Abstract

A multi-parameter optical-fiber sensor, which is based on multiple acoustic modes in stimulated Brillouin scattering (SBS) effect, for distributed measurement of temperature and strain utilizing standard single-mode fiber (SSMF) is proposed and experimentally demonstrated. By manipulating doping level and refractive index profile of the fiber, the properties of Brillouin gain spectrum (BGS) related to the guided optical and acoustic modes are analyzed. The simulated results indicate that multiple acoustic modes can be excited in single-mode fiber (SMF) and the BGS is composed of multiple peaks corresponding to multiple acoustic modes. Moreover, the temperature and strain sensitivities of different acoustic modes are unequal and the capability of discriminative measurement between temperature and strain can be proved. Simultaneously, the mode field diameter, the dispersion parameter, and the cutoff wavelength are calculated and the results show that parts of SSMF can be used for multi-parameter measurement. However, the accuracy of measurement is varied with the fiber structure parameters. Consequently, in experimental section, two different SSMFs are put into test and both have multiple-peak BGSs although the BGSs show a great difference to each other. The discrimination of temperature and strain is successfully demonstrated by analyzing the coefficients of the Brillouin frequency shifts introduced by different acoustic modes. In the fiber which has a better measurement result, the sensitivities of the fundamental acoustic mode are 1.19 MHz/°C and 62.28 kHz/με with an accuracy of 0.98 °C and 19.6 με in 20 km sensing range.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber

Zhiyong Zhao, Yunli Dang, Ming Tang, Li Duan, Meng Wang, Hao Wu, Songnian Fu, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 24(22) 25111-25118 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
    [Crossref]
  2. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
    [Crossref] [PubMed]
  3. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).
  4. M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
    [Crossref] [PubMed]
  5. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]
  6. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2007).
  7. A. Li, Q. Hu, and W. Shieh, “Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis,” Opt. Express 21(26), 31894–31906 (2013).
    [Crossref] [PubMed]
  8. M. Alahbabi, Y. T. Cho, and T. P. Newson, “Comparison of the methods for discriminating temperature and strain in spontaneous Brillouin-based distributed sensors,” Opt. Lett. 29(1), 26–28 (2004).
    [Crossref] [PubMed]
  9. H. Wu, M. Tang, M. Wang, C. Zhao, Z. Zhao, R. Wang, R. Liao, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode optical fiber based simultaneously distributed curvature and temperature sensing,” Opt. Express 25(11), 12722–12732 (2017).
    [Crossref] [PubMed]
  10. J. Zhang, T. Zhu, H. Zhou, S. Huang, M. Liu, and W. Huang, “High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses,” Opt. Express 24(24), 27482–27493 (2016).
    [Crossref] [PubMed]
  11. Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5(1), 11388 (2015).
    [Crossref] [PubMed]
  12. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
    [Crossref] [PubMed]
  13. A. Li, Y. Wang, J. Fang, M. J. Li, B. Y. Kim, and W. Shieh, “Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination,” Opt. Lett. 40(7), 1488–1491 (2015).
    [Crossref] [PubMed]
  14. Z. Guo, C. Ke, C. Xing, Y. Zhong, G. Yin, and D. Liu, “Stimulated brillouin scattering enhanced fibers for narrow-band filtering by tailoring brillouin gain spectrum,” IEEE Photonics J. 9(6), 1–11 (2017).
    [Crossref]
  15. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and signing Brillouin gain spectrum in single mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
    [Crossref]
  16. F. Gao, R. Pant, E. Li, C. G. Poulton, D. Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21(7), 8605–8613 (2013).
    [Crossref] [PubMed]
  17. W. Zou, Z. He, and K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding,” Opt. Express 16(14), 10006–10017 (2008).
    [Crossref] [PubMed]
  18. H. J. Hagemann, H. Lade, J. Warnier, and D. U. Wiechert, “The performance of depressed-cladding single-mode fibers with different b/a ratios,” J. Lightwave Technol. 9(6), 689–694 (1991).
    [Crossref]
  19. C. Xing, C. Ke, K. Zhang, Z. Guo, Y. Zhong, and D. Liu, “Polarization- and wavelength-independent SBS-based filters for high resolution optical spectrum measurement,” Opt. Express 25(18), 20969–20982 (2017).
    [Crossref] [PubMed]
  20. K. Zhang, C. Ke, D. Pan, and D. Liu, “High Resolution and Selectivity SBS-based Filter Utilizing a Dual-stage Scheme,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), paper W3E. 5.
  21. S. Diakaridia, Y. Pan, P. Xu, D. Zhou, B. Wang, L. Teng, Z. Lu, D. Ba, and Y. Dong, “Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum,” Opt. Express 25(15), 17727–17736 (2017).
    [Crossref] [PubMed]

