Abstract

We have presented and demonstrated a fiber optic gas pressure sensor with ultra-high sensitivity based on Vernier effect. The sensor is composed of two integrated parallel Mach-Zehnder interferometers (MZIs) which are fabricated by fusion splicing a short section of dual side-hole fiber (DSHF) in between two short pieces of multimode fibers (MMFs). Femtosecond laser is applied for cutting off part of the MMF and drilling openings on one air hole of the DSHF to achieve magnified gas pressure measurement by Vernier effect. Experimental results show that the gas pressure sensitivity can be enhanced to about −60 nm/MPa in the range of 0-0.8 MPa. In addition, the structure possesses a low temperature cross-sensitivity of about 0.55 KPa/°C. This presented sensor has practically value in gas pressure detection, environmental monitoring and other industrial applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer

Zhengyong Li, Changrui Liao, Yiping Wang, Lei Xu, Dongning Wang, Xiaopeng Dong, Shen Liu, Qiao Wang, Kaiming Yang, and Jiangtao Zhou
Opt. Express 23(5) 6673-6678 (2015)

High-sensitivity gas pressure sensor based on hollow-core photonic bandgap fiber Mach-Zehnder interferometer

Chun Mao, Bo Huang, Ying Wang, Yijian Huang, Longfei Zhang, Yu Shao, and Yiping Wang
Opt. Express 26(23) 30108-30115 (2018)

Fiber-tip gas pressure sensor based on dual capillaries

Ben Xu, Chao Wang, D. N. Wang, Yaming Liu, and Yi Li
Opt. Express 23(18) 23484-23492 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
    [Crossref] [PubMed]
  2. X. Yang, Q. Zhao, X. Qi, Q. Long, W. Yu, and L. Yuan, “In-fiber integrated gas pressure sensor based on a hollow optical fiber with two cores,” Sens. Actuators A Phys. 272, 23–327 (2018).
    [Crossref]
  3. Z. Li, P. Jia, G. Fang, H. Liang, T. Liang, W. Liu, and J. Xiong, “Microbubble-based fiber-optic Fabry-Perot pressure sensor for high-temperature application,” Appl. Opt. 57(8), 1738–1743 (2018).
    [Crossref] [PubMed]
  4. Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer,” Opt. Express 23(5), 6673–6678 (2015).
    [Crossref] [PubMed]
  5. Y. Yang, Y. Wang, Y. Zhao, J. Jiang, X. He, W. Yang, Z. Zhu, W. Gao, and L. Li, “Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a F-P cavity,” Opt. Express 25(26), 33290–33296 (2017).
    [Crossref]
  6. H. Liao, P. Lu, X. Fu, X. Jiang, W. Ni, D. Liu, and J. Zhang, “Sensitivity amplification of fiber-optic in-line Mach-Zehnder Interferometer sensors with modified Vernier-effect,” Opt. Express 25(22), 26898–26909 (2017).
    [Crossref] [PubMed]
  7. Y. Zhao, I. E. E. E. Member, P. Wang, L. Riqing, and X. Liu, “Highly Sensitive Airflow Sensor Based on Fabry–Perot Interferometer and Vernier Effect,” J. Lightwave Technol. 34(23), 5351–5356 (2016).
    [Crossref]
  8. P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
    [Crossref] [PubMed]
  9. P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, O. Jun, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2017).
  10. Y. Li, C. Zhao, D. W. Ben Xu, and M. Yang, “Optical cascaded Fabry–Perot interferometer hydrogen sensor based on vernier effect,” Opt. Commun. 414, 166–171 (2018).
    [Crossref]
  11. B. Wu, C. Zhao, B. Xu, and Y. Li, “Optical Fiber Hydrogen Sensor with Single Sagnac Interferometer Loop Based on Vernier Effect,” Sens. Actuators B Chem. 255, 3011–3016 (2018).
    [Crossref]
  12. L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
    [Crossref]
  13. Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
    [Crossref] [PubMed]
  14. R. Xu, S. Liu, Q. Sun, P. Lu, and D. Liu, “Experimental characterization of a Vernier strain sensor using cascaded fiber rings,” IEEE Photonics Technol. Lett. 24(23), 2125–2128 (2012).
    [Crossref]
  15. D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817–23822 (2009).
    [Crossref] [PubMed]
  16. M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
    [Crossref] [PubMed]
  17. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [Crossref] [PubMed]
  18. M. Deng, C. P. Tang, T. Zhu, Y. J. Rao, L. C. Xu, and M. Han, “Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer,” Appl. Opt. 49(9), 1593–1598 (2010).
    [Crossref] [PubMed]

