Abstract

We present an apodized, single etch-step, subwavelength grating (SWG) high positional freedom (HPF) grating coupler based on the 220 nm silicon-on-insulator (SOI) with 2μm BOX substrate. The grating coupler was designed for 1550 nm light with transverse electric (TE) polarization. It has a measured maximum coupling efficiency of −7.49 dB (17.8%) and a −1 dB/-3 dB bandwidth of ~14 nm/29.5 nm respectively. It was fabricated in a 300mm state of the art CMOS foundry. This work presents an SOI-based grating coupler with the highest—to the best of our knowledge— −1 dB single mode fiber lateral alignment of 21.4 μm × 10.1 μm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband and polarization flexible SOI grating coupler based on sub-wavelength gratings with low back reflections

Neha Purwaha, Ahmad Atieh, and Winnie N. Ye
OSA Continuum 2(4) 1350-1357 (2019)

Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band

Daniel Benedikovic, Carlos Alonso-Ramos, Pavel Cheben, Jens H. Schmid, Shurui Wang, Robert Halir, Alejandro Ortega-Moñux, Dan-Xia Xu, Laurent Vivien, Jean Lapointe, Siegfried Janz, and Milan Dado
Opt. Express 24(12) 12893-12904 (2016)

An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics

Mikael Antelius, Kristinn B. Gylfason, and Hans Sohlström
Opt. Express 19(4) 3592-3598 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. de La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
    [Crossref]
  2. D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
    [Crossref]
  3. L. Chrostowski and M. Hochberg, Silicon photonics design: from devices to systems (Cambridge University, 2015).
  4. K. Yoo and J.-H. Lee, “Design of a high-efficiency fiber-to-chip coupler with reflectors,” IEIE SPC 5(2), 123–128 (2016).
    [Crossref]
  5. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [Crossref] [PubMed]
  6. S. Romero-García, B. Marzban, F. Merget, B. Shen, and J. Witzens, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
    [Crossref]
  7. J. Wang, Y. Xuan, C. Lee, B. Niu, L. Liu, G. N. Liu, and M. Qi, “Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” in Optical Fiber Communications Conference and Exhibition (OFC), 2016 (2016), pp. 1–3.
  8. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
    [Crossref] [PubMed]
  9. X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
    [Crossref]
  10. Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
    [Crossref] [PubMed]
  11. M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24(5), 5026–5038 (2016).
    [Crossref] [PubMed]
  12. B. Snyder, G. Lepage, S. Balakrishnan, P. de Heyn, P. Verheyen, P. Absil, and J. van Campenhout, “Ultra-broadband, polarization-insensitive SMF-28 fiber edge couplers for silicon photonics,” in CPMT Symposium Japan (ICSJ),2017IEEE (2017), pp. 55–58.
    [Crossref]
  13. M. Tokushima, A. Kamei, and T. Horikawa, “Dual-tapered 10-µm-spot-size converter with double core for coupling polarization-independent silicon Rib waveguides to single-mode optical fibers,” Appl. Phys. Express 5(2), 022202 (2012).
    [Crossref]
  14. D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
    [Crossref] [PubMed]
  15. R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
    [Crossref] [PubMed]
  16. J. Zou, Y. Yu, and X. Zhang, “Two-dimensional grating coupler with a low polarization dependent loss of 0.25 dB covering the C-band,” Opt. Lett. 41(18), 4206–4209 (2016).
    [Crossref] [PubMed]
  17. Y. Sobu, S.-H. Jeong, Y. Tanaka, and K. Morito, “300-mm ArF-immersion lithographytechnology based Si-wire grating couplers with high coupling efficiency and low crosstalk,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st (2016), pp. 1–3.
  18. J. Zou, Y. Yu, and X. Zhang, “Single step etched two dimensional grating coupler based on the SOI platform,” Opt. Express 23(25), 32490–32495 (2015).
    [Crossref] [PubMed]
  19. Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
    [Crossref] [PubMed]
  20. Y. Wang, H. Yun, Z. Lu, N. A. F. Jaeger, and L. Chrostowski, “State-of-the-art sub-wavelength grating couplers for silicon-on-insulator platform,” in 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (2016), pp. 1–4.
    [Crossref]
  21. H. Li, B. Cui, Y. Liu, H. Liu, Z. Zhang, C. Zhang, C. Tang, and E. Li, “Investigation of the chip to photodetector coupler with subwavelength grating on SOI,” Opt. Laser Technol. 76, 79–84 (2016).
    [Crossref]
  22. F. Qi, Q. Ma, Y. Wang, and W. Zheng, “Large-aperture subwavelength grating couplers,” Appl. Opt. 55(11), 2960–2966 (2016).
    [Crossref] [PubMed]
  23. D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, S. Janz, R. Halir, A. Ortega-Moñux, and M. Dado, “High-efficiency fully etched fiber-chip grating couplers with subwavelength structures for datacom and telecom applications,” in Proc. SPIE 9516. Integrated Optics: Physics and Simulations II, SPIE Proceedings (SPIE, 2015), 95160I.
  24. X. Chen and H. K. Tsang, “Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers,” IEEE Photonics J. 1(3), 184–190 (2009).
    [Crossref]
  25. Y. Wang, L. Xu, A. Kumar, D. Patel, Z. Xing, R. Li, M. G. Saber, Y. D’Mello, E. El-Fiky, and D. V. Plant, “Broadband sub-wavelength grating coupler for O-band application,” in Group IV Photonics (GFP), 2017 IEEE 14th International Conference on (2017), pp. 129–130.
    [Crossref]
  26. D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D.-X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