2017 (4)

2016 (1)

2015 (3)

2013 (2)

2011 (2)

2010 (1)

2008 (2)

2004 (2)

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

1991 (1)

H. J. Hagemann, H. Lade, J. Warnier, and D. U. Wiechert, “The performance of depressed-cladding single-mode fibers with different b/a ratios,” J. Lightwave Technol. 9(6), 689–694 (1991).
[Crossref]

Alahbabi, M.

Ba, D.

Bao, X.

Baronti, F.

Bolognini, G.

Chen, L.

Cho, Y. T.

Choi, D. Y.

Chujo, W.

Di Pasquale, F.

Diakaridia, S.

Dong, Y.

Eggleton, B. J.

Fang, J.

Fu, S.

Gao, F.

Guo, Z.

Z. Guo, C. Ke, C. Xing, Y. Zhong, G. Yin, and D. Liu, “Stimulated brillouin scattering enhanced fibers for narrow-band filtering by tailoring brillouin gain spectrum,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

C. Xing, C. Ke, K. Zhang, Z. Guo, Y. Zhong, and D. Liu, “Polarization- and wavelength-independent SBS-based filters for high resolution optical spectrum measurement,” Opt. Express 25(18), 20969–20982 (2017).
[Crossref] [PubMed]

Hagemann, H. J.

H. J. Hagemann, H. Lade, J. Warnier, and D. U. Wiechert, “The performance of depressed-cladding single-mode fibers with different b/a ratios,” J. Lightwave Technol. 9(6), 689–694 (1991).
[Crossref]

Hayashi, N.

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5(1), 11388 (2015).
[Crossref] [PubMed]

He, Z.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Hotate, K.

Hu, Q.

Huang, S.

Huang, W.

Ip, E.

Ke, C.

Z. Guo, C. Ke, C. Xing, Y. Zhong, G. Yin, and D. Liu, “Stimulated brillouin scattering enhanced fibers for narrow-band filtering by tailoring brillouin gain spectrum,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

C. Xing, C. Ke, K. Zhang, Z. Guo, Y. Zhong, and D. Liu, “Polarization- and wavelength-independent SBS-based filters for high resolution optical spectrum measurement,” Opt. Express 25(18), 20969–20982 (2017).
[Crossref] [PubMed]

K. Zhang, C. Ke, D. Pan, and D. Liu, “High Resolution and Selectivity SBS-based Filter Utilizing a Dual-stage Scheme,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), paper W3E. 5.

Kim, B. Y.

Koyamada, Y.

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and signing Brillouin gain spectrum in single mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Lade, H.

H. J. Hagemann, H. Lade, J. Warnier, and D. U. Wiechert, “The performance of depressed-cladding single-mode fibers with different b/a ratios,” J. Lightwave Technol. 9(6), 689–694 (1991).
[Crossref]

Lazzeri, A.

Li, A.

Li, E.

Li, M. J.

Li, W.

Li, Y.

Liao, R.

Liu, D.

H. Wu, M. Tang, M. Wang, C. Zhao, Z. Zhao, R. Wang, R. Liao, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode optical fiber based simultaneously distributed curvature and temperature sensing,” Opt. Express 25(11), 12722–12732 (2017).
[Crossref] [PubMed]

C. Xing, C. Ke, K. Zhang, Z. Guo, Y. Zhong, and D. Liu, “Polarization- and wavelength-independent SBS-based filters for high resolution optical spectrum measurement,” Opt. Express 25(18), 20969–20982 (2017).
[Crossref] [PubMed]

Z. Guo, C. Ke, C. Xing, Y. Zhong, G. Yin, and D. Liu, “Stimulated brillouin scattering enhanced fibers for narrow-band filtering by tailoring brillouin gain spectrum,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

K. Zhang, C. Ke, D. Pan, and D. Liu, “High Resolution and Selectivity SBS-based Filter Utilizing a Dual-stage Scheme,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), paper W3E. 5.

