Abstract

An acousto-optic modulation (AOM) detection method is demonstrated to detect the atomic Larmor precession frequency in an all-optical K-Rb atomic magnetometer operated in Spin-Exchange Relaxation Free (SERF) regime. Magnetic field sensitivity of 14 fT/Hz1/2 was achieved by employing the uniform design (UD) [Acta Math Appl Sin. 3, 363 (1980)] and subsequently optimizing the AOM modulation conditions. Results were compared to those of Faraday and the balanced polarimetry method in the same magnetometer. The AOM detection method has several advantages, such as small volume, no extra magnetic shielding for the modulator, high measurement signal-to-noise ratio and stability. It has a good prospect for compact and multi-channel atomic magnetometers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spin-exchange relaxation-free magnetic gradiometer with dual-beam and closed-loop Faraday modulation

Jiancheng Fang, Shuangai Wan, Jie Qin, Chen Zhang, and Wei Quan
J. Opt. Soc. Am. B 31(3) 512-516 (2014)

In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts

Kai Wei, Tian Zhao, Xiujie Fang, Yueyang Zhai, Hairong Li, and Wei Quan
Opt. Express 27(11) 16169-16183 (2019)

Pulsed operation of a miniature scalar optically pumped magnetometer

Vladislav Gerginov, Sean Krzyzewski, and Svenja Knappe
J. Opt. Soc. Am. B 34(7) 1429-1434 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. K. Shah and R. T. Wakai, “A compact, high performance atomic magnetometer for biomedical applications,” Phys. Med. Biol. 58(22), 8153–8161 (2013).
    [Crossref] [PubMed]
  2. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
    [Crossref] [PubMed]
  3. Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin -exchange collision mixing of the K and exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A (Coll. Park) 94(52), 052705 (2016).
    [Crossref]
  4. T. Wang, D. J. Kimball, A. O. Sushkov, D. Aybas, J. Blanchard, G. Centers, S. O’ Kelley, A. Wickenbrock, J. Fang, and D. Budker, “Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment,” Phys. Dark Universe 19, 27–35 (2018).
    [Crossref]
  5. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
    [Crossref]
  6. O. Alem, R. Mhaskar, R. Jiménez-Martínez, D. Sheng, J. LeBlanc, L. Trahms, T. Sander, J. Kitching, and S. Knappe, “Magnetic field imaging with microfabricated optically-pumped magnetometers,” Opt. Express 25(7), 7849–7858 (2017).
    [Crossref] [PubMed]
  7. E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
    [Crossref] [PubMed]
  8. K. Nishi, Y. Ito, and T. Kobayashi, “High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer,” Opt. Express 26(2), 1988–1996 (2018).
    [Crossref] [PubMed]
  9. E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
    [Crossref] [PubMed]
  10. S. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. dissertation, Princeton Univ. Princeton, NJ, USA, (2008).
  11. L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23(25), 32481–32489 (2015).
    [Crossref] [PubMed]
  12. J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84(8), 083108 (2013).
    [Crossref] [PubMed]
  13. J. M. Brown, “A new limit on lorentz- and CPT-violating neutron spin interactions using a K-3He comagnetometer,” Ph.D. dissertation, Princeton Univ. Princeton, NJ, USA, (2011).
  14. D. Huang, W. Liu, and C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photonics Technol. Lett. 12(9), 1153–1155 (2000).
    [Crossref]
  15. W. Bell and A. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
    [Crossref]
  16. H. Huang, H. Dong, H. Hao, and X. Hu, “Close-loop bell-bloom magnetometer with amplitude modulation,” Chin. Phys. Lett. 32(9), 174–177 (2015).
    [Crossref]
  17. K. Fang, “Uniform design: an application of number-theoretic methods to experimental designs,” Yingyong Shuxue Xuebao 3(4), 363–372 (1980).
  18. M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Phys. Rev. Lett. 105(24), 243001 (2010).
    [Crossref] [PubMed]
  19. Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Adv. 2(3), 032127 (2012).
    [Crossref]
  20. J. Chrostowski and C. Delisle, “Bistable optical switching based on Bragg diffraction,” Opt. Commun. 41(2), 71–74 (1982).
    [Crossref]
  21. I. Fescenko, P. Knowles, A. Weis, and E. Breschi, “A Bell-Bloom experiment with polarization-modulated light of arbitrary duty cycle,” Opt. Express 21(13), 15121–15130 (2013).
    [Crossref] [PubMed]
  22. Z. Gruji’c and A. Weis, “Atomic magnetic resonance induced by a amplitude-, frequency-, or polarization modulated light,” arXiv:1305. 6574 [physics.atom-ph] (May 2013).
  23. C. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour pressure equations for the metallic elements: 298 − 2500K,” Scan. Metall. Quart. 23(3), 309–313 (1984).
    [Crossref]
  24. J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85(6), 063108 (2014).
    [Crossref] [PubMed]
  25. K. Fang, P. Winker, and Y. Zhang, “Uniform design: theory and application,” Technometrics 42(3), 237–248 (2000).
    [Crossref]
  26. K. Fang and J. Li, “Some new results on the uniform design,” Chin. Sci. Bull. 40(4), 268–272 (1995).
  27. Y. Wang and K. Fang, “A note on uniform distribution and experimental design,” Chin. Sci. Bull. 26(6), 485–489 (1981).
  28. Y. Hu, X. Liu, Y. Li, H. Yao, L. Dai, B. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D Appl. Phys. 50(26), 265001 (2017).
    [Crossref]
  29. W. Li, P. Lin, X. Peng, and H. Guo, “The optimized probe light frequency detuning for Faraday-rotation cesium atomic magnetometer,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JW2A.131.
  30. S. Ichihara, N. Mizutani, Y. Ito, and T. Kobayashi, “Differential Measurement with the balanced response of optically pumped atomic magnetometers,” IEEE Trans. Magn. 52(8), 1–9 (2016).
    [Crossref]
  31. K. Kamada, Y. Ito, S. Ichihara, N. Mizutani, and T. Kobayashi, “Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations,” Opt. Express 23(5), 6976–6987 (2015).
    [Crossref] [PubMed]