    [Crossref] [PubMed]
  27. X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Colorless grating couplers realized by interleaving dispersion engineered subwavelength structures,” Opt. Lett. 38(18), 3588–3591 (2013).
    [Crossref] [PubMed]
  28. L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
    [Crossref]
  29. Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
    [Crossref] [PubMed]
  30. A. Mizutani, Y. Eto, and H. Kikuta, “A grating coupler with a trapezoidal hole array for perfectly vertical light coupling between optical fibers and waveguides,” Appl. Phys. Express 10(12), 122501 (2017).
    [Crossref]
  31. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
    [Crossref] [PubMed]
  32. K. Debnath, H. Arimoto, M. K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique,” Front. Mater. 3, 10 (2016).
  33. K. Qin, D. Gao, C. Bao, Z. Zhao, X. Zhou, T. Lu, and L. Chen, “High efficiency and broadband two-dimensional blazed grating coupler with fully etched triangular holes,” J. Lightwave Technol. 30(14), 2363–2366 (2012).
    [Crossref]
  34. D. Tsiokos, G. Dabos, J. Bolten, and N. Pleros, “Low-cost vertical coupling schemes for optical I/Os and 3D integration in CMOS photonic integrated circuits,” in Transparent Optical Networks (ICTON), 2017 19th International Conference on (2017), pp. 1–4.
    [Crossref]
  35. X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37(17), 3483–3485 (2012).
    [Crossref] [PubMed]
  36. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
    [Crossref] [PubMed]
  37. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37(24), 5181–5183 (2012).
    [Crossref] [PubMed]
  38. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101(10), 101104 (2012).
    [Crossref]
  39. W. Zhang, W. Zhang, F. Yang, and Z. He, “Polarization independent fiber-to-waveguide coupling by hexagon dots/holes grating,” in Asia Communications and Photonics Conference (2017), Su1D‐6.
    [Crossref]
  40. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
    [Crossref]
  41. S. Plantier, D. Fowler, K. Hassan, O. Lemonnier, and R. Orobtchouk, “Impact of scattering element shape on polarisation dependent loss in two dimensional grating couplers,” in Group IV Photonics (GFP), 2016 IEEE 13th International Conference on (2016), pp. 76–77.
    [Crossref]
  42. D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
    [Crossref]
  43. J. V. Galán, T. Tekin, G. B. Preve, A. Brimont, M. Llopis, and P. Sanchis, “Low profile silicon photonics packaging approach featuring configurable multiple electrical and optical connectivity,” in Group IV Photonics (GFP),20118th IEEE International Conference on (IEEE, 2011), pp. 377–379.
    [Crossref]
  44. C. J. Oton, “Long-working-distance grating coupler for integrated optical devices,” IEEE Photonics J. 8(1), 1–8 (2016).
    [Crossref]
  45. C. J. Oton, “Wavefront-engineered grating coupler for long-working-distance fiber-to-waveguide coupling,” in Integrated Photonics Research, Silicon and Nanophotonics (2016), IW3B‐2.
  46. B. Huang, Z. Zhang, Z. Zhang, C. Cheng, and H. Chen, “100Gb/s Ultra wide misalignment tolerance WDM transmitter with novel vertical grating coupler,” in Photonics Society Summer Topical Meeting Series (SUM), 2017 IEEE (2017), pp. 75–76.
  47. M. Zadka, Y.-C. Chang, A. Mohanty, C. Phare, S. P. Roberts, and M. Lipson, “Millimeter long grating coupler with uniform spatial output,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), STh1M.6.
    [Crossref]
  48. Lumerical Inc., FDTD Solutions (2003).
  49. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures. A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
    [Crossref]
  50. S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  51. R. Halir, A. Ortega-Moñux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20(4), 279–291 (2014).
    [Crossref]
  52. P. Lalanne and J.-P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting. Application to volume holograms,” J. Opt. Soc. Am. A 15(7), 1843–1851 (1998).
    [Crossref]
  53. F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
    [Crossref]
  54. Q. Zhong, W. Shi, Y. Wang, L. Chrostowski, and D. V. Plant, “An ultra-broadband fiber grating coupler with focusing curved subwavelength structures,” in Optical Fiber Communication Conference (Optical Society of America, 2014), Th2A.15.
    [Crossref]
  55. Z. Xiao, T.-Y. Liow, J. Zhang, P. Shum, and F. Luan, “Bandwidth analysis of waveguide grating coupler,” Opt. Express 21(5), 5688–5700 (2013).
    [Crossref] [PubMed]
  56. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [Crossref] [PubMed]

2017 (1)

A. Mizutani, Y. Eto, and H. Kikuta, “A grating coupler with a trapezoidal hole array for perfectly vertical light coupling between optical fibers and waveguides,” Appl. Phys. Express 10(12), 122501 (2017).
[Crossref]

2016 (8)

K. Debnath, H. Arimoto, M. K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique,” Front. Mater. 3, 10 (2016).

C. J. Oton, “Long-working-distance grating coupler for integrated optical devices,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

K. Yoo and J.-H. Lee, “Design of a high-efficiency fiber-to-chip coupler with reflectors,” IEIE SPC 5(2), 123–128 (2016).
[Crossref]

H. Li, B. Cui, Y. Liu, H. Liu, Z. Zhang, C. Zhang, C. Tang, and E. Li, “Investigation of the chip to photodetector coupler with subwavelength grating on SOI,” Opt. Laser Technol. 76, 79–84 (2016).
[Crossref]