Liu, M.

Lu, Y.

Lu, Z.

Luther-Davies, B.

Madden, S. J.

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5(1), 11388 (2015).
[Crossref] [PubMed]

Nakamura, K.

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5(1), 11388 (2015).
[Crossref] [PubMed]

Nakamura, S.

Nannipieri, T.

Newson, T. P.

Pan, D.

K. Zhang, C. Ke, D. Pan, and D. Liu, “High Resolution and Selectivity SBS-based Filter Utilizing a Dual-stage Scheme,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), paper W3E. 5.

Pan, Y.

Pan, Z.

Pant, R.

Poulton, C. G.

Roncella, R.

Sato, S.

Shieh, W.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Shum, P. P.

Signorini, A.

Soto, M. A.

Sotobayashi, H.

Tanaka, H.

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5(1), 11388 (2015).
[Crossref] [PubMed]

Tang, M.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Teng, L.

Tong, W.

Wada, Y.

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5(1), 11388 (2015).
[Crossref] [PubMed]

Wang, B.

Wang, M.

Wang, R.

Wang, T.

Wang, Y.

Warnier, J.

H. J. Hagemann, H. Lade, J. Warnier, and D. U. Wiechert, “The performance of depressed-cladding single-mode fibers with different b/a ratios,” J. Lightwave Technol. 9(6), 689–694 (1991).
[Crossref]

Weng, Y.

Wiechert, D. U.

H. J. Hagemann, H. Lade, J. Warnier, and D. U. Wiechert, “The performance of depressed-cladding single-mode fibers with different b/a ratios,” J. Lightwave Technol. 9(6), 689–694 (1991).
[Crossref]

Wu, H.

Xing, C.

C. Xing, C. Ke, K. Zhang, Z. Guo, Y. Zhong, and D. Liu, “Polarization- and wavelength-independent SBS-based filters for high resolution optical spectrum measurement,” Opt. Express 25(18), 20969–20982 (2017).
[Crossref] [PubMed]

Z. Guo, C. Ke, C. Xing, Y. Zhong, G. Yin, and D. Liu, “Stimulated brillouin scattering enhanced fibers for narrow-band filtering by tailoring brillouin gain spectrum,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

Xu, P.

Yang, C.

Yin, G.

Z. Guo, C. Ke, C. Xing, Y. Zhong, G. Yin, and D. Liu, “Stimulated brillouin scattering enhanced fibers for narrow-band filtering by tailoring brillouin gain spectrum,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

Zhang, J.

Zhang, K.

C. Xing, C. Ke, K. Zhang, Z. Guo, Y. Zhong, and D. Liu, “Polarization- and wavelength-independent SBS-based filters for high resolution optical spectrum measurement,” Opt. Express 25(18), 20969–20982 (2017).
[Crossref] [PubMed]

K. Zhang, C. Ke, D. Pan, and D. Liu, “High Resolution and Selectivity SBS-based Filter Utilizing a Dual-stage Scheme,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), paper W3E. 5.

Zhao, C.

Zhao, Z.

Zhong, Y.

C. Xing, C. Ke, K. Zhang, Z. Guo, Y. Zhong, and D. Liu, “Polarization- and wavelength-independent SBS-based filters for high resolution optical spectrum measurement,” Opt. Express 25(18), 20969–20982 (2017).
[Crossref] [PubMed]

Z. Guo, C. Ke, C. Xing, Y. Zhong, G. Yin, and D. Liu, “Stimulated brillouin scattering enhanced fibers for narrow-band filtering by tailoring brillouin gain spectrum,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

Zhou, D.

Zhou, H.

Zhu, T.

Zou, W.