2018 (3)

T. Wang, D. J. Kimball, A. O. Sushkov, D. Aybas, J. Blanchard, G. Centers, S. O’ Kelley, A. Wickenbrock, J. Fang, and D. Budker, “Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment,” Phys. Dark Universe 19, 27–35 (2018).
[Crossref]

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

K. Nishi, Y. Ito, and T. Kobayashi, “High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer,” Opt. Express 26(2), 1988–1996 (2018).
[Crossref] [PubMed]

2017 (3)

O. Alem, R. Mhaskar, R. Jiménez-Martínez, D. Sheng, J. LeBlanc, L. Trahms, T. Sander, J. Kitching, and S. Knappe, “Magnetic field imaging with microfabricated optically-pumped magnetometers,” Opt. Express 25(7), 7849–7858 (2017).
[Crossref] [PubMed]

Y. Hu, X. Liu, Y. Li, H. Yao, L. Dai, B. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D Appl. Phys. 50(26), 265001 (2017).
[Crossref]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

2016 (2)

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin -exchange collision mixing of the K and exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A (Coll. Park) 94(52), 052705 (2016).
[Crossref]

S. Ichihara, N. Mizutani, Y. Ito, and T. Kobayashi, “Differential Measurement with the balanced response of optically pumped atomic magnetometers,” IEEE Trans. Magn. 52(8), 1–9 (2016).
[Crossref]

2015 (3)

2014 (1)

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85(6), 063108 (2014).
[Crossref] [PubMed]

2013 (3)

I. Fescenko, P. Knowles, A. Weis, and E. Breschi, “A Bell-Bloom experiment with polarization-modulated light of arbitrary duty cycle,” Opt. Express 21(13), 15121–15130 (2013).
[Crossref] [PubMed]