2018 (4)

X. Yang, Q. Zhao, X. Qi, Q. Long, W. Yu, and L. Yuan, “In-fiber integrated gas pressure sensor based on a hollow optical fiber with two cores,” Sens. Actuators A Phys. 272, 23–327 (2018).
[Crossref]

Z. Li, P. Jia, G. Fang, H. Liang, T. Liang, W. Liu, and J. Xiong, “Microbubble-based fiber-optic Fabry-Perot pressure sensor for high-temperature application,” Appl. Opt. 57(8), 1738–1743 (2018).
[Crossref] [PubMed]

Y. Li, C. Zhao, D. W. Ben Xu, and M. Yang, “Optical cascaded Fabry–Perot interferometer hydrogen sensor based on vernier effect,” Opt. Commun. 414, 166–171 (2018).
[Crossref]

B. Wu, C. Zhao, B. Xu, and Y. Li, “Optical Fiber Hydrogen Sensor with Single Sagnac Interferometer Loop Based on Vernier Effect,” Sens. Actuators B Chem. 255, 3011–3016 (2018).
[Crossref]

2017 (3)

2016 (1)

2015 (4)

2014 (1)

2012 (1)

R. Xu, S. Liu, Q. Sun, P. Lu, and D. Liu, “Experimental characterization of a Vernier strain sensor using cascaded fiber rings,” IEEE Photonics Technol. Lett. 24(23), 2125–2128 (2012).
[Crossref]

2010 (3)

2009 (1)

Ben Xu, D. W.

Y. Li, C. Zhao, D. W. Ben Xu, and M. Yang, “Optical cascaded Fabry–Perot interferometer hydrogen sensor based on vernier effect,” Opt. Commun. 414, 166–171 (2018).
[Crossref]

Bienstman, P.

Bogaerts, W.

Canning, J.

Chen, K. P.

Claes, T.

Dai, D.

Deng, M.

Dong, X.

Duan, L.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, O. Jun, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2017).

Fang, G.

Fu, S.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, O. Jun, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2017).

P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref] [PubMed]

Fu, X.

Gao, F.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, O. Jun, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2017).

P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref] [PubMed]

Gao, W.

Grobnic, D.

Han, M.

He, X.

Jewart, C. M.

Jia, P.

Jiang, J.

Jiang, X.

Jun, O.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, O. Jun, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2017).

Li, B.

Li, L.

Li, Y.

Y. Li, C. Zhao, D. W. Ben Xu, and M. Yang, “Optical cascaded Fabry–Perot interferometer hydrogen sensor based on vernier effect,” Opt. Commun. 414, 166–171 (2018).
[Crossref]

B. Wu, C. Zhao, B. Xu, and Y. Li, “Optical Fiber Hydrogen Sensor with Single Sagnac Interferometer Loop Based on Vernier Effect,” Sens. Actuators B Chem. 255, 3011–3016 (2018).
[Crossref]

Li, Z.

Liang, H.

Liang, T.

Liao, C.

Liao, H.

Liu, D.

Liu, S.

Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer,” Opt. Express 23(5), 6673–6678 (2015).
[Crossref] [PubMed]

R. Xu, S. Liu, Q. Sun, P. Lu, and D. Liu, “Experimental characterization of a Vernier strain sensor using cascaded fiber rings,” IEEE Photonics Technol. Lett. 24(23), 2125–2128 (2012).
[Crossref]

Liu, W.

Liu, X.

Long, Q.

X. Yang, Q. Zhao, X. Qi, Q. Long, W. Yu, and L. Yuan, “In-fiber integrated gas pressure sensor based on a hollow optical fiber with two cores,” Sens. Actuators A Phys. 272, 23–327 (2018).
[Crossref]

Lu, P.

H. Liao, P. Lu, X. Fu, X. Jiang, W. Ni, D. Liu, and J. Zhang, “Sensitivity amplification of fiber-optic in-line Mach-Zehnder Interferometer sensors with modified Vernier-effect,” Opt. Express 25(22), 26898–26909 (2017).
[Crossref] [PubMed]

R. Xu, S. Liu, Q. Sun, P. Lu, and D. Liu, “Experimental characterization of a Vernier strain sensor using cascaded fiber rings,” IEEE Photonics Technol. Lett. 24(23), 2125–2128 (2012).
[Crossref]

Lu, W.

Luo, B.

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Luo, Y.

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
[Crossref] [PubMed]

Member, I. E. E. E.

Mihailov, S. J.

Ni, W.

Ouyang, J.

Pan, W.

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Qi, X.