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24(5), 5026–5038 (2016).
[Crossref] [PubMed]

F. Qi, Q. Ma, Y. Wang, and W. Zheng, “Large-aperture subwavelength grating couplers,” Appl. Opt. 55(11), 2960–2966 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D.-X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

J. Zou, Y. Yu, and X. Zhang, “Two-dimensional grating coupler with a low polarization dependent loss of 0.25 dB covering the C-band,” Opt. Lett. 41(18), 4206–4209 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (4)

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
[Crossref] [PubMed]

R. Halir, A. Ortega-Moñux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20(4), 279–291 (2014).
[Crossref]

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

S. Romero-García, B. Marzban, F. Merget, B. Shen, and J. Witzens, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

2013 (4)

2012 (6)

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37(17), 3483–3485 (2012).
[Crossref] [PubMed]

K. Qin, D. Gao, C. Bao, Z. Zhao, X. Zhou, T. Lu, and L. Chen, “High efficiency and broadband two-dimensional blazed grating coupler with fully etched triangular holes,” J. Lightwave Technol. 30(14), 2363–2366 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37(24), 5181–5183 (2012).
[Crossref] [PubMed]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

M. Tokushima, A. Kamei, and T. Horikawa, “Dual-tapered 10-µm-spot-size converter with double core for coupling polarization-independent silicon Rib waveguides to single-mode optical fibers,” Appl. Phys. Express 5(2), 022202 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101(10), 101104 (2012).
[Crossref]

2011 (2)

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
[Crossref] [PubMed]

2010 (2)

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
[Crossref]

2009 (2)

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

X. Chen and H. K. Tsang, “Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers,” IEEE Photonics J. 1(3), 184–190 (2009).
[Crossref]

2007 (1)

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

2006 (1)

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

2003 (3)

1998 (1)

1956 (1)

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Absil, P.

B. Snyder, G. Lepage, S. Balakrishnan, P. de Heyn, P. Verheyen, P. Absil, and J. van Campenhout, “Ultra-broadband, polarization-insensitive SMF-28 fiber edge couplers for silicon photonics,” in CPMT Symposium Japan (ICSJ),2017IEEE (2017), pp. 55–58.
[Crossref]

Al-Attili, A.

K. Debnath, H. Arimoto, M. K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique,” Front. Mater. 3, 10 (2016).

Almeida, V. R.

Alonso-Ramos, C.

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D.-X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures. A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

R. Halir, A. Ortega-Moñux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20(4), 279–291 (2014).
[Crossref]

Arimoto, H.

K. Debnath, H. Arimoto, M. K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique,” Front. Mater. 3, 10 (2016).

Ayre, M.

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Baets, R.

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. de La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Balakrishnan, S.

B. Snyder, G. Lepage, S. Balakrishnan, P. de Heyn, P. Verheyen, P. Absil, and J. van Campenhout, “Ultra-broadband, polarization-insensitive SMF-28 fiber edge couplers for silicon photonics,” in CPMT Symposium Japan (ICSJ),2017IEEE (2017), pp. 55–58.
[Crossref]

Bao, C.

Bedard, D.

Benedikovic, D.

Bienstman, P.

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Bock, P. J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures. A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Bogaerts, W.

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Bojko, R.

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. de La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Caverley, M.

Cheben, P.

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24(5), 5026–5038 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D.-X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures. A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

Chen, L.

Chen, R. T.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Colorless grating couplers realized by interleaving dispersion engineered subwavelength structures,” Opt. Lett. 38(18), 3588–3591 (2013).
[Crossref] [PubMed]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

Chen, X.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101(10), 101104 (2012).
[Crossref]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37(17), 3483–3485 (2012).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37(24), 5181–5183 (2012).
[Crossref] [PubMed]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
[Crossref] [PubMed]

X. Chen and H. K. Tsang, “Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers,” IEEE Photonics J. 1(3), 184–190 (2009).
[Crossref]

Cheng, Z.

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. de La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Chong, H. M. H.

K. Debnath, H. Arimoto, M. K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique,” Front. Mater. 3, 10 (2016).

Chrostowski, L.

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
[Crossref] [PubMed]

Y. Wang, H. Yun, Z. Lu, N. A. F. Jaeger, and L. Chrostowski, “State-of-the-art sub-wavelength grating couplers for silicon-on-insulator platform,” in 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (2016), pp. 1–4.
[Crossref]

Claes, T.

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Covey, J.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Colorless grating couplers realized by interleaving dispersion engineered subwavelength structures,” Opt. Lett. 38(18), 3588–3591 (2013).
[Crossref] [PubMed]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

Cui, B.

H. Li, B. Cui, Y. Liu, H. Liu, Z. Zhang, C. Zhang, C. Tang, and E. Li, “Investigation of the chip to photodetector coupler with subwavelength grating on SOI,” Opt. Laser Technol. 76, 79–84 (2016).
[Crossref]

Dado, M.

de Dobbelaere, P.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

de Heyn, P.

B. Snyder, G. Lepage, S. Balakrishnan, P. de Heyn, P. Verheyen, P. Absil, and J. van Campenhout, “Ultra-broadband, polarization-insensitive SMF-28 fiber edge couplers for silicon photonics,” in CPMT Symposium Japan (ICSJ),2017IEEE (2017), pp. 55–58.
[Crossref]

de La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. de La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Debnath, K.