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84(8), 083108 (2013).
[Crossref] [PubMed]

V. K. Shah and R. T. Wakai, “A compact, high performance atomic magnetometer for biomedical applications,” Phys. Med. Biol. 58(22), 8153–8161 (2013).
[Crossref] [PubMed]

2012 (1)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Adv. 2(3), 032127 (2012).
[Crossref]

2010 (1)

M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Phys. Rev. Lett. 105(24), 243001 (2010).
[Crossref] [PubMed]

2007 (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

2003 (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[Crossref] [PubMed]

2000 (2)

D. Huang, W. Liu, and C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photonics Technol. Lett. 12(9), 1153–1155 (2000).
[Crossref]

K. Fang, P. Winker, and Y. Zhang, “Uniform design: theory and application,” Technometrics 42(3), 237–248 (2000).
[Crossref]

1995 (1)

K. Fang and J. Li, “Some new results on the uniform design,” Chin. Sci. Bull. 40(4), 268–272 (1995).

1984 (1)

C. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour pressure equations for the metallic elements: 298 − 2500K,” Scan. Metall. Quart. 23(3), 309–313 (1984).
[Crossref]

1982 (1)

J. Chrostowski and C. Delisle, “Bistable optical switching based on Bragg diffraction,” Opt. Commun. 41(2), 71–74 (1982).
[Crossref]

1981 (1)

Y. Wang and K. Fang, “A note on uniform distribution and experimental design,” Chin. Sci. Bull. 26(6), 485–489 (1981).

1980 (1)

K. Fang, “Uniform design: an application of number-theoretic methods to experimental designs,” Yingyong Shuxue Xuebao 3(4), 363–372 (1980).

1961 (1)

W. Bell and A. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
[Crossref]

Alcock, C.

C. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour pressure equations for the metallic elements: 298 − 2500K,” Scan. Metall. Quart. 23(3), 309–313 (1984).
[Crossref]

Alem, O.

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

O. Alem, R. Mhaskar, R. Jiménez-Martínez, D. Sheng, J. LeBlanc, L. Trahms, T. Sander, J. Kitching, and S. Knappe, “Magnetic field imaging with microfabricated optically-pumped magnetometers,” Opt. Express 25(7), 7849–7858 (2017).
[Crossref] [PubMed]

Allred, J. C.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[Crossref] [PubMed]

Aybas, D.

T. Wang, D. J. Kimball, A. O. Sushkov, D. Aybas, J. Blanchard, G. Centers, S. O’ Kelley, A. Wickenbrock, J. Fang, and D. Budker, “Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment,” Phys. Dark Universe 19, 27–35 (2018).
[Crossref]

Barnes, G. R.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Bell, W.

W. Bell and A. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
[Crossref]

Bestmann, S.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Blanchard, J.

T. Wang, D. J. Kimball, A. O. Sushkov, D. Aybas, J. Blanchard, G. Centers, S. O’ Kelley, A. Wickenbrock, J. Fang, and D. Budker, “Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment,” Phys. Dark Universe 19, 27–35 (2018).
[Crossref]

Bloom, A.

W. Bell and A. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
[Crossref]

Boto, E.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Bowtell, R.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Breschi, E.

Brookes, M. J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Budker, D.

T. Wang, D. J. Kimball, A. O. Sushkov, D. Aybas, J. Blanchard, G. Centers, S. O’ Kelley, A. Wickenbrock, J. Fang, and D. Budker, “Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment,” Phys. Dark Universe 19, 27–35 (2018).
[Crossref]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Centers, G.

T. Wang, D. J. Kimball, A. O. Sushkov, D. Aybas, J. Blanchard, G. Centers, S. O’ Kelley, A. Wickenbrock, J. Fang, and D. Budker, “Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment,” Phys. Dark Universe 19, 27–35 (2018).
[Crossref]

Chen, Y.

