Abstract

Multi-core fiber-bundle endoscopes provide a minimally-invasive solution for deep tissue imaging and opto-genetic stimulation, at depths beyond the reach of conventional microscopes. Recently, wavefront-shaping has enabled lensless bundle-based micro-endoscopy by correcting the wavefront distortions induced by core-to-core inhomogeneities. However, current wavefront-shaping solutions require access to the fiber distal end for determining the bend-sensitive wavefront-correction. Here, we show that it is possible to determine the wavefront correction in-situ, without any distal access. Exploiting the nonlinearity of two-photon excited fluorescence, we adaptively determine the wavefront correction in-situ using only proximal detection of epi-detected fluorescence. We experimentally demonstrate diffraction-limited, three-dimensional, two-photon lensless microendoscopy with commercially-available ordered- and disordered multi-core fiber bundles.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon lensless endoscope

Esben Ravn Andresen, Géraud Bouwmans, Serge Monneret, and Hervé Rigneault
Opt. Express 21(18) 20713-20721 (2013)

Widefield lensless imaging through a fiber bundle via speckle correlations

Amir Porat, Esben Ravn Andresen, Hervé Rigneault, Dan Oron, Sylvain Gigan, and Ori Katz
Opt. Express 24(15) 16835-16855 (2016)

Widefield lensless endoscopy with a multicore fiber

Viktor Tsvirkun, Siddharth Sivankutty, Géraud Bouwmans, Ori Katz, Esben Ravn Andresen, and Hervé Rigneault
Opt. Lett. 41(20) 4771-4774 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603 (2010).
    [Crossref] [PubMed]
  2. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941 (2005).
    [Crossref] [PubMed]
  3. G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19, 760–771 (2013).
    [Crossref]
  4. S. M. Kolenderska, O. Katz, M. Fink, and S. Gigan, “Scanning-free imaging through a single fiber by random spatio-spectral encoding,” Opt. Lett. 40, 534–537 (2015).
    [Crossref] [PubMed]
  5. R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single optical fibre,” Nat. Commun. 5, 5581 (2014).
    [Crossref] [PubMed]
  6. S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. Neil, C. Paterson, P. M. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24, 21474–21484 (2016).
    [Crossref] [PubMed]
  7. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21, 20713–20721 (2013).
    [Crossref] [PubMed]
  8. A. J. Thompson, C. Paterson, M. A. Neil, C. Dunsby, and P. M. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36, 1707–1709 (2011).
    [Crossref] [PubMed]
  9. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab on a Chip 12, 635–639 (2012).
    [Crossref]
  10. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
    [Crossref] [PubMed]
  11. N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16, 8016–8025 (2008).
    [Crossref] [PubMed]
  12. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
    [Crossref]
  13. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
    [Crossref] [PubMed]
  14. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
    [Crossref] [PubMed]
  15. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529 (2015).
    [Crossref]
  16. E. Spitz and A. Werts, “Transmission des images à travers une fibre optique,” COMPTES RENDUS HEBDO-MADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B 264, 1015 (1967).
  17. A. Gover, C. Lee, and A. Yariv, “Direct transmission of pictorial information in multimode optical fibers,” JOSA 66, 306–311 (1976).
    [Crossref]
  18. A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24, 16835–16855 (2016).
    [Crossref] [PubMed]
  19. N. Stasio, C. Moser, and D. Psaltis, “Calibration-free imaging through a multicore fiber using speckle scanning microscopy,” Opt. Lett. 41, 3078–3081 (2016).
    [Crossref] [PubMed]
  20. O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1, 170–174 (2014).
    [Crossref]
  21. S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv preprint arXiv:1506.08586 (2015).
  22. I. M. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
    [Crossref]
  23. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372 (2011).
    [Crossref]
  24. I. M. Vellekoop and A. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref] [PubMed]
  25. S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” Opt. Lett. 41, 3531–3534 (2016).
    [Crossref] [PubMed]
  26. Y. Kim, S. Warren, F. Favero, J. Stone, J. Clegg, M. Neil, C. Paterson, J. Knight, P. French, and C. Dunsby, “Semi-random multicore fibre design for adaptive multiphoton endoscopy,” Opt. Express 26, 3661–3673 (2018).
    [Crossref] [PubMed]
  27. S. Sivankutty, V. Tsvirkun, O. Vanvincq, G. Bouwmans, E. R. Andresen, and H. Rigneault, “Nonlinear imaging through a fermats golden spiral multicore fiber,” Opt. Lett. 43, 3638–3641 (2018).
    [Crossref] [PubMed]
  28. J. Stone, H. Wood, K. Harrington, and T. Birks, “Low index contrast imaging fibers,” Opt. Lett. 42, 1484–1487 (2017).
    [Crossref] [PubMed]
  29. N. Curry, P. Bondareff, M. Leclercq, N. F. Van Hulst, R. Sapienza, S. Gigan, and S. Grésillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36, 3332–3334 (2011).
    [Crossref] [PubMed]
  30. H. P. Paudel, C. Stockbridge, J. Mertz, and T. Bifano, “Focusing polychromatic light through strongly scattering media,” Opt. Express 21, 17299–17308 (2013).
    [Crossref] [PubMed]
  31. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
    [Crossref] [PubMed]
  32. I. N. Papadopoulos, J.-S. Jouhanneau, J. F. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (f-sharp),” Nat. Photonics 11, 116 (2017).
    [Crossref]
  33. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20, 4840–4849 (2012).
    [Crossref] [PubMed]
  34. S. Ohayon, A. Caravaca-Aguirre, R. Piestun, and J. J. DiCarlo, “Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express 9, 1492–1509 (2018).
    [Crossref] [PubMed]
  35. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997).
    [Crossref]
  36. V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84, 1157–1169 (2014).
    [Crossref] [PubMed]