IEEE Photonics J. (1)

Z. Guo, C. Ke, C. Xing, Y. Zhong, G. Yin, and D. Liu, “Stimulated brillouin scattering enhanced fibers for narrow-band filtering by tailoring brillouin gain spectrum,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

J. Lightwave Technol. (4)

H. J. Hagemann, H. Lade, J. Warnier, and D. U. Wiechert, “The performance of depressed-cladding single-mode fibers with different b/a ratios,” J. Lightwave Technol. 9(6), 689–694 (1991).
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and signing Brillouin gain spectrum in single mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
[Crossref]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

Opt. Express (9)

F. Gao, R. Pant, E. Li, C. G. Poulton, D. Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21(7), 8605–8613 (2013).
[Crossref] [PubMed]

A. Li, Q. Hu, and W. Shieh, “Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis,” Opt. Express 21(26), 31894–31906 (2013).
[Crossref] [PubMed]

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
[Crossref] [PubMed]

J. Zhang, T. Zhu, H. Zhou, S. Huang, M. Liu, and W. Huang, “High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses,” Opt. Express 24(24), 27482–27493 (2016).
[Crossref] [PubMed]

H. Wu, M. Tang, M. Wang, C. Zhao, Z. Zhao, R. Wang, R. Liao, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode optical fiber based simultaneously distributed curvature and temperature sensing,” Opt. Express 25(11), 12722–12732 (2017).
[Crossref] [PubMed]

S. Diakaridia, Y. Pan, P. Xu, D. Zhou, B. Wang, L. Teng, Z. Lu, D. Ba, and Y. Dong, “Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum,” Opt. Express 25(15), 17727–17736 (2017).
[Crossref] [PubMed]

C. Xing, C. Ke, K. Zhang, Z. Guo, Y. Zhong, and D. Liu, “Polarization- and wavelength-independent SBS-based filters for high resolution optical spectrum measurement,” Opt. Express 25(18), 20969–20982 (2017).
[Crossref] [PubMed]

W. Zou, Z. He, and K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding,” Opt. Express 16(14), 10006–10017 (2008).
[Crossref] [PubMed]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
[Crossref] [PubMed]

Opt. Lett. (3)

Sci. Rep. (1)

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5(1), 11388 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2007).

