microstructures with high isotropic resolution: practical and theoretical considerations,” Appl. Opt. 50(16), 2383–2390 (2011).
    [Crossref] [PubMed]
  18. J.-W. Choi, R. B. Wicker, S.-H. Cho, C.-S. Ha, and S.-H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15(1), 59–70 (2009).
    [Crossref]
  19. K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
    [Crossref]
  20. S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Improved slicing strategy for digital micromirror device-based three-dimensional lithography with a single scan,” IET Micro Nano Letters 12(1), 49–52 (2017).
    [Crossref]
  21. S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures,” Opt. Commun. 393, 213–218 (2017).
    [Crossref]
  22. H. Kemhadjian, “Microlithography: Science and Technology,” Int. J. Electr. Eng. Educ. 36, 275–276 (2007).

2018 (2)

H. Gao, Y. Li, L. Chen, J. Jin, M. Pu, X. Li, P. Gao, C. Wang, X. Luo, and M. Hong, “Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design,” Nanoscale 10(2), 666–671 (2018).
[Crossref] [PubMed]

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

2017 (5)

T. H. Lin, M. C. Lin, and C. K. Chao, “A novel and rapid fabrication method for a high fill factor hexagonal microlens array using thermal reflow and repeating spin coating,” Int. J. Adv. Manuf. Technol. 92(9-12), 3329 (2017).
[Crossref]

K. Zhong, H. Zhang, and Y. Gao, “Fabrication of high fill-factor aspheric microlens array by digital maskless lithography,” Optik (Stuttg.) 142, 243–248 (2017).
[Crossref]

J. B. Kim and K. H. Jeong, “Batch fabrication of functional optical elements on a fiber facet using DMD based maskless lithography,” Opt. Express 25(14), 16854–16859 (2017).
[Crossref] [PubMed]

S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Improved slicing strategy for digital micromirror device-based three-dimensional lithography with a single scan,” IET Micro Nano Letters 12(1), 49–52 (2017).
[Crossref]

S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures,” Opt. Commun. 393, 213–218 (2017).
[Crossref]

2016 (5)

Z. Zhang, Y. Gao, N. Luo, and K. Zhong, “Fast fabrication of curved microlens array using DMD-based lithography,” AIP Adv. 6(1), 015319 (2016).
[Crossref]

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554 (2016).

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

V. Grigaliūnas, A. Lazauskas, D. Jucius, D. Viržonis, B. Abakevičienė, S. Smetona, and S. Tamulevičius, “Microlens fabrication by 3D electron beam lithography combined with thermal reflow technique,” Microelectron. Eng. 164, 23–29 (2016).
[Crossref]

S. J. Zhang, S. To, Z. W. Zhu, and G. Q. Zhang, “A review of fly cutting applied to surface generation in ultra-precision machining,” Int. J. Mach. Tools Manuf. 103, 13–27 (2016).
[Crossref]

2015 (1)

Z. Li and J. Xiao, “Mechanics and optics of stretchable microlenses for artificial compound eye camera,” J. Appl. Phys. 117, 557 (2015).

2014 (1)

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

2013 (2)

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

G. A. Cirino, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52(12), 125101 (2013).
[Crossref]

2012 (1)

T. Xing, “Lenses matching of compound eye for target positioning,” Proc. SPIE 8420, 84200B (2012).

2011 (1)

2010 (1)

2009 (1)

J.-W. Choi, R. B. Wicker, S.-H. Cho, C.-S. Ha, and S.-H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15(1), 59–70 (2009).
[Crossref]

2007 (1)

H. Kemhadjian, “Microlithography: Science and Technology,” Int. J. Electr. Eng. Educ. 36, 275–276 (2007).

Abakeviciene, B.

V. Grigaliūnas, A. Lazauskas, D. Jucius, D. Viržonis, B. Abakevičienė, S. Smetona, and S. Tamulevičius, “Microlens fabrication by 3D electron beam lithography combined with thermal reflow technique,” Microelectron. Eng. 164, 23–29 (2016).
[Crossref]

Chao, C. K.

T. H. Lin, M. C. Lin, and C. K. Chao, “A novel and rapid fabrication method for a high fill factor hexagonal microlens array using thermal reflow and repeating spin coating,” Int. J. Adv. Manuf. Technol. 92(9-12), 3329 (2017).
[Crossref]

Chen, L.

H. Gao, Y. Li, L. Chen, J. Jin, M. Pu, X. Li, P. Gao, C. Wang, X. Luo, and M. Hong, “Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design,” Nanoscale 10(2), 666–671 (2018).
[Crossref] [PubMed]

Chen, L. T.

