Abstract

We report a novel structure that is capable of wide wavelength tuning in the distributed Bragg reflector laser diode (DBR-LD) with a single grating mirror. This device’s DBR section has two tuning elements, plasma, and heater tunings, which are implemented simultaneously on the top of a single waveguide by using an in-between dielectric layer. For the proposed structure, a three-dimensional thermal simulation was conducted. The results showed that the temperature profile within the waveguide is highly affected by the position of heater metal and thermal conductivity of the p-cladding layer. As a result, it is important to use a uniform temperature region in the DBR section for a wide tuning range and stable single-mode operation. For a 550-μm long DBR-LD with a 250-μm long DBR section, a tuning range of 26 nm (i.e., 7 nm for plasma tuning and 19 nm for heater tuning); an SMSR of more than 45 dB; and a peak power variation of less than ± 2.5 dB were obtained. From the comparisons of two DBR-LDs with only one tuning element, we confirmed that using the dielectric layer is a very effective way of achieving a wide tuning under the independent tuning operation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength stabilization of a distributed Bragg reflector laser diode by use of complementary current injection

Y. Kitaoka, K. Kasazumi, A. Morikawa, T. Yokoyama, T. Sugita, K. Mizuuchi, K. Yamamoto, T. Takayama, S. Takigawa, and M. Yuri
Opt. Lett. 28(11) 914-916 (2003)

Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation

Namje Kim, Sang-Pil Han, Han-Cheol Ryu, Hyunsung Ko, Jeong-Woo Park, Donghun Lee, Min Yong Jeon, and Kyung Hyun Park
Opt. Express 20(16) 17496-17502 (2012)

Distributed feedback–distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide

Bijoy K. Das, Raimund Ricken, Viktor Quiring, Hubertus Suche, and Wolfgang Sohler
Opt. Lett. 29(2) 165-167 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
    [Crossref]
  2. A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightwave Technol. 33(5), 1077–1083 (2015).
    [Crossref]
  3. I. A. Alimi, A. L. Teixeira, and P. P. Monteiro, “Toward an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies requirements, challenges, and solutions,” IEEE Comm. Surv. and Tutor. 20(1), 708–769 (2018).
    [Crossref]
  4. J. Shin, S. Hong, J. Y. Lim, S. Cho, H. Y. Rhy, and G. Y. Yi, “CWDM network with dual sub-channel interface for mobile fronthaul and backhaul deployment,” in Proc. 16th Int. Conf. Adv. Commun. Technol. paper, pp. 1009–1102 (2014).
  5. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
    [Crossref]
  6. O. K. Kwon, E. D. Sim, J. H. Kim, K. H. Kim, H. G. Yun, O. K. Kwon, and K. R. Oh, “Widely tunable grating cavity lasers,” ETRI J. 28(5), 545–554 (2006).
    [Crossref]
  7. S. H. Oh, K. H. Yoon, K. S. Kim, J. B. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, J. K. Seo, and H. J. Lee, “Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1534–1541 (2011).
    [Crossref]
  8. S. H. Oh, H. Ko, K. S. Kim, J. M. Lee, C. W. Lee, O. K. Kwon, S. Park, and M. H. Park, “Fabrication of Butt-coupled SGDBR laser integrated with semiconductor optical amplifier having a lateral tapered waveguide,” ETRI J. 27(5), 551–556 (2005).
    [Crossref]
  9. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
    [Crossref]
  10. T. L. Koch, U. Koren, and B. I. Miller, “High performance tunable 1.5μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
    [Crossref]
  11. L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
    [Crossref] [PubMed]
  12. D. Zhou, S. Liang, L. Zhao, H. Zhu, and W. Wang, “High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers,” Opt. Express 25(3), 2341–2346 (2017).
    [Crossref] [PubMed]
  13. Y. Sin, “Focused ion beam heater thermally tunable laser,” U.S. Patent. 7,225,708 (May 29, 2007).
  14. S. Liang, L. Han, L. Qiao, J. Xu, H. Zhu, and W. Wang, “DBR laser with over 20nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).
  15. T. Kameda, H. Mori, S. Onuki, T. Kikugawa, Y. Takahashi, F. Tsuchiya, and H. Nagai, “A DBR laser employing passive-section heaters, with 10.8 nm tuning range and 1.6 MHz linewidth,” IEEE Photonics Technol. Lett. 5(6), 608–610 (1993).
    [Crossref]
  16. O. K. Kwon, K. H. Kim, E. D. Sim, J. H. Kim, H. S. Kim, and K. R. Oh, “Asymmetric multiple-quantum-well laser diodes with wide and flat gain,” Opt. Lett. 28(22), 2189–2191 (2003).
    [Crossref] [PubMed]
  17. O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures of output efficiency and single longitudinal mode operation in λ/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
    [Crossref]
  18. O. K. Kwon, C. W. Lee, Y. A. Leem, K. S. Kim, S. H. Oh, and E. S. Nam, “1.5-μm and 10 Gb/s etched mesa buried hetero-structure DFB-LD for datacenter networks,” Semicond. Sci. Technol. 30(10), 105010 (2015).
    [Crossref]
  19. O. K. Kwon, S. H. Oh, K. S. Kim, C. W. Lee, Y. A. Leem, and E. S. Nam, “Multi-wavelength channel 1.5 μm and 10 Gb/s EMBH DFB-LD array module using SAG technique,” Electron. Lett. 51(22, 1771–1772 2015).
  20. http://www.comsol.com .