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin -exchange collision mixing of the K and exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A (Coll. Park) 94(52), 052705 (2016).
[Crossref]

Chrostowski, J.

J. Chrostowski and C. Delisle, “Bistable optical switching based on Bragg diffraction,” Opt. Commun. 41(2), 71–74 (1982).
[Crossref]

Dai, L.

Y. Hu, X. Liu, Y. Li, H. Yao, L. Dai, B. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D Appl. Phys. 50(26), 265001 (2017).
[Crossref]

Delisle, C.

J. Chrostowski and C. Delisle, “Bistable optical switching based on Bragg diffraction,” Opt. Commun. 41(2), 71–74 (1982).
[Crossref]

Ding, M.

Y. Hu, X. Liu, Y. Li, H. Yao, L. Dai, B. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D Appl. Phys. 50(26), 265001 (2017).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23(25), 32481–32489 (2015).
[Crossref] [PubMed]

Dong, H.

H. Huang, H. Dong, H. Hao, and X. Hu, “Close-loop bell-bloom magnetometer with amplitude modulation,” Chin. Phys. Lett. 32(9), 174–177 (2015).
[Crossref]

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84(8), 083108 (2013).
[Crossref] [PubMed]

Duan, L.

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin -exchange collision mixing of the K and exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A (Coll. Park) 94(52), 052705 (2016).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23(25), 32481–32489 (2015).
[Crossref] [PubMed]

Fang, J.

T. Wang, D. J. Kimball, A. O. Sushkov, D. Aybas, J. Blanchard, G. Centers, S. O’ Kelley, A. Wickenbrock, J. Fang, and D. Budker, “Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment,” Phys. Dark Universe 19, 27–35 (2018).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin -exchange collision mixing of the K and exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A (Coll. Park) 94(52), 052705 (2016).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23(25), 32481–32489 (2015).
[Crossref] [PubMed]

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85(6), 063108 (2014).
[Crossref] [PubMed]

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84(8), 083108 (2013).
[Crossref] [PubMed]

Fang, K.

K. Fang, P. Winker, and Y. Zhang, “Uniform design: theory and application,” Technometrics 42(3), 237–248 (2000).
[Crossref]

K. Fang and J. Li, “Some new results on the uniform design,” Chin. Sci. Bull. 40(4), 268–272 (1995).

Y. Wang and K. Fang, “A note on uniform distribution and experimental design,” Chin. Sci. Bull. 26(6), 485–489 (1981).

K. Fang, “Uniform design: an application of number-theoretic methods to experimental designs,” Yingyong Shuxue Xuebao 3(4), 363–372 (1980).

Fescenko, I.

Fromhold, T. M.

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Glover, P. M.

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Hao, H.

H. Huang, H. Dong, H. Hao, and X. Hu, “Close-loop bell-bloom magnetometer with amplitude modulation,” Chin. Phys. Lett. 32(9), 174–177 (2015).
[Crossref]

Holmes, N.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Horrigan, M. K.

C. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour pressure equations for the metallic elements: 298 − 2500K,” Scan. Metall. Quart. 23(3), 309–313 (1984).
[Crossref]

Hu, X.

H. Huang, H. Dong, H. Hao, and X. Hu, “Close-loop bell-bloom magnetometer with amplitude modulation,” Chin. Phys. Lett. 32(9), 174–177 (2015).
[Crossref]

Hu, Y.

Y. Hu, X. Liu, Y. Li, H. Yao, L. Dai, B. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D Appl. Phys. 50(26), 265001 (2017).
[Crossref]

Huang, D.

D. Huang, W. Liu, and C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photonics Technol. Lett. 12(9), 1153–1155 (2000).
[Crossref]

Huang, H.

H. Huang, H. Dong, H. Hao, and X. Hu, “Close-loop bell-bloom magnetometer with amplitude modulation,” Chin. Phys. Lett. 32(9), 174–177 (2015).
[Crossref]

Ichihara, S.