Y. R. Huang, L. T. Chen, and G. Keiser, “A simple design approach of a micro-lens array for fiber optic applications,” in International Workshop on Fiber Optics in Access Network (2015), pp. 31–33.

Chen, Y.

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Cho, S.-H.

J.-W. Choi, R. B. Wicker, S.-H. Cho, C.-S. Ha, and S.-H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15(1), 59–70 (2009).
[Crossref]

Choi, J.-W.

J.-W. Choi, R. B. Wicker, S.-H. Cho, C.-S. Ha, and S.-H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15(1), 59–70 (2009).
[Crossref]

Chu, J.

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Cirino, G. A.

G. A. Cirino, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52(12), 125101 (2013).
[Crossref]

Diaspro, A.

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554 (2016).

Duocastella, M.

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554 (2016).

Gao, H.

H. Gao, Y. Li, L. Chen, J. Jin, M. Pu, X. Li, P. Gao, C. Wang, X. Luo, and M. Hong, “Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design,” Nanoscale 10(2), 666–671 (2018).
[Crossref] [PubMed]

Gao, P.

H. Gao, Y. Li, L. Chen, J. Jin, M. Pu, X. Li, P. Gao, C. Wang, X. Luo, and M. Hong, “Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design,” Nanoscale 10(2), 666–671 (2018).
[Crossref] [PubMed]

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

Gao, Y.

K. Zhong, H. Zhang, and Y. Gao, “Fabrication of high fill-factor aspheric microlens array by digital maskless lithography,” Optik (Stuttg.) 142, 243–248 (2017).
[Crossref]

Z. Zhang, Y. Gao, N. Luo, and K. Zhong, “Fast fabrication of curved microlens array using DMD-based lithography,” AIP Adv. 6(1), 015319 (2016).
[Crossref]

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Grigaliunas, V.

V. Grigaliūnas, A. Lazauskas, D. Jucius, D. Viržonis, B. Abakevičienė, S. Smetona, and S. Tamulevičius, “Microlens fabrication by 3D electron beam lithography combined with thermal reflow technique,” Microelectron. Eng. 164, 23–29 (2016).
[Crossref]

Guo, T.

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

Ha, C.-S.

J.-W. Choi, R. B. Wicker, S.-H. Cho, C.-S. Ha, and S.-H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15(1), 59–70 (2009).
[Crossref]

Hong, M.

H. Gao, Y. Li, L. Chen, J. Jin, M. Pu, X. Li, P. Gao, C. Wang, X. Luo, and M. Hong, “Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design,” Nanoscale 10(2), 666–671 (2018).
[Crossref] [PubMed]

Hu, Y.

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Huang, S.

S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Improved slicing strategy for digital micromirror device-based three-dimensional lithography with a single scan,” IET Micro Nano Letters 12(1), 49–52 (2017).
[Crossref]

S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures,” Opt. Commun. 393, 213–218 (2017).
[Crossref]

Huang, W.

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Huang, Y. R.

Y. R. Huang, L. T. Chen, and G. Keiser, “A simple design approach of a micro-lens array for fiber optic applications,” in International Workshop on Fiber Optics in Access Network (2015), pp. 31–33.

Hur, J. G.

Jeong, K. H.

Jin, J.

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

H. Gao, Y. Li, L. Chen, J. Jin, M. Pu, X. Li, P. Gao, C. Wang, X. Luo, and M. Hong, “Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design,” Nanoscale 10(2), 666–671 (2018).
[Crossref] [PubMed]

Jucius, D.

V. Grigaliūnas, A. Lazauskas, D. Jucius, D. Viržonis, B. Abakevičienė, S. Smetona, and S. Tamulevičius, “Microlens fabrication by 3D electron beam lithography combined with thermal reflow technique,” Microelectron. Eng. 164, 23–29 (2016).
[Crossref]

Keiser, G.

Y. R. Huang, L. T. Chen, and G. Keiser, “A simple design approach of a micro-lens array for fiber optic applications,” in International Workshop on Fiber Optics in Access Network (2015), pp. 31–33.

Kemhadjian, H.

H. Kemhadjian, “Microlithography: Science and Technology,” Int. J. Electr. Eng. Educ. 36, 275–276 (2007).

Kim, J. B.

Lazauskas, A.