2018 (1)

I. A. Alimi, A. L. Teixeira, and P. P. Monteiro, “Toward an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies requirements, challenges, and solutions,” IEEE Comm. Surv. and Tutor. 20(1), 708–769 (2018).
[Crossref]

2017 (1)

2016 (1)

S. Liang, L. Han, L. Qiao, J. Xu, H. Zhu, and W. Wang, “DBR laser with over 20nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).

2015 (2)

O. K. Kwon, C. W. Lee, Y. A. Leem, K. S. Kim, S. H. Oh, and E. S. Nam, “1.5-μm and 10 Gb/s etched mesa buried hetero-structure DFB-LD for datacenter networks,” Semicond. Sci. Technol. 30(10), 105010 (2015).
[Crossref]

A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightwave Technol. 33(5), 1077–1083 (2015).
[Crossref]

2014 (2)

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref] [PubMed]

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

2011 (2)

S. H. Oh, K. H. Yoon, K. S. Kim, J. B. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, J. K. Seo, and H. J. Lee, “Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1534–1541 (2011).
[Crossref]

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures of output efficiency and single longitudinal mode operation in λ/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

2006 (1)

O. K. Kwon, E. D. Sim, J. H. Kim, K. H. Kim, H. G. Yun, O. K. Kwon, and K. R. Oh, “Widely tunable grating cavity lasers,” ETRI J. 28(5), 545–554 (2006).
[Crossref]

2005 (2)

S. H. Oh, H. Ko, K. S. Kim, J. M. Lee, C. W. Lee, O. K. Kwon, S. Park, and M. H. Park, “Fabrication of Butt-coupled SGDBR laser integrated with semiconductor optical amplifier having a lateral tapered waveguide,” ETRI J. 27(5), 551–556 (2005).
[Crossref]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

2003 (1)

2000 (1)

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

1993 (1)

T. Kameda, H. Mori, S. Onuki, T. Kikugawa, Y. Takahashi, F. Tsuchiya, and H. Nagai, “A DBR laser employing passive-section heaters, with 10.8 nm tuning range and 1.6 MHz linewidth,” IEEE Photonics Technol. Lett. 5(6), 608–610 (1993).
[Crossref]

1988 (1)

T. L. Koch, U. Koren, and B. I. Miller, “High performance tunable 1.5μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

Alimi, I. A.

I. A. Alimi, A. L. Teixeira, and P. P. Monteiro, “Toward an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies requirements, challenges, and solutions,” IEEE Comm. Surv. and Tutor. 20(1), 708–769 (2018).
[Crossref]

Baek, Y. S.