2018 (3)

2017 (2)

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (f-sharp),” Nat. Photonics 11, 116 (2017).
[Crossref]

J. Stone, H. Wood, K. Harrington, and T. Birks, “Low index contrast imaging fibers,” Opt. Lett. 42, 1484–1487 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (2)

2014 (3)

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single optical fibre,” Nat. Commun. 5, 5581 (2014).
[Crossref] [PubMed]

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1, 170–174 (2014).
[Crossref]

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84, 1157–1169 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (7)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab on a Chip 12, 635–639 (2012).
[Crossref]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[Crossref] [PubMed]

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20, 4840–4849 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603 (2010).
[Crossref] [PubMed]

2008 (2)

N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16, 8016–8025 (2008).
[Crossref] [PubMed]

I. M. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

2007 (1)

2005 (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941 (2005).
[Crossref] [PubMed]

1997 (1)

1976 (1)

A. Gover, C. Lee, and A. Yariv, “Direct transmission of pictorial information in multimode optical fibers,” JOSA 66, 306–311 (1976).
[Crossref]

1967 (1)

E. Spitz and A. Werts, “Transmission des images à travers une fibre optique,” COMPTES RENDUS HEBDO-MADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B 264, 1015 (1967).

Andresen, E. R.

Barankov, R.

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single optical fibre,” Nat. Commun. 5, 5581 (2014).
[Crossref] [PubMed]

Bianchi, S.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab on a Chip 12, 635–639 (2012).
[Crossref]

Bifano, T.

Birks, T.

Bondareff, P.

Bouwmans, G.

Bozinovic, N.

Bradley, J.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84, 1157–1169 (2014).
[Crossref] [PubMed]

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372 (2011).
[Crossref]

Brown, A. N.

Caravaca-Aguirre, A.

Caravaca-Aguirre, A. M.

Cheung, E. L.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941 (2005).
[Crossref] [PubMed]

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Chung, E.