V. Grigaliūnas, A. Lazauskas, D. Jucius, D. Viržonis, B. Abakevičienė, S. Smetona, and S. Tamulevičius, “Microlens fabrication by 3D electron beam lithography combined with thermal reflow technique,” Microelectron. Eng. 164, 23–29 (2016).
[Crossref]

Lee, S.-H.

J.-W. Choi, R. B. Wicker, S.-H. Cho, C.-S. Ha, and S.-H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15(1), 59–70 (2009).
[Crossref]

Li, F.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Li, J.

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Li, L.

Li, M.

S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Improved slicing strategy for digital micromirror device-based three-dimensional lithography with a single scan,” IET Micro Nano Letters 12(1), 49–52 (2017).
[Crossref]

S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures,” Opt. Commun. 393, 213–218 (2017).
[Crossref]

Li, X.

H. Gao, Y. Li, L. Chen, J. Jin, M. Pu, X. Li, P. Gao, C. Wang, X. Luo, and M. Hong, “Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design,” Nanoscale 10(2), 666–671 (2018).
[Crossref] [PubMed]

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

Li, Y.

H. Gao, Y. Li, L. Chen, J. Jin, M. Pu, X. Li, P. Gao, C. Wang, X. Luo, and M. Hong, “Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design,” Nanoscale 10(2), 666–671 (2018).
[Crossref] [PubMed]

Li, Z.

Z. Li and J. Xiao, “Mechanics and optics of stretchable microlenses for artificial compound eye camera,” J. Appl. Phys. 117, 557 (2015).

Lin, M. C.

T. H. Lin, M. C. Lin, and C. K. Chao, “A novel and rapid fabrication method for a high fill factor hexagonal microlens array using thermal reflow and repeating spin coating,” Int. J. Adv. Manuf. Technol. 92(9-12), 3329 (2017).
[Crossref]

Lin, T. H.

T. H. Lin, M. C. Lin, and C. K. Chao, “A novel and rapid fabrication method for a high fill factor hexagonal microlens array using thermal reflow and repeating spin coating,” Int. J. Adv. Manuf. Technol. 92(9-12), 3329 (2017).
[Crossref]

Luo, J.

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

Luo, N.

Z. Zhang, Y. Gao, N. Luo, and K. Zhong, “Fast fabrication of curved microlens array using DMD-based lithography,” AIP Adv. 6(1), 015319 (2016).
[Crossref]

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Luo, X.

H. Gao, Y. Li, L. Chen, J. Jin, M. Pu, X. Li, P. Gao, C. Wang, X. Luo, and M. Hong, “Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design,” Nanoscale 10(2), 666–671 (2018).
[Crossref] [PubMed]

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

Ma, J.

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Ma, X.

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

Peng, R.

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

Peng, Y.

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

Pu, M.

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

H. Gao, Y. Li, L. Chen, J. Jin, M. Pu, X. Li, P. Gao, C. Wang, X. Luo, and M. Hong, “Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design,” Nanoscale 10(2), 666–671 (2018).
[Crossref] [PubMed]

Qiu, J.

S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Improved slicing strategy for digital micromirror device-based three-dimensional lithography with a single scan,” IET Micro Nano Letters 12(1), 49–52 (2017).
[Crossref]

S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures,” Opt. Commun. 393, 213–218 (2017).
[Crossref]

Shen, L.

S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures,” Opt. Commun. 393, 213–218 (2017).
[Crossref]

S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Improved slicing strategy for digital micromirror device-based three-dimensional lithography with a single scan,” IET Micro Nano Letters 12(1), 49–52 (2017).
[Crossref]

Smetona, S.

V. Grigaliūnas, A. Lazauskas, D. Jucius, D. Viržonis, B. Abakevičienė, S. Smetona, and S. Tamulevičius, “Microlens fabrication by 3D electron beam lithography combined with thermal reflow technique,” Microelectron. Eng. 164, 23–29 (2016).
[Crossref]

Surdo, S.

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554 (2016).

Tamulevicius, S.

V. Grigaliūnas, A. Lazauskas, D. Jucius, D. Viržonis, B. Abakevičienė, S. Smetona, and S. Tamulevičius, “Microlens fabrication by 3D electron beam lithography combined with thermal reflow technique,” Microelectron. Eng. 164, 23–29 (2016).
[Crossref]

To, S.

S. J. Zhang, S. To, Z. W. Zhu, and G. Q. Zhang, “A review of fly cutting applied to surface generation in ultra-precision machining,” Int. J. Mach. Tools Manuf. 103, 13–27 (2016).
[Crossref]

Viržonis, D.