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures of output efficiency and single longitudinal mode operation in λ/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Barton, E.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Busico, G.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Carter, A. C.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Chanclou, P.

Chung, Y. C.

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures of output efficiency and single longitudinal mode operation in λ/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Coldren, L. A.

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

Cush, R.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Diallo, T.

Duck, J. P.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Elbers, J.-P.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Han, L.

S. Liang, L. Han, L. Qiao, J. Xu, H. Zhu, and W. Wang, “DBR laser with over 20nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref] [PubMed]

Kameda, T.

T. Kameda, H. Mori, S. Onuki, T. Kikugawa, Y. Takahashi, F. Tsuchiya, and H. Nagai, “A DBR laser employing passive-section heaters, with 10.8 nm tuning range and 1.6 MHz linewidth,” IEEE Photonics Technol. Lett. 5(6), 608–610 (1993).
[Crossref]

Kikugawa, T.

T. Kameda, H. Mori, S. Onuki, T. Kikugawa, Y. Takahashi, F. Tsuchiya, and H. Nagai, “A DBR laser employing passive-section heaters, with 10.8 nm tuning range and 1.6 MHz linewidth,” IEEE Photonics Technol. Lett. 5(6), 608–610 (1993).
[Crossref]

Kim, H. S.

Kim, J. B.

S. H. Oh, K. H. Yoon, K. S. Kim, J. B. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, J. K. Seo, and H. J. Lee, “Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1534–1541 (2011).
[Crossref]

Kim, J. H.

O. K. Kwon, E. D. Sim, J. H. Kim, K. H. Kim, H. G. Yun, O. K. Kwon, and K. R. Oh, “Widely tunable grating cavity lasers,” ETRI J. 28(5), 545–554 (2006).
[Crossref]

O. K. Kwon, K. H. Kim, E. D. Sim, J. H. Kim, H. S. Kim, and K. R. Oh, “Asymmetric multiple-quantum-well laser diodes with wide and flat gain,” Opt. Lett. 28(22), 2189–2191 (2003).
[Crossref] [PubMed]

Kim, K. H.

O. K. Kwon, E. D. Sim, J. H. Kim, K. H. Kim, H. G. Yun, O. K. Kwon, and K. R. Oh, “Widely tunable grating cavity lasers,” ETRI J. 28(5), 545–554 (2006).
[Crossref]

O. K. Kwon, K. H. Kim, E. D. Sim, J. H. Kim, H. S. Kim, and K. R. Oh, “Asymmetric multiple-quantum-well laser diodes with wide and flat gain,” Opt. Lett. 28(22), 2189–2191 (2003).
[Crossref] [PubMed]

Kim, K. S.

O. K. Kwon, C. W. Lee, Y. A. Leem, K. S. Kim, S. H. Oh, and E. S. Nam, “1.5-μm and 10 Gb/s etched mesa buried hetero-structure DFB-LD for datacenter networks,” Semicond. Sci. Technol. 30(10), 105010 (2015).
[Crossref]

S. H. Oh, K. H. Yoon, K. S. Kim, J. B. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, J. K. Seo, and H. J. Lee, “Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1534–1541 (2011).
[Crossref]

S. H. Oh, H. Ko, K. S. Kim, J. M. Lee, C. W. Lee, O. K. Kwon, S. Park, and M. H. Park, “Fabrication of Butt-coupled SGDBR laser integrated with semiconductor optical amplifier having a lateral tapered waveguide,” ETRI J. 27(5), 551–556 (2005).
[Crossref]

Ko, H.

S. H. Oh, H. Ko, K. S. Kim, J. M. Lee, C. W. Lee, O. K. Kwon, S. Park, and M. H. Park, “Fabrication of Butt-coupled SGDBR laser integrated with semiconductor optical amplifier having a lateral tapered waveguide,” ETRI J. 27(5), 551–556 (2005).
[Crossref]

Koch, T. L.