S. Ichihara, N. Mizutani, Y. Ito, and T. Kobayashi, “Differential Measurement with the balanced response of optically pumped atomic magnetometers,” IEEE Trans. Magn. 52(8), 1–9 (2016).
[Crossref]

K. Kamada, Y. Ito, S. Ichihara, N. Mizutani, and T. Kobayashi, “Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations,” Opt. Express 23(5), 6976–6987 (2015).
[Crossref] [PubMed]

Itkin, V. P.

C. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour pressure equations for the metallic elements: 298 − 2500K,” Scan. Metall. Quart. 23(3), 309–313 (1984).
[Crossref]

Ito, Y.

K. Nishi, Y. Ito, and T. Kobayashi, “High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer,” Opt. Express 26(2), 1988–1996 (2018).
[Crossref] [PubMed]

S. Ichihara, N. Mizutani, Y. Ito, and T. Kobayashi, “Differential Measurement with the balanced response of optically pumped atomic magnetometers,” IEEE Trans. Magn. 52(8), 1–9 (2016).
[Crossref]

K. Kamada, Y. Ito, S. Ichihara, N. Mizutani, and T. Kobayashi, “Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations,” Opt. Express 23(5), 6976–6987 (2015).
[Crossref] [PubMed]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Adv. 2(3), 032127 (2012).
[Crossref]

Jiang, L.

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin -exchange collision mixing of the K and exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A (Coll. Park) 94(52), 052705 (2016).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23(25), 32481–32489 (2015).
[Crossref] [PubMed]

Jiménez-Martínez, R.

Kamada, K.

K. Kamada, Y. Ito, S. Ichihara, N. Mizutani, and T. Kobayashi, “Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations,” Opt. Express 23(5), 6976–6987 (2015).
[Crossref] [PubMed]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Adv. 2(3), 032127 (2012).
[Crossref]

Kimball, D. J.

T. Wang, D. J. Kimball, A. O. Sushkov, D. Aybas, J. Blanchard, G. Centers, S. O’ Kelley, A. Wickenbrock, J. Fang, and D. Budker, “Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment,” Phys. Dark Universe 19, 27–35 (2018).
[Crossref]

Kitching, J.

Knappe, S.

O. Alem, R. Mhaskar, R. Jiménez-Martínez, D. Sheng, J. LeBlanc, L. Trahms, T. Sander, J. Kitching, and S. Knappe, “Magnetic field imaging with microfabricated optically-pumped magnetometers,” Opt. Express 25(7), 7849–7858 (2017).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Knowles, P.

Kobayashi, T.

K. Nishi, Y. Ito, and T. Kobayashi, “High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer,” Opt. Express 26(2), 1988–1996 (2018).
[Crossref] [PubMed]

S. Ichihara, N. Mizutani, Y. Ito, and T. Kobayashi, “Differential Measurement with the balanced response of optically pumped atomic magnetometers,” IEEE Trans. Magn. 52(8), 1–9 (2016).
[Crossref]

K. Kamada, Y. Ito, S. Ichihara, N. Mizutani, and T. Kobayashi, “Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations,” Opt. Express 23(5), 6976–6987 (2015).
[Crossref] [PubMed]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Adv. 2(3), 032127 (2012).
[Crossref]

Kominis, I. K.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[Crossref] [PubMed]

Kornack, T. W.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[Crossref] [PubMed]

Kruger, P.

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

LeBlanc, J.

Leggett, J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Li, J.

K. Fang and J. Li, “Some new results on the uniform design,” Chin. Sci. Bull. 40(4), 268–272 (1995).

Li, R.

Li, Y.

Y. Hu, X. Liu, Y. Li, H. Yao, L. Dai, B. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D Appl. Phys. 50(26), 265001 (2017).
[Crossref]

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85(6), 063108 (2014).
[Crossref] [PubMed]

Lim, M.