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19, 760–771 (2013).
[Crossref]

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529 (2015).
[Crossref]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Clegg, J.

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941 (2005).
[Crossref] [PubMed]

Conkey, D. B.

Curry, N.

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

De Sars, V.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84, 1157–1169 (2014).
[Crossref] [PubMed]

Dholakia, K.

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Di Leonardo, R.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab on a Chip 12, 635–639 (2012).
[Crossref]

DiCarlo, J. J.

Dunsby, C.

Emiliani, V.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84, 1157–1169 (2014).
[Crossref] [PubMed]

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Farahi, S.

Favero, F.

Fink, M.

S. M. Kolenderska, O. Katz, M. Fink, and S. Gigan, “Scanning-free imaging through a single fiber by random spatio-spectral encoding,” Opt. Lett. 40, 534–537 (2015).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941 (2005).
[Crossref] [PubMed]

Ford, T.

French, P.

French, P. M.

Gigan, S.

Gilboa, D.

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv preprint arXiv:1506.08586 (2015).

Gover, A.

A. Gover, C. Lee, and A. Yariv, “Direct transmission of pictorial information in multimode optical fibers,” JOSA 66, 306–311 (1976).
[Crossref]

Grésillon, S.

Guan, Y.

Harrington, K.

Jouhanneau, J.-S.

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (f-sharp),” Nat. Photonics 11, 116 (2017).
[Crossref]

Judkewitz, B.

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (f-sharp),” Nat. Photonics 11, 116 (2017).
[Crossref]

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941 (2005).
[Crossref] [PubMed]

Katz, O.

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Kim, Y.

Knight, J.

Knight, J. C.

Kogan, D.

Kolenderska, S. M.

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

Leclercq, M.

Lee, C.

A. Gover, C. Lee, and A. Yariv, “Direct transmission of pictorial information in multimode optical fibers,” JOSA 66, 306–311 (1976).
[Crossref]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

Mertz, J.

Meshulach, D.

Mitchell, C.

Monneret, S.

Moser, C.

Mosk, A.

I. M. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

I. M. Vellekoop and A. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref] [PubMed]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

Neil, M.

Neil, M. A.

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603 (2010).
[Crossref] [PubMed]

Oh, G.

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19, 760–771 (2013).
[Crossref]

Ohayon, S.

Oron, D.

Papadopoulos, I. N.

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (f-sharp),” Nat. Photonics 11, 116 (2017).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
[Crossref] [PubMed]

Paterson, C.

Paudel, H. P.

Piestun, R.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941 (2005).
[Crossref] [PubMed]

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529 (2015).
[Crossref]

Porat, A.

Poulet, J. F.

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (f-sharp),” Nat. Photonics 11, 116 (2017).
[Crossref]

Psaltis, D.

Rigneault, H.

Rosen, S.

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv preprint arXiv:1506.08586 (2015).

Sapienza, R.

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941 (2005).
[Crossref] [PubMed]

Silberberg, Y.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1, 170–174 (2014).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372 (2011).
[Crossref]

D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997).
[Crossref]

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv preprint arXiv:1506.08586 (2015).

Sivankutty, S.

Small, E.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1, 170–174 (2014).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372 (2011).
[Crossref]

Spitz, E.

E. Spitz and A. Werts, “Transmission des images à travers une fibre optique,” COMPTES RENDUS HEBDO-MADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B 264, 1015 (1967).

Stasio, N.

Stockbridge, C.

Stone, J.

Stone, J. M.

Szabo, V.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84, 1157–1169 (2014).
[Crossref] [PubMed]

Thompson, A. J.

Tsvirkun, V.

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529 (2015).
[Crossref]

Van Hulst, N. F.

Vanvincq, O.

Vellekoop, I. M.

I. M. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

I. M. Vellekoop and A. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref] [PubMed]

Ventalon, C.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84, 1157–1169 (2014).
[Crossref] [PubMed]

N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16, 8016–8025 (2008).
[Crossref] [PubMed]

Warren, S.