X. Yang, Q. Zhao, X. Qi, Q. Long, W. Yu, and L. Yuan, “In-fiber integrated gas pressure sensor based on a hollow optical fiber with two cores,” Sens. Actuators A Phys. 272, 23–327 (2018).
[Crossref]

Quan, M.

Rao, Y. J.

Riqing, L.

Shao, L.-Y.

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Shum, P. P.

Sun, Q.

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
[Crossref] [PubMed]

R. Xu, S. Liu, Q. Sun, P. Lu, and D. Liu, “Experimental characterization of a Vernier strain sensor using cascaded fiber rings,” IEEE Photonics Technol. Lett. 24(23), 2125–2128 (2012).
[Crossref]

Tang, C. P.

Tang, M.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, O. Jun, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2017).

P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref] [PubMed]

Tian, J.

Wang, D.

Wang, P.

Wang, Q.

Wang, Y.

Wei, H.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, O. Jun, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2017).

Wu, B.

B. Wu, C. Zhao, B. Xu, and Y. Li, “Optical Fiber Hydrogen Sensor with Single Sagnac Interferometer Loop Based on Vernier Effect,” Sens. Actuators B Chem. 255, 3011–3016 (2018).
[Crossref]

Xiong, J.

Xu, B.

B. Wu, C. Zhao, B. Xu, and Y. Li, “Optical Fiber Hydrogen Sensor with Single Sagnac Interferometer Loop Based on Vernier Effect,” Sens. Actuators B Chem. 255, 3011–3016 (2018).
[Crossref]

Xu, L.

Xu, L. C.

Xu, R.

R. Xu, S. Liu, Q. Sun, P. Lu, and D. Liu, “Experimental characterization of a Vernier strain sensor using cascaded fiber rings,” IEEE Photonics Technol. Lett. 24(23), 2125–2128 (2012).
[Crossref]

Xu, Z.

Yan, L.

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Yang, K.

Yang, M.

Y. Li, C. Zhao, D. W. Ben Xu, and M. Yang, “Optical cascaded Fabry–Perot interferometer hydrogen sensor based on vernier effect,” Opt. Commun. 414, 166–171 (2018).
[Crossref]

Yang, W.

Yang, X.

X. Yang, Q. Zhao, X. Qi, Q. Long, W. Yu, and L. Yuan, “In-fiber integrated gas pressure sensor based on a hollow optical fiber with two cores,” Sens. Actuators A Phys. 272, 23–327 (2018).
[Crossref]

Yang, Y.

Yao, Y.

Yu, W.

X. Yang, Q. Zhao, X. Qi, Q. Long, W. Yu, and L. Yuan, “In-fiber integrated gas pressure sensor based on a hollow optical fiber with two cores,” Sens. Actuators A Phys. 272, 23–327 (2018).
[Crossref]

Yuan, L.

X. Yang, Q. Zhao, X. Qi, Q. Long, W. Yu, and L. Yuan, “In-fiber integrated gas pressure sensor based on a hollow optical fiber with two cores,” Sens. Actuators A Phys. 272, 23–327 (2018).
[Crossref]

Zhang, J.

Zhang, L.

Zhang, P.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, O. Jun, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2017).

P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref] [PubMed]

Zhang, Z.

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Zhao, C.

Y. Li, C. Zhao, D. W. Ben Xu, and M. Yang, “Optical cascaded Fabry–Perot interferometer hydrogen sensor based on vernier effect,” Opt. Commun. 414, 166–171 (2018).
[Crossref]

B. Wu, C. Zhao, B. Xu, and Y. Li, “Optical Fiber Hydrogen Sensor with Single Sagnac Interferometer Loop Based on Vernier Effect,” Sens. Actuators B Chem. 255, 3011–3016 (2018).
[Crossref]

Zhao, Q.

X. Yang, Q. Zhao, X. Qi, Q. Long, W. Yu, and L. Yuan, “In-fiber integrated gas pressure sensor based on a hollow optical fiber with two cores,” Sens. Actuators A Phys. 272, 23–327 (2018).
[Crossref]

Zhao, Y.

Zhao, Z.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, O. Jun, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2017).

Zhou, J.

Zhu, B.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, O. Jun, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2017).

P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref] [PubMed]

Zhu, T.

Zhu, Z.

Zou, X.

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Appl. Opt. (2)

IEEE Photonics J. (1)

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, O. Jun, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry–Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2017).