V. Grigaliūnas, A. Lazauskas, D. Jucius, D. Viržonis, B. Abakevičienė, S. Smetona, and S. Tamulevičius, “Microlens fabrication by 3D electron beam lithography combined with thermal reflow technique,” Microelectron. Eng. 164, 23–29 (2016).
[Crossref]

Wang, C.

H. Gao, Y. Li, L. Chen, J. Jin, M. Pu, X. Li, P. Gao, C. Wang, X. Luo, and M. Hong, “Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design,” Nanoscale 10(2), 666–671 (2018).
[Crossref] [PubMed]

Wicker, R. B.

J.-W. Choi, R. B. Wicker, S.-H. Cho, C.-S. Ha, and S.-H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15(1), 59–70 (2009).
[Crossref]

Xiao, J.

Z. Li and J. Xiao, “Mechanics and optics of stretchable microlenses for artificial compound eye camera,” J. Appl. Phys. 117, 557 (2015).

Xing, T.

T. Xing, “Lenses matching of compound eye for target positioning,” Proc. SPIE 8420, 84200B (2012).

Yi, A. Y.

Zeng, X.

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

Zhang, G. Q.

S. J. Zhang, S. To, Z. W. Zhu, and G. Q. Zhang, “A review of fly cutting applied to surface generation in ultra-precision machining,” Int. J. Mach. Tools Manuf. 103, 13–27 (2016).
[Crossref]

Zhang, H.

K. Zhong, H. Zhang, and Y. Gao, “Fabrication of high fill-factor aspheric microlens array by digital maskless lithography,” Optik (Stuttg.) 142, 243–248 (2017).
[Crossref]

Zhang, S. J.

S. J. Zhang, S. To, Z. W. Zhu, and G. Q. Zhang, “A review of fly cutting applied to surface generation in ultra-precision machining,” Int. J. Mach. Tools Manuf. 103, 13–27 (2016).
[Crossref]

Zhang, W.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Zhang, X.

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

Zhang, Y. A.

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

Zhang, Z.

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

Z. Zhang, Y. Gao, N. Luo, and K. Zhong, “Fast fabrication of curved microlens array using DMD-based lithography,” AIP Adv. 6(1), 015319 (2016).
[Crossref]

Zhong, K.

K. Zhong, H. Zhang, and Y. Gao, “Fabrication of high fill-factor aspheric microlens array by digital maskless lithography,” Optik (Stuttg.) 142, 243–248 (2017).
[Crossref]

Z. Zhang, Y. Gao, N. Luo, and K. Zhong, “Fast fabrication of curved microlens array using DMD-based lithography,” AIP Adv. 6(1), 015319 (2016).
[Crossref]

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Zhou, X.

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

Zhou, Y.

S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Improved slicing strategy for digital micromirror device-based three-dimensional lithography with a single scan,” IET Micro Nano Letters 12(1), 49–52 (2017).
[Crossref]

S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures,” Opt. Commun. 393, 213–218 (2017).
[Crossref]

Zhu, Z. W.

S. J. Zhang, S. To, Z. W. Zhu, and G. Q. Zhang, “A review of fly cutting applied to surface generation in ultra-precision machining,” Int. J. Mach. Tools Manuf. 103, 13–27 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (1)

X. Zhou, Y. Peng, R. Peng, X. Zeng, Y. A. Zhang, and T. Guo, “Fabrication of large-scale micro-lens arrays based on screen printing for integral imaging 3D display,” ACS Appl. Mater. Interfaces 8(36), 24248–24255 (2016).
[Crossref] [PubMed]

AIP Adv. (1)

Z. Zhang, Y. Gao, N. Luo, and K. Zhong, “Fast fabrication of curved microlens array using DMD-based lithography,” AIP Adv. 6(1), 015319 (2016).
[Crossref]

Ann. Phys. (1)

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Appl. Surf. Sci. (1)

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554 (2016).

IET Micro Nano Letters (1)

S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Improved slicing strategy for digital micromirror device-based three-dimensional lithography with a single scan,” IET Micro Nano Letters 12(1), 49–52 (2017).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

T. H. Lin, M. C. Lin, and C. K. Chao, “A novel and rapid fabrication method for a high fill factor hexagonal microlens array using thermal reflow and repeating spin coating,” Int. J. Adv. Manuf. Technol. 92(9-12), 3329 (2017).
[Crossref]

Int. J. Electr. Eng. Educ. (1)

H. Kemhadjian, “Microlithography: Science and Technology,” Int. J. Electr. Eng. Educ. 36, 275–276 (2007).

Int. J. Mach. Tools Manuf. (1)

S. J. Zhang, S. To, Z. W. Zhu, and G. Q. Zhang, “A review of fly cutting applied to surface generation in ultra-precision machining,” Int. J. Mach. Tools Manuf. 103, 13–27 (2016).
[Crossref]

J. Appl. Phys. (1)

Z. Li and J. Xiao, “Mechanics and optics of stretchable microlenses for artificial compound eye camera,” J. Appl. Phys. 117, 557 (2015).