Warren, S. C.

Werts, A.

E. Spitz and A. Werts, “Transmission des images à travers une fibre optique,” COMPTES RENDUS HEBDO-MADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B 264, 1015 (1967).

Wood, H.

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Yariv, A.

A. Gover, C. Lee, and A. Yariv, “Direct transmission of pictorial information in multimode optical fibers,” JOSA 66, 306–311 (1976).
[Crossref]

Yelin, D.

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Yun, S. H.

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19, 760–771 (2013).
[Crossref]

Biomed. Opt. Express (1)

COMPTES RENDUS HEBDO-MADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B (1)

E. Spitz and A. Werts, “Transmission des images à travers une fibre optique,” COMPTES RENDUS HEBDO-MADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B 264, 1015 (1967).

JOSA (1)

A. Gover, C. Lee, and A. Yariv, “Direct transmission of pictorial information in multimode optical fibers,” JOSA 66, 306–311 (1976).
[Crossref]

Lab on a Chip (1)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab on a Chip 12, 635–639 (2012).
[Crossref]

Nat. Commun. (2)

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single optical fibre,” Nat. Commun. 5, 5581 (2014).
[Crossref] [PubMed]

Nat. Methods (2)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603 (2010).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941 (2005).
[Crossref] [PubMed]

Nat. Photonics (4)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (f-sharp),” Nat. Photonics 11, 116 (2017).
[Crossref]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529 (2015).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372 (2011).
[Crossref]

Neuron (1)

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84, 1157–1169 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

I. M. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

Opt. Express (9)

Y. Kim, S. Warren, F. Favero, J. Stone, J. Clegg, M. Neil, C. Paterson, J. Knight, P. French, and C. Dunsby, “Semi-random multicore fibre design for adaptive multiphoton endoscopy,” Opt. Express 26, 3661–3673 (2018).
[Crossref] [PubMed]

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20, 4840–4849 (2012).
[Crossref] [PubMed]

H. P. Paudel, C. Stockbridge, J. Mertz, and T. Bifano, “Focusing polychromatic light through strongly scattering media,” Opt. Express 21, 17299–17308 (2013).
[Crossref] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
[Crossref] [PubMed]

N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16, 8016–8025 (2008).
[Crossref] [PubMed]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24, 16835–16855 (2016).
[Crossref] [PubMed]

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. Neil, C. Paterson, P. M. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24, 21474–21484 (2016).
[Crossref] [PubMed]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21, 20713–20721 (2013).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19, 760–771 (2013).
[Crossref]

Opt. Lett. (9)

S. M. Kolenderska, O. Katz, M. Fink, and S. Gigan, “Scanning-free imaging through a single fiber by random spatio-spectral encoding,” Opt. Lett. 40, 534–537 (2015).
[Crossref] [PubMed]

A. J. Thompson, C. Paterson, M. A. Neil, C. Dunsby, and P. M. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36, 1707–1709 (2011).
[Crossref] [PubMed]

N. Stasio, C. Moser, and D. Psaltis, “Calibration-free imaging through a multicore fiber using speckle scanning microscopy,” Opt. Lett. 41, 3078–3081 (2016).
[Crossref] [PubMed]

D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997).
[Crossref]

S. Sivankutty, V. Tsvirkun, O. Vanvincq, G. Bouwmans, E. R. Andresen, and H. Rigneault, “Nonlinear imaging through a fermats golden spiral multicore fiber,” Opt. Lett. 43, 3638–3641 (2018).
[Crossref] [PubMed]

J. Stone, H. Wood, K. Harrington, and T. Birks, “Low index contrast imaging fibers,” Opt. Lett. 42, 1484–1487 (2017).
[Crossref] [PubMed]

N. Curry, P. Bondareff, M. Leclercq, N. F. Van Hulst, R. Sapienza, S. Gigan, and S. Grésillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36, 3332–3334 (2011).
[Crossref] [PubMed]