T. L. Koch, U. Koren, and B. I. Miller, “High performance tunable 1.5μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

Koren, U.

T. L. Koch, U. Koren, and B. I. Miller, “High performance tunable 1.5μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

Kwon, O. K.

O. K. Kwon, C. W. Lee, Y. A. Leem, K. S. Kim, S. H. Oh, and E. S. Nam, “1.5-μm and 10 Gb/s etched mesa buried hetero-structure DFB-LD for datacenter networks,” Semicond. Sci. Technol. 30(10), 105010 (2015).
[Crossref]

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures of output efficiency and single longitudinal mode operation in λ/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

S. H. Oh, K. H. Yoon, K. S. Kim, J. B. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, J. K. Seo, and H. J. Lee, “Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1534–1541 (2011).
[Crossref]

O. K. Kwon, E. D. Sim, J. H. Kim, K. H. Kim, H. G. Yun, O. K. Kwon, and K. R. Oh, “Widely tunable grating cavity lasers,” ETRI J. 28(5), 545–554 (2006).
[Crossref]

O. K. Kwon, E. D. Sim, J. H. Kim, K. H. Kim, H. G. Yun, O. K. Kwon, and K. R. Oh, “Widely tunable grating cavity lasers,” ETRI J. 28(5), 545–554 (2006).
[Crossref]

S. H. Oh, H. Ko, K. S. Kim, J. M. Lee, C. W. Lee, O. K. Kwon, S. Park, and M. H. Park, “Fabrication of Butt-coupled SGDBR laser integrated with semiconductor optical amplifier having a lateral tapered waveguide,” ETRI J. 27(5), 551–556 (2005).
[Crossref]

O. K. Kwon, K. H. Kim, E. D. Sim, J. H. Kim, H. S. Kim, and K. R. Oh, “Asymmetric multiple-quantum-well laser diodes with wide and flat gain,” Opt. Lett. 28(22), 2189–2191 (2003).
[Crossref] [PubMed]

Lawin, M.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Lee, C. W.

O. K. Kwon, C. W. Lee, Y. A. Leem, K. S. Kim, S. H. Oh, and E. S. Nam, “1.5-μm and 10 Gb/s etched mesa buried hetero-structure DFB-LD for datacenter networks,” Semicond. Sci. Technol. 30(10), 105010 (2015).
[Crossref]

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures of output efficiency and single longitudinal mode operation in λ/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

S. H. Oh, H. Ko, K. S. Kim, J. M. Lee, C. W. Lee, O. K. Kwon, S. Park, and M. H. Park, “Fabrication of Butt-coupled SGDBR laser integrated with semiconductor optical amplifier having a lateral tapered waveguide,” ETRI J. 27(5), 551–556 (2005).
[Crossref]

Lee, D. H.

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures of output efficiency and single longitudinal mode operation in λ/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Lee, H. J.

S. H. Oh, K. H. Yoon, K. S. Kim, J. B. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, J. K. Seo, and H. J. Lee, “Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1534–1541 (2011).
[Crossref]

Lee, J. M.

S. H. Oh, H. Ko, K. S. Kim, J. M. Lee, C. W. Lee, O. K. Kwon, S. Park, and M. H. Park, “Fabrication of Butt-coupled SGDBR laser integrated with semiconductor optical amplifier having a lateral tapered waveguide,” ETRI J. 27(5), 551–556 (2005).
[Crossref]

Lee, S. H.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Leem, Y. A.

O. K. Kwon, C. W. Lee, Y. A. Leem, K. S. Kim, S. H. Oh, and E. S. Nam, “1.5-μm and 10 Gb/s etched mesa buried hetero-structure DFB-LD for datacenter networks,” Semicond. Sci. Technol. 30(10), 105010 (2015).
[Crossref]

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures of output efficiency and single longitudinal mode operation in λ/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Liang, S.

Miller, B. I.

T. L. Koch, U. Koren, and B. I. Miller, “High performance tunable 1.5μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

Monteiro, P. P.