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Liu, W.

D. Huang, W. Liu, and C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photonics Technol. Lett. 12(9), 1153–1155 (2000).
[Crossref]

Liu, X.

Y. Hu, X. Liu, Y. Li, H. Yao, L. Dai, B. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D Appl. Phys. 50(26), 265001 (2017).
[Crossref]

Lu, Y.

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin -exchange collision mixing of the K and exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A (Coll. Park) 94(52), 052705 (2016).
[Crossref]

Meyer, S. S.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Mhaskar, R.

Mizutani, N.

S. Ichihara, N. Mizutani, Y. Ito, and T. Kobayashi, “Differential Measurement with the balanced response of optically pumped atomic magnetometers,” IEEE Trans. Magn. 52(8), 1–9 (2016).
[Crossref]

K. Kamada, Y. Ito, S. Ichihara, N. Mizutani, and T. Kobayashi, “Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations,” Opt. Express 23(5), 6976–6987 (2015).
[Crossref] [PubMed]

Morris, P. G.

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Mullinger, K. J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Muñoz, L. D.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Nishi, K.

O’ Kelley, S.

T. Wang, D. J. Kimball, A. O. Sushkov, D. Aybas, J. Blanchard, G. Centers, S. O’ Kelley, A. Wickenbrock, J. Fang, and D. Budker, “Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment,” Phys. Dark Universe 19, 27–35 (2018).
[Crossref]

Ohnishi, H.

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Adv. 2(3), 032127 (2012).
[Crossref]

Qin, J.

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84(8), 083108 (2013).
[Crossref] [PubMed]

Quan, W.

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin -exchange collision mixing of the K and exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A (Coll. Park) 94(52), 052705 (2016).
[Crossref]

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85(6), 063108 (2014).
[Crossref] [PubMed]

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84(8), 083108 (2013).
[Crossref] [PubMed]

Roberts, G.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Romalis, M.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Romalis, M. V.

M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Phys. Rev. Lett. 105(24), 243001 (2010).
[Crossref] [PubMed]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[Crossref] [PubMed]

Sander, T.

Shah, V.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Shah, V. K.

V. K. Shah and R. T. Wakai, “A compact, high performance atomic magnetometer for biomedical applications,” Phys. Med. Biol. 58(22), 8153–8161 (2013).
[Crossref] [PubMed]

Sheng, D.

Sushkov, A. O.

T. Wang, D. J. Kimball, A. O. Sushkov, D. Aybas, J. Blanchard, G. Centers, S. O’ Kelley, A. Wickenbrock, J. Fang, and D. Budker, “Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment,” Phys. Dark Universe 19, 27–35 (2018).
[Crossref]

Tierney, T. M.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Trahms, L.

Wakai, R. T.

V. K. Shah and R. T. Wakai, “A compact, high performance atomic magnetometer for biomedical applications,” Phys. Med. Biol. 58(22), 8153–8161 (2013).
[Crossref] [PubMed]

Wan, S.

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84(8), 083108 (2013).
[Crossref] [PubMed]

Wang, T.

T. Wang, D. J. Kimball, A. O. Sushkov, D. Aybas, J. Blanchard, G. Centers, S. O’ Kelley, A. Wickenbrock, J. Fang, and D. Budker, “Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment,” Phys. Dark Universe 19, 27–35 (2018).
[Crossref]

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85(6), 063108 (2014).
[Crossref] [PubMed]

Wang, W.

Wang, Y.

Y. Wang and K. Fang, “A note on uniform distribution and experimental design,” Chin. Sci. Bull. 26(6), 485–489 (1981).

Weis, A.

Wickenbrock, A.

T. Wang, D. J. Kimball, A. O. Sushkov, D. Aybas, J. Blanchard, G. Centers, S. O’ Kelley, A. Wickenbrock, J. Fang, and D. Budker, “Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment,” Phys. Dark Universe 19, 27–35 (2018).
[Crossref]

Winker, P.