IEEE Photonics Technol. Lett. (1)

R. Xu, S. Liu, Q. Sun, P. Lu, and D. Liu, “Experimental characterization of a Vernier strain sensor using cascaded fiber rings,” IEEE Photonics Technol. Lett. 24(23), 2125–2128 (2012).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (2)

Y. Li, C. Zhao, D. W. Ben Xu, and M. Yang, “Optical cascaded Fabry–Perot interferometer hydrogen sensor based on vernier effect,” Opt. Commun. 414, 166–171 (2018).
[Crossref]

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Opt. Express (7)

D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817–23822 (2009).
[Crossref] [PubMed]

H. Liao, P. Lu, X. Fu, X. Jiang, W. Ni, D. Liu, and J. Zhang, “Sensitivity amplification of fiber-optic in-line Mach-Zehnder Interferometer sensors with modified Vernier-effect,” Opt. Express 25(22), 26898–26909 (2017).
[Crossref] [PubMed]

Y. Yang, Y. Wang, Y. Zhao, J. Jiang, X. He, W. Yang, Z. Zhu, W. Gao, and L. Li, “Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a F-P cavity,” Opt. Express 25(26), 33290–33296 (2017).
[Crossref]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref] [PubMed]

P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref] [PubMed]

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
[Crossref] [PubMed]

Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer,” Opt. Express 23(5), 6673–6678 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Sens. Actuators A Phys. (1)

X. Yang, Q. Zhao, X. Qi, Q. Long, W. Yu, and L. Yuan, “In-fiber integrated gas pressure sensor based on a hollow optical fiber with two cores,” Sens. Actuators A Phys. 272, 23–327 (2018).
[Crossref]

Sens. Actuators B Chem. (1)

B. Wu, C. Zhao, B. Xu, and Y. Li, “Optical Fiber Hydrogen Sensor with Single Sagnac Interferometer Loop Based on Vernier Effect,” Sens. Actuators B Chem. 255, 3011–3016 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the DSHF-based gas pressure sensor.
Fig. 2
Fig. 2 (a) Simulated wavelength shift of single sensing MZI with gas pressure increasing, the blue curve represents the output spectrum of sensing MZI and the red curve represents the output spectrum of reference MZI; (b) Simulated wavelength shift of the envelope peak with Vernier effect.
Fig. 3
Fig. 3 (a) Cross-section image of DSHF; (b) Image of the fabricated gas pressure sensor.
Fig. 4
Fig. 4 (a) Superimposed spectrum of the sensor before laser ablation; (b) Superimposed spectrum of the sensor after laser ablation, and the blue curve represents the upper envelope extracted.
Fig. 5
Fig. 5 Experimental setup for the measurement of gas pressure sensitivity.
Fig. 6
Fig. 6 (a) Transmission Spectrum of the high- frequency signal with different gas pressure; (b) Dip wavelength versus gas pressure and the fitted line.
Fig. 7
Fig. 7 (a1) - (a4) Wavelength shift of the envelope under different gas pressure; (b) The relationship between the center wavelength shift of the upper envelope dip peak and the gas pressure.
Fig. 8
Fig. 8 (a) Wavelength shift of the transmission dips near 1572 nm; (b) Dip wavelength versus temperature and the fitted line.
Fig. 9
Fig. 9 (a) Wavelength shift of the envelope extracted from the superimposed spectrum under different temperature; (b) Dip wavelength versus temperature and the fitted line.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I 1 = I airr + I silica +2 I airr I silica cos ϕ r
  I 2 = I airs + I silica +2 I airs I silica cos ϕ s
ϕ r = 2π λ ( n silica eff n r eff ) L DSHF = 2πΔ n r L DSHF λ
ϕ s = 2π λ [ ( n silica-DSHF eff n air-s eff ) L DSHF +( n silicaMMF eff n air-s eff ) L a ]= 2πΔ n s ( L DSHF + L a ) λ
λ dip r = 2 2m+1 Δ n r L DSHF
λ dip s = 2 2m+1 Δ n s ( L DSHF + L a )
FS R r = λ 2 Δ n r L DSHF
FS R s = λ 2 Δ n s ( L DSHF + L a )
FS R envelope = FS R r FS R s | FS R r FS R s |
δλ= dλ dP = 2 2m+1 [ dΔ n s dP ( L DSHF + L a )+ d( L DSHF + L a ) dP Δ n s ]
M= FS R r | FS R r FS R s |
δ λ envelope =Mδλ= 2 2m+1 [ dΔ n s dP ( L DSHF + L a )+ d( L DSHF + L a ) dP Δ n s ] FS R r | FS R r FS R s |
dλ dP = 2( L DSHF + L a ) 2m+1 d(Δ n s ) dP = λ Δn s d(Δ n s ) dP
n=1+ 2.8793× 10 9 ×P 1+0.003671×T  

Metrics