K. Debnath, H. Arimoto, M. K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique,” Front. Mater. 3, 10 (2016).

Densmore, A.

Ding, Y.

Eto, Y.

A. Mizutani, Y. Eto, and H. Kikuta, “A grating coupler with a trapezoidal hole array for perfectly vertical light coupling between optical fibers and waveguides,” Appl. Phys. Express 10(12), 122501 (2017).
[Crossref]

Finkelstein, H.

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. de La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Fung, C. K. Y.

Gao, D.

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Halir, R.

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24(5), 5026–5038 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D.-X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures. A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

R. Halir, A. Ortega-Moñux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20(4), 279–291 (2014).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

He, Z.

W. Zhang, W. Zhang, F. Yang, and Z. He, “Polarization independent fiber-to-waveguide coupling by hexagon dots/holes grating,” in Asia Communications and Photonics Conference (2017), Su1D‐6.
[Crossref]

Horikawa, T.

M. Tokushima, A. Kamei, and T. Horikawa, “Dual-tapered 10-µm-spot-size converter with double core for coupling polarization-independent silicon Rib waveguides to single-mode optical fibers,” Appl. Phys. Express 5(2), 022202 (2012).
[Crossref]

Hosseini, A.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Colorless grating couplers realized by interleaving dispersion engineered subwavelength structures,” Opt. Lett. 38(18), 3588–3591 (2013).
[Crossref] [PubMed]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

Hugonin, J.-P.

Husain, M. K.

K. Debnath, H. Arimoto, M. K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique,” Front. Mater. 3, 10 (2016).

Hvam, J. M.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
[Crossref]

Jaeger, N. A. F.

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
[Crossref] [PubMed]

Y. Wang, H. Yun, Z. Lu, N. A. F. Jaeger, and L. Chrostowski, “State-of-the-art sub-wavelength grating couplers for silicon-on-insulator platform,” in 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (2016), pp. 1–4.
[Crossref]

Janz, S.

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D.-X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24(5), 5026–5038 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures. A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

R. Halir, A. Ortega-Moñux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20(4), 279–291 (2014).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

Kamei, A.

M. Tokushima, A. Kamei, and T. Horikawa, “Dual-tapered 10-µm-spot-size converter with double core for coupling polarization-independent silicon Rib waveguides to single-mode optical fibers,” Appl. Phys. Express 5(2), 022202 (2012).
[Crossref]

Keyvaninia, S.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

Kikuta, H.

A. Mizutani, Y. Eto, and H. Kikuta, “A grating coupler with a trapezoidal hole array for perfectly vertical light coupling between optical fibers and waveguides,” Appl. Phys. Express 10(12), 122501 (2017).
[Crossref]

Kwong, D.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Colorless grating couplers realized by interleaving dispersion engineered subwavelength structures,” Opt. Lett. 38(18), 3588–3591 (2013).
[Crossref] [PubMed]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

Lalanne, P.

Lamontagne, B.

Lapointe, J.

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D.-X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures. A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

R. Halir, A. Ortega-Moñux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20(4), 279–291 (2014).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

Lee, J.-H.

K. Yoo and J.-H. Lee, “Design of a high-efficiency fiber-to-chip coupler with reflectors,” IEIE SPC 5(2), 123–128 (2016).
[Crossref]

Lepage, G.

B. Snyder, G. Lepage, S. Balakrishnan, P. de Heyn, P. Verheyen, P. Absil, and J. van Campenhout, “Ultra-broadband, polarization-insensitive SMF-28 fiber edge couplers for silicon photonics,” in CPMT Symposium Japan (ICSJ),2017IEEE (2017), pp. 55–58.
[Crossref]

Li, E.

H. Li, B. Cui, Y. Liu, H. Liu, Z. Zhang, C. Zhang, C. Tang, and E. Li, “Investigation of the chip to photodetector coupler with subwavelength grating on SOI,” Opt. Laser Technol. 76, 79–84 (2016).
[Crossref]

Li, H.

H. Li, B. Cui, Y. Liu, H. Liu, Z. Zhang, C. Zhang, C. Tang, and E. Li, “Investigation of the chip to photodetector coupler with subwavelength grating on SOI,” Opt. Laser Technol. 76, 79–84 (2016).
[Crossref]

Liow, T.-Y.

Lipson, M.

Liu, H.

H. Li, B. Cui, Y. Liu, H. Liu, Z. Zhang, C. Zhang, C. Tang, and E. Li, “Investigation of the chip to photodetector coupler with subwavelength grating on SOI,” Opt. Laser Technol. 76, 79–84 (2016).
[Crossref]

Liu, L.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
[Crossref]

Liu, Y.

H. Li, B. Cui, Y. Liu, H. Liu, Z. Zhang, C. Zhang, C. Tang, and E. Li, “Investigation of the chip to photodetector coupler with subwavelength grating on SOI,” Opt. Laser Technol. 76, 79–84 (2016).
[Crossref]

Lu, T.

Lu, Z.

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
[Crossref] [PubMed]

Y. Wang, H. Yun, Z. Lu, N. A. F. Jaeger, and L. Chrostowski, “State-of-the-art sub-wavelength grating couplers for silicon-on-insulator platform,” in 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (2016), pp. 1–4.
[Crossref]

Luan, F.

Ma, Q.

Ma, R.

Marzban, B.

S. Romero-García, B. Marzban, F. Merget, B. Shen, and J. Witzens, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

Mashanovich, G. Z.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

McNab, S.

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Merget, F.