K. Zhang, C. Ke, D. Pan, and D. Liu, “High Resolution and Selectivity SBS-based Filter Utilizing a Dual-stage Scheme,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), paper W3E. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 (a) Excitation of acoustic modes under different core radius a and doping concentration of germanium Ge in germanium-doped fibers. I: One acoustic mode; II: Two acoustic modes; III: Three acoustic modes; IV: More than three acoustic modes; (b) Cross section of optical and acoustic modes in SMF; (c) Simulated BGS in SMF.
Fig. 2
Fig. 2 The acoustic mode factor R as a function of core radius a and doping concentration of germanium Ge in germanium-doped fibers. (a) R of A02; (b) R of A03.
Fig. 3
Fig. 3 The proportionality coefficients as a function of core radius a and doping concentration of germanium Ge in germanium-doped fibers. (a) C T of A01; (b) C T of A02; (c) C T of A03; (d) C ε of A01; (e) C ε of A02; (f) C ε of A03.
Fig. 4
Fig. 4 The measurement error as a function of core radius a and doping concentration of germanium Ge in germanium-doped fibers. (a) Temperature error δT; (b) Strain error δε.
Fig. 5
Fig. 5 The fiber parameters as a function of core radius a and doping concentration of germanium Ge in germanium-doped fibers. (a) Mode field diameter d; (b) Cutoff wavelength λ CC ; (c) Dispersion parameter D C .
Fig. 6
Fig. 6 (a) Structures of the depressed-cladding structure fibers. (b) Excitation of optical modes under different core radii a and index differences Δn in the depressed-cladding structure fibers. I: single optical mode; II: multiple optical mode. (c) The inner cladding fluorine concentration F and acoustic velocity difference ΔV as a function of inner germanium concentration Ge under different refractive index difference Δn.
Fig. 7
Fig. 7 The acoustic mode factor as a function of core radius a and doping concentration of germanium Ge when Δn is 0.36%. (a) R of A02; (b) R of A03.
Fig. 8
Fig. 8 The proportionality coefficients as a function of core radius a and doping concentration of germanium Ge in depressed-cladding structure fibers. (a) C T of A01; (b) C T of A02; (c) C T of A03; (d) C ε of A01; (e) C ε of A02; (f) C ε of A03.
Fig. 9
Fig. 9 The measurement error as a function of core radius a and doping concentration of germanium Ge in depressed-cladding structure fibers when Δn is 0.36%. (a) Temperature error δT; (b) Strain error δε.
Fig. 10
Fig. 10 The fiber parameters as a function of core radius a and doping concentration of germanium Ge in depressed-cladding structure fibers when Δn is 0.36%. (a) Mode field diameter d; (b) Cutoff wavelength λ CC ; (c) Dispersion parameter D C .
Fig. 11
Fig. 11 Experimental setup of Brillouin optical time-domain analysis system based on SSMF. PC: polarization controller; EOM: electro-optic modulator; MS: microwave synthesizer; EDFA: erbium-doped fiber amplifier; BPF: band-pass filter; ISO: isolator; AOM: acoustic optical modulator; AFG: arbitrary function generator; PS: polarization scrambler; VOA: variable optical attenuator; PD: photodetector; FUT: fiber under test.
Fig. 12
Fig. 12 The measured frequency response of (a) SSMF-A and (b) SSMF-B with the experimental setup in [20].
Fig. 13
Fig. 13 Measured results of the SSMF-A through BOTDA at room temperature. (a) Three-dimensional map of the measured BGS as a function of distance. (b) Measured BGS (after Lorentzian fitting) when temperature is increased.
Fig. 14
Fig. 14 Measured Brillouin frequency shift of SSMF-A as a function of (a) temperature and (b) applied strain.
Fig. 15
Fig. 15 Measured results of the SSMF-B through BOTDA at room temperature. (a) Three-dimensional map of the measured BGS as a function of distance. (b) Measured BGS (after Lorentzian fitting) when temperature is increased.
Fig. 16
Fig. 16 Measured Brillouin frequency shift of SSMF-B as a function (a) temperature and (b) applied strain.

Tables (1)

Tables Icon

Table 1 Measured parameters of the fibers

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Δ t 2 E+ ( 2π λ ) 2 ( n 2 n oeff 2 )E=0
Δ t 2 u m +( Ω m V l 2 β ac 2 ) u m =0,( m=1,2,, N ac )
BGS( ν )= m=1 N ac g p I m ac A eff ( Γ/2 ) 2 ( Γ/2 ) 2 + (ν ν B m ) 2
I m ac = ( | E | 2 u m dxdy) 2 | E | 4 dxdy | u m | 2 dxdy
R m = g B,m Peak g p I m ac ( ν B m )/ A eff
n( ω Ge , ω F ,ΔT,Δε)= n 0 [1+( 1× 10 3 +3× 10 6 ΔT+1.5× 10 7 Δε )* ω Ge +( 3.3× 10 3 +3.6× 10 6 ΔT+7.5× 10 7 Δε )* ω F ]
V l ( ω Ge , ω F ,ΔT,Δε)= V 0 [1( 7.2× 10 3 4.7× 10 5 ΔT2.1× 10 6 Δε ) ω Ge ( 2.7× 10 3 1.8× 10 5 ΔT3.8× 10 6 Δε ) ω Ge ]
( Δ v B 1 Δ v B m Δ v B N ac )=( C T 1 C T m C T N ac C ε 1 C ε m C ε N ac )( ΔT Δε )
ΔT= C ε m Δ ν 1 C ε 1 Δ ν m C T 1 C ε m C T m C ε 1
Δε= C T 1 Δ ν m C T m Δ ν 1 C T 1 C ε m C T m C ε 1
δT= | C ε m |δ ν B 1 +| C ε 1 |δ ν B m | C ε m C T 1 C ε 1 C T m |
δε= | C T m |δ ν B 1 +| C T 1 |δ ν B m | C ε m C T 1 C ε 1 C T m |

Metrics