I. A. Alimi, A. L. Teixeira, and P. P. Monteiro, “Toward an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies requirements, challenges, and solutions,” IEEE Comm. Surv. and Tutor. 20(1), 708–769 (2018).
[Crossref]

Mori, H.

T. Kameda, H. Mori, S. Onuki, T. Kikugawa, Y. Takahashi, F. Tsuchiya, and H. Nagai, “A DBR laser employing passive-section heaters, with 10.8 nm tuning range and 1.6 MHz linewidth,” IEEE Photonics Technol. Lett. 5(6), 608–610 (1993).
[Crossref]

Nagai, H.

T. Kameda, H. Mori, S. Onuki, T. Kikugawa, Y. Takahashi, F. Tsuchiya, and H. Nagai, “A DBR laser employing passive-section heaters, with 10.8 nm tuning range and 1.6 MHz linewidth,” IEEE Photonics Technol. Lett. 5(6), 608–610 (1993).
[Crossref]

Nam, E. S.

O. K. Kwon, C. W. Lee, Y. A. Leem, K. S. Kim, S. H. Oh, and E. S. Nam, “1.5-μm and 10 Gb/s etched mesa buried hetero-structure DFB-LD for datacenter networks,” Semicond. Sci. Technol. 30(10), 105010 (2015).
[Crossref]

Noh, Y. O.

S. H. Oh, K. H. Yoon, K. S. Kim, J. B. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, J. K. Seo, and H. J. Lee, “Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1534–1541 (2011).
[Crossref]

Oh, D. K.

S. H. Oh, K. H. Yoon, K. S. Kim, J. B. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, J. K. Seo, and H. J. Lee, “Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1534–1541 (2011).
[Crossref]

Oh, K. R.

O. K. Kwon, E. D. Sim, J. H. Kim, K. H. Kim, H. G. Yun, O. K. Kwon, and K. R. Oh, “Widely tunable grating cavity lasers,” ETRI J. 28(5), 545–554 (2006).
[Crossref]

O. K. Kwon, K. H. Kim, E. D. Sim, J. H. Kim, H. S. Kim, and K. R. Oh, “Asymmetric multiple-quantum-well laser diodes with wide and flat gain,” Opt. Lett. 28(22), 2189–2191 (2003).
[Crossref] [PubMed]

Oh, S. H.

O. K. Kwon, C. W. Lee, Y. A. Leem, K. S. Kim, S. H. Oh, and E. S. Nam, “1.5-μm and 10 Gb/s etched mesa buried hetero-structure DFB-LD for datacenter networks,” Semicond. Sci. Technol. 30(10), 105010 (2015).
[Crossref]

S. H. Oh, K. H. Yoon, K. S. Kim, J. B. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, J. K. Seo, and H. J. Lee, “Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1534–1541 (2011).
[Crossref]

S. H. Oh, H. Ko, K. S. Kim, J. M. Lee, C. W. Lee, O. K. Kwon, S. Park, and M. H. Park, “Fabrication of Butt-coupled SGDBR laser integrated with semiconductor optical amplifier having a lateral tapered waveguide,” ETRI J. 27(5), 551–556 (2005).
[Crossref]

Onuki, S.

T. Kameda, H. Mori, S. Onuki, T. Kikugawa, Y. Takahashi, F. Tsuchiya, and H. Nagai, “A DBR laser employing passive-section heaters, with 10.8 nm tuning range and 1.6 MHz linewidth,” IEEE Photonics Technol. Lett. 5(6), 608–610 (1993).
[Crossref]

Pachnicke, S.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Park, M. H.

S. H. Oh, H. Ko, K. S. Kim, J. M. Lee, C. W. Lee, O. K. Kwon, S. Park, and M. H. Park, “Fabrication of Butt-coupled SGDBR laser integrated with semiconductor optical amplifier having a lateral tapered waveguide,” ETRI J. 27(5), 551–556 (2005).
[Crossref]

Park, S.