S. Romero-García, B. Marzban, F. Merget, B. Shen, and J. Witzens, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

Mizutani, A.

A. Mizutani, Y. Eto, and H. Kikuta, “A grating coupler with a trapezoidal hole array for perfectly vertical light coupling between optical fibers and waveguides,” Appl. Phys. Express 10(12), 122501 (2017).
[Crossref]

Molina-Fernández, I.

Molina-Fernández, Í.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures. A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

R. Halir, A. Ortega-Moñux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20(4), 279–291 (2014).
[Crossref]

Moll, N.

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Nedeljkovic, M.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

O’Faolain, L.

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Ortega-Moñux, A.

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24(5), 5026–5038 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D.-X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures. A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

R. Halir, A. Ortega-Moñux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20(4), 279–291 (2014).
[Crossref]

Oton, C. J.

C. J. Oton, “Long-working-distance grating coupler for integrated optical devices,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Ou, H.

Panepucci, R. R.

Papes, M.

Petra, R.

K. Debnath, H. Arimoto, M. K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique,” Front. Mater. 3, 10 (2016).

Peucheret, C.

Pinguet, T.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Pond, J.

Prasmusinto, A.

K. Debnath, H. Arimoto, M. K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique,” Front. Mater. 3, 10 (2016).

Pu, M.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
[Crossref]

Qi, F.

Qin, K.

Reed, G. T.

K. Debnath, H. Arimoto, M. K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique,” Front. Mater. 3, 10 (2016).

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

Romero-García, S.

S. Romero-García, B. Marzban, F. Merget, B. Shen, and J. Witzens, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

Rytov, S.

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Saito, S.

K. Debnath, H. Arimoto, M. K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique,” Front. Mater. 3, 10 (2016).

Scheerlinck, S.

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Schmid, J. H.

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24(5), 5026–5038 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D.-X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures. A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

R. Halir, A. Ortega-Moñux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20(4), 279–291 (2014).
[Crossref]

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

Schrauwen, J.

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Selvaraja, S. K.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

Shen, B.

S. Romero-García, B. Marzban, F. Merget, B. Shen, and J. Witzens, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

Shi, W.

Shum, P.

Snyder, B.

B. Snyder, G. Lepage, S. Balakrishnan, P. de Heyn, P. Verheyen, P. Absil, and J. van Campenhout, “Ultra-broadband, polarization-insensitive SMF-28 fiber edge couplers for silicon photonics,” in CPMT Symposium Japan (ICSJ),2017IEEE (2017), pp. 55–58.
[Crossref]

Subbaraman, H.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Colorless grating couplers realized by interleaving dispersion engineered subwavelength structures,” Opt. Lett. 38(18), 3588–3591 (2013).
[Crossref] [PubMed]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

Taillaert, D.

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. de La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Tang, C.

H. Li, B. Cui, Y. Liu, H. Liu, Z. Zhang, C. Zhang, C. Tang, and E. Li, “Investigation of the chip to photodetector coupler with subwavelength grating on SOI,” Opt. Laser Technol. 76, 79–84 (2016).
[Crossref]

Thomson, D. J.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

Tokushima, M.

M. Tokushima, A. Kamei, and T. Horikawa, “Dual-tapered 10-µm-spot-size converter with double core for coupling polarization-independent silicon Rib waveguides to single-mode optical fibers,” Appl. Phys. Express 5(2), 022202 (2012).
[Crossref]

Tsang, H. K.

van Campenhout, J.

B. Snyder, G. Lepage, S. Balakrishnan, P. de Heyn, P. Verheyen, P. Absil, and J. van Campenhout, “Ultra-broadband, polarization-insensitive SMF-28 fiber edge couplers for silicon photonics,” in CPMT Symposium Japan (ICSJ),2017IEEE (2017), pp. 55–58.
[Crossref]

van Laere, F.

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

van Thourhout, D.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Vašinek, V.

Verheyen, P.

B. Snyder, G. Lepage, S. Balakrishnan, P. de Heyn, P. Verheyen, P. Absil, and J. van Campenhout, “Ultra-broadband, polarization-insensitive SMF-28 fiber edge couplers for silicon photonics,” in CPMT Symposium Japan (ICSJ),2017IEEE (2017), pp. 55–58.
[Crossref]

Vivien, L.

Vlasov, Y.

Wang, S.

Wang, X.

Wang, Y.

Wangüemert-Pérez, G.

Wangüemert-Pérez, J. G.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures. A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

R. Halir, A. Ortega-Moñux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20(4), 279–291 (2014).
[Crossref]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

Witzens, J.

S. Romero-García, B. Marzban, F. Merget, B. Shen, and J. Witzens, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

Wong, C. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37(24), 5181–5183 (2012).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101(10), 101104 (2012).
[Crossref]

Xiao, Z.

Xu, D.-X.

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24(5), 5026–5038 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D.-X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures. A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

R. Halir, A. Ortega-Moñux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20(4), 279–291 (2014).
[Crossref]

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

Xu, K.

Xu, X.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Colorless grating couplers realized by interleaving dispersion engineered subwavelength structures,” Opt. Lett. 38(18), 3588–3591 (2013).
[Crossref] [PubMed]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

Yang, F.

W. Zhang, W. Zhang, F. Yang, and Z. He, “Polarization independent fiber-to-waveguide coupling by hexagon dots/holes grating,” in Asia Communications and Photonics Conference (2017), Su1D‐6.
[Crossref]

Ye, W. N.