I. M. Vellekoop and A. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref] [PubMed]

S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” Opt. Lett. 41, 3531–3534 (2016).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. Lett. (1)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Other (1)

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv preprint arXiv:1506.08586 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Setup: 85 fs long laser pulses, provided by a Ti:Sapphire mode-locked laser with a dispersion-compensation module, are reflected off a galvanometric mirror and imaged on an SLM. The SLM is imaged on the proximal facet of a fiber-bundle. Two-photon fluorescent (2PF) targets are placed at short distances from the distal end of the fiber. The excited 2PF is collected by the same fiber and detected at the proximal end using a PMT or an sCMOS camera. The detected 2PF signal is used as a feedback for an iterative wavefront-shaping optimization process, aimed at maximizing the total detected 2PF, forming a sharp focus on the target. 3D two-photon imaging is achieved by scanning the formed focus with the SLM and galvanometric mirror. A reference camera is used only for results inspection.
Fig. 2
Fig. 2 Experimental focusing through a fiber-bundle with proximal-only detection. (a) The speckle pattern at the object plane (z=2.2mm) before optimization. (b) Same as (a), with a 2PF object in the field of view (marked by arrow). (c) Same as (a) after optimization of the epi-detected 2PF, showing sharp focusing. The side-lobes are a result of the lattice periodicity of the bundle cores. (d) Evolution of the proximally-detected 2PF during the optimization process. Scale Bars: 100 μm. (color-bars are normalized such that the mean intensity in (a) is 1).
Fig. 3
Fig. 3 Lensless two-photon imaging obtained by scanning the focal spot generated in-situ in Fig. 2(c). (a,c) Reference camera bright-field images of fluorescent objects placed simultaneously at two axial planes. (b,d) Corresponding two-photon images obtained through the bundle. (e) Two-photon images at various focal planes near the plane of (b), demonstrating axial sectioning. Scale Bars: (a,c) 100 μm, (b,d) 0.05 radians, (the farthest object has a smaller angular extent).
Fig. 4
Fig. 4 Focal spot characterization. (a) Axial characterization of the focus width obtained by scanning the focal spot in the z-direction on a thin 2PF object, by adding a parabolic phase to the wavefront-correction. (b) Lateral characterization using the reference camera. Measured FWHMs are 5.3 ± 0.1 and 5.5 ± 0.1μm in the x- and y-axis respectively. Scale Bar, 5 μm.
Fig. 5
Fig. 5 Focusing with suppressed side-lobes using bundles with disordered cores. (a,b,c) Focusing results using a fiber bundle with ordered cores (Schott 1563385), used in Figs. 2(a)4(b). (a) Image of the intensity distribution on the fiber distal facet, showing the cores ordered arrangement. (b) Fourier transform of (a) in log scale. (c) optimized focal spot (white line: intensity cross-section along the dashed line). (d,e,f) Same as (a–c), using a bundle with disordered cores (Fujikura FIGH-03-215S), showing suppressed side-lobes. (g) Comparison of the angular scanning range (the ’memory effect’) of the two fibers. The Fujikura fiber shows a smaller memory-effect range, likely due to light propagation between the cores (see (d)), resulting in a smaller FoV. (h,i) Two-photon imaging of fluorescent beads through the disordered fiber: (h) bright-field image of the object, taken with the reference camera. (i) two-photon image through the bundle obtained with the proposed approach. Scale Bars: (a,c,d,f) 50 μm, (b,e) 100 μm−1 (h) 10 μm, (i) 0.02 rad.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ z = 0.64 2 Z R = 0.64 2 π w 0 2 λ / n = 0.64 ln ( 2 ) π δ x 2 λ / n
δ x [ ( λ D b u n d l e Z ) 2 + ( λ N A ) 2 ] 1 2 4.4 μ m

Metrics