K. Fang, P. Winker, and Y. Zhang, “Uniform design: theory and application,” Technometrics 42(3), 237–248 (2000).
[Crossref]

Yang, B.

Y. Hu, X. Liu, Y. Li, H. Yao, L. Dai, B. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D Appl. Phys. 50(26), 265001 (2017).
[Crossref]

Yang, C.

D. Huang, W. Liu, and C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photonics Technol. Lett. 12(9), 1153–1155 (2000).
[Crossref]

Yao, H.

Y. Hu, X. Liu, Y. Li, H. Yao, L. Dai, B. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D Appl. Phys. 50(26), 265001 (2017).
[Crossref]

Yuan, H.

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85(6), 063108 (2014).
[Crossref] [PubMed]

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84(8), 083108 (2013).
[Crossref] [PubMed]

Zhang, C.

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84(8), 083108 (2013).
[Crossref] [PubMed]

Zhang, H.

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85(6), 063108 (2014).
[Crossref] [PubMed]

Zhang, Y.

K. Fang, P. Winker, and Y. Zhang, “Uniform design: theory and application,” Technometrics 42(3), 237–248 (2000).
[Crossref]

Zou, S.

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85(6), 063108 (2014).
[Crossref] [PubMed]

AIP Adv. (1)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Adv. 2(3), 032127 (2012).
[Crossref]

Chin. Phys. Lett. (1)

H. Huang, H. Dong, H. Hao, and X. Hu, “Close-loop bell-bloom magnetometer with amplitude modulation,” Chin. Phys. Lett. 32(9), 174–177 (2015).
[Crossref]

Chin. Sci. Bull. (2)

K. Fang and J. Li, “Some new results on the uniform design,” Chin. Sci. Bull. 40(4), 268–272 (1995).

Y. Wang and K. Fang, “A note on uniform distribution and experimental design,” Chin. Sci. Bull. 26(6), 485–489 (1981).

IEEE Photonics Technol. Lett. (1)

D. Huang, W. Liu, and C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photonics Technol. Lett. 12(9), 1153–1155 (2000).
[Crossref]

IEEE Trans. Magn. (1)

S. Ichihara, N. Mizutani, Y. Ito, and T. Kobayashi, “Differential Measurement with the balanced response of optically pumped atomic magnetometers,” IEEE Trans. Magn. 52(8), 1–9 (2016).
[Crossref]

J. Phys. D Appl. Phys. (1)

Y. Hu, X. Liu, Y. Li, H. Yao, L. Dai, B. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D Appl. Phys. 50(26), 265001 (2017).
[Crossref]

Nat. Phys. (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Nature (2)

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[Crossref] [PubMed]

Neuroimage (1)

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Chrostowski and C. Delisle, “Bistable optical switching based on Bragg diffraction,” Opt. Commun. 41(2), 71–74 (1982).
[Crossref]

Opt. Express (5)

Phys. Dark Universe (1)

T. Wang, D. J. Kimball, A. O. Sushkov, D. Aybas, J. Blanchard, G. Centers, S. O’ Kelley, A. Wickenbrock, J. Fang, and D. Budker, “Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment,” Phys. Dark Universe 19, 27–35 (2018).
[Crossref]

Phys. Med. Biol. (1)

V. K. Shah and R. T. Wakai, “A compact, high performance atomic magnetometer for biomedical applications,” Phys. Med. Biol. 58(22), 8153–8161 (2013).
[Crossref] [PubMed]

Phys. Rev. A (Coll. Park) (1)

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin -exchange collision mixing of the K and exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A (Coll. Park) 94(52), 052705 (2016).
[Crossref]

Phys. Rev. Lett. (2)

W. Bell and A. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
[Crossref]

M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Phys. Rev. Lett. 105(24), 243001 (2010).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85(6), 063108 (2014).
[Crossref] [PubMed]