Microelectron. Eng. (1)

V. Grigaliūnas, A. Lazauskas, D. Jucius, D. Viržonis, B. Abakevičienė, S. Smetona, and S. Tamulevičius, “Microlens fabrication by 3D electron beam lithography combined with thermal reflow technique,” Microelectron. Eng. 164, 23–29 (2016).
[Crossref]

Nanoscale (1)

H. Gao, Y. Li, L. Chen, J. Jin, M. Pu, X. Li, P. Gao, C. Wang, X. Luo, and M. Hong, “Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design,” Nanoscale 10(2), 666–671 (2018).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, “Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures,” Opt. Commun. 393, 213–218 (2017).
[Crossref]

Opt. Eng. (1)

G. A. Cirino, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52(12), 125101 (2013).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Optik (Stuttg.) (1)

K. Zhong, H. Zhang, and Y. Gao, “Fabrication of high fill-factor aspheric microlens array by digital maskless lithography,” Optik (Stuttg.) 142, 243–248 (2017).
[Crossref]

Proc. SPIE (1)

T. Xing, “Lenses matching of compound eye for target positioning,” Proc. SPIE 8420, 84200B (2012).

Rapid Prototyping J. (1)

J.-W. Choi, R. B. Wicker, S.-H. Cho, C.-S. Ha, and S.-H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15(1), 59–70 (2009).
[Crossref]

Other (1)

Y. R. Huang, L. T. Chen, and G. Keiser, “A simple design approach of a micro-lens array for fiber optic applications,” in International Workshop on Fiber Optics in Access Network (2015), pp. 31–33.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of DMD-based real-time maskless lithography system.
Fig. 2
Fig. 2 Schematic of HCE-MLA fabrication process. (a) One-layer thick photoresist via spin-coating on a substrate. (b) Hexagonal cylinder microstructures fabricated after exposure and development in the DMD-based maskless lithography. (c) Fabrication of hexagonal micro-lens array via dose-modulation with equal-arc-mean slicing strategy. (d) Smooth of the counter surface via thermal reflow for high quality profile. (e) The fabricated HCE-MLA. (f) Magnified image of single hexagonal microlens with steps after development.
Fig. 3
Fig. 3 (a) Hexagon with a length of 15 μm. (b) Hexagonal cylinder with a height of 9 μm. (c) Designed parabolic profile. (d) Paraboloid. (e) Model of single hexagonal compound eye microlens.
Fig. 4
Fig. 4 Distribution of calculated exposure dose for parabolic profile.
Fig. 5
Fig. 5 Schematic of equal-arc-mean slicing strategy.
Fig. 6
Fig. 6 Mask pattern of the HCE-MLA. (a) Multilayer mask pattern. (b) Expansion view of the multilayer mask pattern.
Fig. 7
Fig. 7 The SEM image of the hexagonal photoresist island array after exposure and development.
Fig. 8
Fig. 8 The SEM image of a test experiment using the last layer of the design masks. (a) The image of photoresist island array after exposure and development. (b) The image of single photoresist island. (c) Magnifying image of the sharp corner of the hexagonal cylinder. (d) Magnifying image of the edge of the hexagonal cylinder.
Fig. 9
Fig. 9 The SEM image of hexagonal microlens array with steps via multiple exposures for reconstruction of the contour.
Fig. 10
Fig. 10 The SEM image of HCE micro-lens array.
Fig. 11
Fig. 11 Diagram for comparing various numbers of slicing layers relative to the parabolic profile.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

γ= 1 ln E c ln E th = h(x,z) H[lnE(x,z)ln E th ]
E(x,z)=exp( h(x,z) Hγ +ln E th )
h(x,z)=z+ H x 2 R 2 9,0zH
z= H( x 2 + y 2 ) R 2 +9
i=1 n h i =H
r i = r i1 + Δ r i 2 = r i + r i1 2 , r 1 = r 1 ,i=2,...,n.

Metrics