Yoo, K.

K. Yoo and J.-H. Lee, “Design of a high-efficiency fiber-to-chip coupler with reflectors,” IEIE SPC 5(2), 123–128 (2016).
[Crossref]

Yu, Y.

Yun, H.

Y. Wang, H. Yun, Z. Lu, N. A. F. Jaeger, and L. Chrostowski, “State-of-the-art sub-wavelength grating couplers for silicon-on-insulator platform,” in 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (2016), pp. 1–4.
[Crossref]

Yvind, K.

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
[Crossref] [PubMed]

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
[Crossref]

Zhang, C.

H. Li, B. Cui, Y. Liu, H. Liu, Z. Zhang, C. Zhang, C. Tang, and E. Li, “Investigation of the chip to photodetector coupler with subwavelength grating on SOI,” Opt. Laser Technol. 76, 79–84 (2016).
[Crossref]

Zhang, J.

Zhang, W.

W. Zhang, W. Zhang, F. Yang, and Z. He, “Polarization independent fiber-to-waveguide coupling by hexagon dots/holes grating,” in Asia Communications and Photonics Conference (2017), Su1D‐6.
[Crossref]

W. Zhang, W. Zhang, F. Yang, and Z. He, “Polarization independent fiber-to-waveguide coupling by hexagon dots/holes grating,” in Asia Communications and Photonics Conference (2017), Su1D‐6.
[Crossref]

Zhang, X.

Zhang, Z.

H. Li, B. Cui, Y. Liu, H. Liu, Z. Zhang, C. Zhang, C. Tang, and E. Li, “Investigation of the chip to photodetector coupler with subwavelength grating on SOI,” Opt. Laser Technol. 76, 79–84 (2016).
[Crossref]

Zhao, Z.

Zheng, W.

Zhong, F.

Zhou, X.

Zou, J.

Appl. Opt. (1)

Appl. Phys. Express (2)

A. Mizutani, Y. Eto, and H. Kikuta, “A grating coupler with a trapezoidal hole array for perfectly vertical light coupling between optical fibers and waveguides,” Appl. Phys. Express 10(12), 122501 (2017).
[Crossref]

M. Tokushima, A. Kamei, and T. Horikawa, “Dual-tapered 10-µm-spot-size converter with double core for coupling polarization-independent silicon Rib waveguides to single-mode optical fibers,” Appl. Phys. Express 5(2), 022202 (2012).
[Crossref]

Appl. Phys. Lett. (3)

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101(10), 101104 (2012).
[Crossref]

Front. Mater. (1)

K. Debnath, H. Arimoto, M. K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H. M. H. Chong, G. T. Reed, and S. Saito, “Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique,” Front. Mater. 3, 10 (2016).

IEEE J. Sel. Top. Quantum Electron. (4)

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 189–205 (2014).
[Crossref]

S. Romero-García, B. Marzban, F. Merget, B. Shen, and J. Witzens, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides,” IEEE J. Sel. Top. Quantum Electron. 20(4), 369–379 (2014).
[Crossref]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

R. Halir, A. Ortega-Moñux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20(4), 279–291 (2014).
[Crossref]

IEEE Photonics J. (2)

C. J. Oton, “Long-working-distance grating coupler for integrated optical devices,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

X. Chen and H. K. Tsang, “Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers,” IEEE Photonics J. 1(3), 184–190 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. de La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

IEIE SPC (1)

K. Yoo and J.-H. Lee, “Design of a high-efficiency fiber-to-chip coupler with reflectors,” IEIE SPC 5(2), 123–128 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Laser Photonics Rev. (1)

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures. A review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Opt. Express (7)

Z. Xiao, T.-Y. Liow, J. Zhang, P. Shum, and F. Luan, “Bandwidth analysis of waveguide grating coupler,” Opt. Express 21(5), 5688–5700 (2013).
[Crossref] [PubMed]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D.-X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

J. Zou, Y. Yu, and X. Zhang, “Single step etched two dimensional grating coupler based on the SOI platform,” Opt. Express 23(25), 32490–32495 (2015).
[Crossref] [PubMed]

S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
[Crossref] [PubMed]

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24(5), 5026–5038 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

H. Li, B. Cui, Y. Liu, H. Liu, Z. Zhang, C. Zhang, C. Tang, and E. Li, “Investigation of the chip to photodetector coupler with subwavelength grating on SOI,” Opt. Laser Technol. 76, 79–84 (2016).
[Crossref]

Opt. Lett. (11)

R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34(9), 1408–1410 (2009).
[Crossref] [PubMed]

J. Zou, Y. Yu, and X. Zhang, “Two-dimensional grating coupler with a low polarization dependent loss of 0.25 dB covering the C-band,” Opt. Lett. 41(18), 4206–4209 (2016).
[Crossref] [PubMed]

Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
[Crossref] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[Crossref] [PubMed]

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
[Crossref] [PubMed]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Colorless grating couplers realized by interleaving dispersion engineered subwavelength structures,” Opt. Lett. 38(18), 3588–3591 (2013).
[Crossref] [PubMed]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37(17), 3483–3485 (2012).
[Crossref] [PubMed]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37(24), 5181–5183 (2012).
[Crossref] [PubMed]

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other (16)

J. V. Galán, T. Tekin, G. B. Preve, A. Brimont, M. Llopis, and P. Sanchis, “Low profile silicon photonics packaging approach featuring configurable multiple electrical and optical connectivity,” in Group IV Photonics (GFP),20118th IEEE International Conference on (IEEE, 2011), pp. 377–379.
[Crossref]

Q. Zhong, W. Shi, Y. Wang, L. Chrostowski, and D. V. Plant, “An ultra-broadband fiber grating coupler with focusing curved subwavelength structures,” in Optical Fiber Communication Conference (Optical Society of America, 2014), Th2A.15.
[Crossref]

C. J. Oton, “Wavefront-engineered grating coupler for long-working-distance fiber-to-waveguide coupling,” in Integrated Photonics Research, Silicon and Nanophotonics (2016), IW3B‐2.