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84(8), 083108 (2013).
[Crossref] [PubMed]

Scan. Metall. Quart. (1)

C. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour pressure equations for the metallic elements: 298 − 2500K,” Scan. Metall. Quart. 23(3), 309–313 (1984).
[Crossref]

Technometrics (1)

K. Fang, P. Winker, and Y. Zhang, “Uniform design: theory and application,” Technometrics 42(3), 237–248 (2000).
[Crossref]

Yingyong Shuxue Xuebao (1)

K. Fang, “Uniform design: an application of number-theoretic methods to experimental designs,” Yingyong Shuxue Xuebao 3(4), 363–372 (1980).

Other (4)

Z. Gruji’c and A. Weis, “Atomic magnetic resonance induced by a amplitude-, frequency-, or polarization modulated light,” arXiv:1305. 6574 [physics.atom-ph] (May 2013).

J. M. Brown, “A new limit on lorentz- and CPT-violating neutron spin interactions using a K-3He comagnetometer,” Ph.D. dissertation, Princeton Univ. Princeton, NJ, USA, (2011).

S. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. dissertation, Princeton Univ. Princeton, NJ, USA, (2008).

W. Li, P. Lin, X. Peng, and H. Guo, “The optimized probe light frequency detuning for Faraday-rotation cesium atomic magnetometer,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JW2A.131.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of the AOM optical detection system. (a) AOM modulator is located before the cell. (b) AOM modulator is placed after the cell. (c) The square-wave modulation function with the repetition period Tmod and the duty cycle D.
Fig. 2
Fig. 2 Schematic of the SERF atomic magnetometer using AOM detection method. The modulator is placed after the cell in this picture just to make an illustration. Both positions will be tested.
Fig. 3
Fig. 3 SNR @30 Hz of the magnetometer varying with the duty cycle of the modulation function, ranging from 10% to 90%. The response signal reached the highest at 50% duty cycle.
Fig. 4
Fig. 4 Representative magnetometer responses in the frequency domain. The blue solid line denoted the frequency spectrum of the AOM detection method with the AOM modulator placed before the cell, the modulation frequency of 56 kHz, the 90° polarization direction and the duty cycle of 50%. The green dashed line represented the Faraday modulation method with the modulation frequency of 3.65 kHz and the amplitude of 1°. The red dash-dot line denoted the result of the balanced polarimetry method. These three lines were obtained when a reference signal of 25.8 pTrms@30 Hz was applied to the system. The pink dotted line was the technical noise baseline of AOM detection system observed by switching off reference signal. To get the scale factor of the magnetometer, the frequency response was measured as was shown in the inset at the upper right corner of the figure. The bandwidth of the magnetometer can be derived from the fitting curve. The fitting results were applied to the four curves in this figure.
Fig. 5
Fig. 5 Comparison of SNR fluctuations measured with the AOM method and the Faraday method respectively, both for every 15 minutes in 2 hours. The AOM method performed more stable.

Tables (1)

Tables Icon

Table 1 UD arrangements and results

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

θ = n c r e f l ( ν p r o b e ν 0 ) ( ν p r o b e ν 0 ) 2 + ( Γ / 2 ) 2 γ e S 0 B y ( R O P + R rel ) ( R O P + R rel ) 2 + ( γ e B y ) 2 ,
η = I d I i = sin 2 [ π 2 λ ( L H ) M 2 P ad ] ,
f ( t ) = 2 π sin ( π D ) + 4 π n = 1 sin ( π n D ) n cos ( n ω mod t ) .
I 1 = I 0 f ( t ) sin 2 ( θ π 4 ) ,
I 2 = I 0 f ( t ) cos 2 ( θ π 4 ) .
I 2 - I 1 = I 0 f ( t ) sin ( 2 θ ) .
I 2 - I 1 8 I 0 π sin ( π D ) θ .
Y = 423.374 + 28.942 B D + 6.399 C + 3.683 A B .

Metrics