S. H. Oh, H. Ko, K. S. Kim, J. M. Lee, C. W. Lee, O. K. Kwon, S. Park, and M. H. Park, “Fabrication of Butt-coupled SGDBR laser integrated with semiconductor optical amplifier having a lateral tapered waveguide,” ETRI J. 27(5), 551–556 (2005).
[Crossref]

Penty, R. V.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Pizzinat, A.

Ponnampalam, L.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Qiao, L.

S. Liang, L. Han, L. Qiao, J. Xu, H. Zhu, and W. Wang, “DBR laser with over 20nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref] [PubMed]

Reid, D. C. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Robbins, D. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Saliou, F.

Seo, J. K.

S. H. Oh, K. H. Yoon, K. S. Kim, J. B. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, J. K. Seo, and H. J. Lee, “Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1534–1541 (2011).
[Crossref]

Sim, E. D.

O. K. Kwon, E. D. Sim, J. H. Kim, K. H. Kim, H. G. Yun, O. K. Kwon, and K. R. Oh, “Widely tunable grating cavity lasers,” ETRI J. 28(5), 545–554 (2006).
[Crossref]

O. K. Kwon, K. H. Kim, E. D. Sim, J. H. Kim, H. S. Kim, and K. R. Oh, “Asymmetric multiple-quantum-well laser diodes with wide and flat gain,” Opt. Lett. 28(22), 2189–2191 (2003).
[Crossref] [PubMed]

Takahashi, Y.

T. Kameda, H. Mori, S. Onuki, T. Kikugawa, Y. Takahashi, F. Tsuchiya, and H. Nagai, “A DBR laser employing passive-section heaters, with 10.8 nm tuning range and 1.6 MHz linewidth,” IEEE Photonics Technol. Lett. 5(6), 608–610 (1993).
[Crossref]

Teixeira, A. L.

I. A. Alimi, A. L. Teixeira, and P. P. Monteiro, “Toward an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies requirements, challenges, and solutions,” IEEE Comm. Surv. and Tutor. 20(1), 708–769 (2018).
[Crossref]

Tsuchiya, F.

T. Kameda, H. Mori, S. Onuki, T. Kikugawa, Y. Takahashi, F. Tsuchiya, and H. Nagai, “A DBR laser employing passive-section heaters, with 10.8 nm tuning range and 1.6 MHz linewidth,” IEEE Photonics Technol. Lett. 5(6), 608–610 (1993).
[Crossref]

Wale, M. J.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Wang, B.

Wang, H.

Wang, W.

Ward, A. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Whitbread, N. D.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

White, I. H.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Williams, P.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Wonfor, A.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Xu, J.

S. Liang, L. Han, L. Qiao, J. Xu, H. Zhu, and W. Wang, “DBR laser with over 20nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref] [PubMed]

Yoon, K. H.

S. H. Oh, K. H. Yoon, K. S. Kim, J. B. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, J. K. Seo, and H. J. Lee, “Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1534–1541 (2011).
[Crossref]

Yun, H. G.

O. K. Kwon, E. D. Sim, J. H. Kim, K. H. Kim, H. G. Yun, O. K. Kwon, and K. R. Oh, “Widely tunable grating cavity lasers,” ETRI J. 28(5), 545–554 (2006).
[Crossref]

Zhao, L.

Zhou, D.

Zhu, H.

Zhu, J.

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

Appl. Phys. Lett. (1)

T. L. Koch, U. Koren, and B. I. Miller, “High performance tunable 1.5μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers,” Appl. Phys. Lett. 53(12), 1036–1038 (1988).
[Crossref]

ETRI J. (2)

O. K. Kwon, E. D. Sim, J. H. Kim, K. H. Kim, H. G. Yun, O. K. Kwon, and K. R. Oh, “Widely tunable grating cavity lasers,” ETRI J. 28(5), 545–554 (2006).
[Crossref]

S. H. Oh, H. Ko, K. S. Kim, J. M. Lee, C. W. Lee, O. K. Kwon, S. Park, and M. H. Park, “Fabrication of Butt-coupled SGDBR laser integrated with semiconductor optical amplifier having a lateral tapered waveguide,” ETRI J. 27(5), 551–556 (2005).
[Crossref]