B. Huang, Z. Zhang, Z. Zhang, C. Cheng, and H. Chen, “100Gb/s Ultra wide misalignment tolerance WDM transmitter with novel vertical grating coupler,” in Photonics Society Summer Topical Meeting Series (SUM), 2017 IEEE (2017), pp. 75–76.

M. Zadka, Y.-C. Chang, A. Mohanty, C. Phare, S. P. Roberts, and M. Lipson, “Millimeter long grating coupler with uniform spatial output,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), STh1M.6.
[Crossref]

Lumerical Inc., FDTD Solutions (2003).

S. Plantier, D. Fowler, K. Hassan, O. Lemonnier, and R. Orobtchouk, “Impact of scattering element shape on polarisation dependent loss in two dimensional grating couplers,” in Group IV Photonics (GFP), 2016 IEEE 13th International Conference on (2016), pp. 76–77.
[Crossref]

W. Zhang, W. Zhang, F. Yang, and Z. He, “Polarization independent fiber-to-waveguide coupling by hexagon dots/holes grating,” in Asia Communications and Photonics Conference (2017), Su1D‐6.
[Crossref]

D. Tsiokos, G. Dabos, J. Bolten, and N. Pleros, “Low-cost vertical coupling schemes for optical I/Os and 3D integration in CMOS photonic integrated circuits,” in Transparent Optical Networks (ICTON), 2017 19th International Conference on (2017), pp. 1–4.
[Crossref]

Y. Wang, L. Xu, A. Kumar, D. Patel, Z. Xing, R. Li, M. G. Saber, Y. D’Mello, E. El-Fiky, and D. V. Plant, “Broadband sub-wavelength grating coupler for O-band application,” in Group IV Photonics (GFP), 2017 IEEE 14th International Conference on (2017), pp. 129–130.
[Crossref]

Y. Wang, H. Yun, Z. Lu, N. A. F. Jaeger, and L. Chrostowski, “State-of-the-art sub-wavelength grating couplers for silicon-on-insulator platform,” in 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (2016), pp. 1–4.
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, S. Janz, R. Halir, A. Ortega-Moñux, and M. Dado, “High-efficiency fully etched fiber-chip grating couplers with subwavelength structures for datacom and telecom applications,” in Proc. SPIE 9516. Integrated Optics: Physics and Simulations II, SPIE Proceedings (SPIE, 2015), 95160I.

L. Chrostowski and M. Hochberg, Silicon photonics design: from devices to systems (Cambridge University, 2015).

J. Wang, Y. Xuan, C. Lee, B. Niu, L. Liu, G. N. Liu, and M. Qi, “Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” in Optical Fiber Communications Conference and Exhibition (OFC), 2016 (2016), pp. 1–3.

B. Snyder, G. Lepage, S. Balakrishnan, P. de Heyn, P. Verheyen, P. Absil, and J. van Campenhout, “Ultra-broadband, polarization-insensitive SMF-28 fiber edge couplers for silicon photonics,” in CPMT Symposium Japan (ICSJ),2017IEEE (2017), pp. 55–58.
[Crossref]