IEEE Comm. Surv. and Tutor. (1)

I. A. Alimi, A. L. Teixeira, and P. P. Monteiro, “Toward an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies requirements, challenges, and solutions,” IEEE Comm. Surv. and Tutor. 20(1), 708–769 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures of output efficiency and single longitudinal mode operation in λ/4-shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

S. H. Oh, K. H. Yoon, K. S. Kim, J. B. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, J. K. Seo, and H. J. Lee, “Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1534–1541 (2011).
[Crossref]

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. Liang, L. Han, L. Qiao, J. Xu, H. Zhu, and W. Wang, “DBR laser with over 20nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).

T. Kameda, H. Mori, S. Onuki, T. Kikugawa, Y. Takahashi, F. Tsuchiya, and H. Nagai, “A DBR laser employing passive-section heaters, with 10.8 nm tuning range and 1.6 MHz linewidth,” IEEE Photonics Technol. Lett. 5(6), 608–610 (1993).
[Crossref]

J. Lightwave Technol. (2)

J. Zhu, A. Wonfor, S. H. Lee, S. Pachnicke, M. Lawin, R. V. Penty, J.-P. Elbers, R. Cush, M. J. Wale, and I. H. White, “Athermal colorless C-band optical transmitter system for passive optical networks,” J. Lightwave Technol. 32(22), 4253–4260 (2014).
[Crossref]

A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightwave Technol. 33(5), 1077–1083 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Semicond. Sci. Technol. (1)

O. K. Kwon, C. W. Lee, Y. A. Leem, K. S. Kim, S. H. Oh, and E. S. Nam, “1.5-μm and 10 Gb/s etched mesa buried hetero-structure DFB-LD for datacenter networks,” Semicond. Sci. Technol. 30(10), 105010 (2015).
[Crossref]

Other (4)

O. K. Kwon, S. H. Oh, K. S. Kim, C. W. Lee, Y. A. Leem, and E. S. Nam, “Multi-wavelength channel 1.5 μm and 10 Gb/s EMBH DFB-LD array module using SAG technique,” Electron. Lett. 51(22, 1771–1772 2015).

http://www.comsol.com .

Y. Sin, “Focused ion beam heater thermally tunable laser,” U.S. Patent. 7,225,708 (May 29, 2007).

J. Shin, S. Hong, J. Y. Lim, S. Cho, H. Y. Rhy, and G. Y. Yi, “CWDM network with dual sub-channel interface for mobile fronthaul and backhaul deployment,” in Proc. 16th Int. Conf. Adv. Commun. Technol. paper, pp. 1009–1102 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) A schematic mask view and (b) layer structure of tunable DBR-LD with two tuning elements in a DBR section. In mask view, IG, ITP, and ITH denote the currents for the gain, plasma tuning, and heater tuning, respectively.
Fig. 2
Fig. 2 SEM image of the fabricated DBR-LD.
Fig. 3
Fig. 3 (a) 3D simulation results for the thermal distribution of DBR-LD chip-on-submount and temperature cross-section contour maps in DBR section when the lateral center position of heater metal is (b) 0 μm and (c) 5 μm at a heater current ITH of 100mA.
Fig. 4
Fig. 4 (a) Lateral thermal distribution along the red dotted line of Fig. 3(b), and 3(b) longitudinal thermal distribution of the core layers of the DBR-LD.
Fig. 5
Fig. 5 Typical L-I-V characteristics for the fabricated DBR-LD chips. All measurements were conducted under the CW operation of the gain current IG without the use of tuning currents at a temperature of 25°C.
Fig. 6
Fig. 6 Fiber-coupled output tuning spectra for the fabricated DBR-LD. The gain current was fixed at 90 mA, and the currents for the plasma and heater tunings were changed within a range of 50 and 138 mA, respectively.
Fig. 7
Fig. 7 Wavelength tuning and SMSR as a function of the tuning currents.

Metrics