Y. Sobu, S.-H. Jeong, Y. Tanaka, and K. Morito, “300-mm ArF-immersion lithographytechnology based Si-wire grating couplers with high coupling efficiency and low crosstalk,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st (2016), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Comparison of simulation and measurement results of the lateral alignment tolerances of a grating coupler with an SOI thickness of 220 nm and a BOX thickness of 1 µm. The normalized coupling efficiency is shown as function of the lateral position of the fiber. The smooth curves are simulation results. The vertical distance between fiber and grating is approximately 10 µm. −0.5 and −1 dB contours are indicated on the figure. From [42] © 2006 The Japan Society of Applied Physics. (b) The absolute coupling efficiency as a function of the lateral position of the fiber for a grating coupler with an SOI thickness of 250 nm and a BOX thickness of 3 µm. From [43] © 2011 IEEE. The wavelength is 1550 nm and is TE-polarized in both references.
Fig. 2
Fig. 2 Schematic drawing of the SWG high positional freedom grating coupler. The input source is a 24 µm-long, 1550 nm, TE-polarized planewave tilted 10° from vertical (E-field profile shown as black line). The grating coupler was first apodized 2-Dimensionally in the x-z plane, with neq, i as 2D placeholders for the lower index etched sections of the SWG. Λy, ly, Si and ly, SiO2 were later determined by full 3D FDTD that did not use a periodic boundary condition simulation box [15,21,23,26,30]. Adapted from [49]
Fig. 3
Fig. 3 neq, Equivalent Refractive Index for Λy = 600 nm for 1550 nm, TE-polarized light on a 220 nm SOI substrate, according to 0th order EMT (red dotted), 2nd order EMT (red line) and full 3D FDTD (black crosses).
Fig. 4
Fig. 4 Comparison of different adjustments of the diffracting elements in a curved SWG grating coupler. (a) The whole circular HPF design with a highlight of the relevant section (b) Diffraction elements neither rotated nor translated. Note Λy = 656 nm. (c) Diffraction elements rotated but not translated, as in . Note Λy = 653 nm. (d) Diffraction elements rotated and translated. Note Λy ≈600 nm. (e) Diffraction elements translated but not rotated. (f) Diffraction elements skewed but not translated, similar to [37,38]. (g) Diffraction elements skewed and translated. (h) Diffraction elements radially aligned with different Λy’s, similar to [54].
Fig. 5
Fig. 5 Scanning Electron Micrograph (SEM) images of the Planewave High Positional Freedom (HPF) grating coupler just after full silicon etch for (a) Rectangular, (b) Rectangular (close up), (c) Circular, (d) Elliptical (close up) lateral layouts.
Fig. 6
Fig. 6 Manual measurement steps. a) POR GC pair characterised with cleaved SMF-28 for both input (right) and output (left). b) POR GC pair characterised with cleaved SMF-28 for input and an MMF for output. c) HPF GC characterised with a cleaved SMF-28 for input and an MMF for output; the optical bench is rastered in x.
Fig. 7
Fig. 7 Insertion loss of the HPF grating coupler as a function of the x-position of the SMF28 for 1550 nm TE-polarized light. The negative x-direction is towards the waveguide. The SMF28 was tilted to a nominal 14.5° and, as coupling efficiency is angle-dependent, is the likely cause of measured values exceeding the simulation. Device 4 was topologically scanned and the data is presented in Fig. 8(b).
Fig. 8
Fig. 8 Topological scans of absolute insertion loss of grating couplers with 1550 nm, TE-polarized light. The negative x-direction is towards the waveguide. Peak coupling efficiencies are located at the origins (0, 0) and are stated in the respective graphs. Contours are −1 dB apart. (a) Process of Record (POR) grating coupler, (b) Rectangular high positional freedom (HPF) grating coupler, (c) Circular HPF grating coupler with rotated, but not translated diffracting elements, (d) Elliptical HPF grating coupler with rotated, but not translated diffracting elements.
Fig. 9
Fig. 9 Rectangular HPF grating coupler bandwidth as a function of SMF28 x-position. Black lines indicate −1 dB, −2 dB and −3 dB contours. (a) Full 3D FDTD simulated bandwidth, (b) measured bandwidth, (c) subset of (b) with −1 dB (red), −2 dB (yellow) and −3 dB (green) bandwidth contours. The −1 dB and −3 dB bandwidths are ~14 nm and 29.5 nm respectively.
Fig. 10
Fig. 10 Example macro of 8 HPF SWG GC pairs used for semi-automated measurements. Grating couplers are spaced 127 µm apart and are connected by 0.22 µm-thick × 0.55 µm-wide strip waveguides with 100 µm straight waveguides. All HPF pairs were measured with the same fiber pair (channel 2) on the V-Groove assembly.
Fig. 11
Fig. 11 Sample semi-automated in-circuit testing (ICT) topological measurements of rectangular and curved grating couplers with different scattering element arrangements. (a) Rectangular. (b) Circular with ‘not rotated & not translated’ scattering elements. (c) Circular with ‘rotated & not translated’ scattering elements. (d) Circular with ‘rotated & translated’ scattering elements. (e) Elliptical with ‘not rotated & not translated’ scattering elements. (f) Elliptical with ‘rotated & translated’ scattering elements. Peak coupling efficiencies and the −1 dB areas are listed in the center of each figure. Contour lines are 1 dB apart. All measurements were done at λ = 1603 nm.
Fig. 12
Fig. 12 (a) 2D FDTD simulation of coupling efficiency at λ = 1550 nm for various fiber tilts as a function of SMF-28 x-position. (b) 2D FDTD simulation of fiber tilt angle tolerance at SMF x-Position = 15 µm.

Tables (4)

Tables Icon

Table 1 A comparison of recent SWG Grating Couplers

Tables Icon

Table 2 24 µm Planewave High Positional Freedom Grating Coupler dimensions

Tables Icon

Table 3 Effects of Scattering Element Orientation on HPF SWG Grating Coupler Performance (λ = 1603 nm)

Tables Icon

Table 4 Effects of Scattering Element Orientation on HPF SWG Grating Coupler Performance where Periods 29–36 Utilise Λy = 300 nm (λ = 1603 nm)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1 n LTE (0) = [ f y n hole 2 + 1 f y n Si 2 ] 1 2
n LTM (0) = [ n hole 2 f y + n Si 2 ( 1 f y ) ] 1 2
n LTE (2) = n LTE (0) [ 1+ π 2 3 R 2 f y 2 ( 1 f y ) 2 ( n hole 2 n Si 2 ) 2 × ( n LTM (0) n eff,TE ) 2 ( n LTE (0) n hole n Si ) 4 ] 1 2
n LTM (2) = n LTM (0) [ 1+ π 2 3 R 2 f y 2 ( 1 f y ) 2 ( n hole 2 n Si 2 n eff,TM n LTM (0) ) 2 ] 1 2
n eq =1× 10 13 l y,SiO2 5 +2× 10 10 l y,SiO2 4 2× 10 7 l y,SiO2 3 +4× 10 5 l y,SiO2 2 0.0076 l y,SiO2 +3.4713
l y,SiO2 (µm)=0.083 n eq 5 +1.1837 n eq 4 6.5508 n eq 3 +17.566 n eq 2 23.057 n eq +12.351.

Metrics