Abstract

Athermal design of integrated photonic devices can reduce the need for active temperature stabilization and consequently the energy required to operate photonic integrated circuits. For silicon photonic filters such as AWGs which employ wire or ridge waveguides, temperature insensitivity can be achieved using cladding materials with negative thermo-optic coefficients. On the other hand, in echelle grating filters the inteference takes place in the slab free-propagation region, and therefore the modal overlap with the cladding is small, rendering this method ineffective. In this work we present an approach to design an athermal echelle grating filter exploiting a temperature-synchronized Mach-Zehnder interferometer as input. This reduces the spectral shift over a temperature range of 20 K to less than ±45 pm compared to the 1.6 nm shift for the same echelle grating with a conventional waveguide input. Furthermore, the proposed design relies exclusively on a standard fabrication process for silicon-on-insulator photonic devices and exhibits a good tolerance to fabrication uncertainties.

Full Article  |  PDF Article
OSA Recommended Articles
Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature

Shiqi Tao, Qingzhong Huang, Liangqiu Zhu, Jun Liu, Yinglu Zhang, Ying Huang, Yi Wang, and Jinsong Xia
Photon. Res. 6(7) 686-691 (2018)

Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides

Linghua Wang, Wim Bogaerts, Pieter Dumon, Shankar Kumar Selvaraja, Jie Teng, Shibnath Pathak, Xiuyou Han, Jinyan Wang, Xigao Jian, Mingshan Zhao, Roel Baets, and Geert Morthier
Appl. Opt. 51(9) 1251-1256 (2012)

Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides

Jie Teng, Pieter Dumon, Wim Bogaerts, Hongbo Zhang, Xigao Jian, Xiuyou Han, Mingshan Zhao, Geert Morthier, and Roel Baets
Opt. Express 17(17) 14627-14633 (2009)

References

  • View by:
  • |
  • |
  • |

  1. X. Guan, X. Wang, and L. H. Frandsen, “Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon mach-zehnder interferometer,” Opt. Express 24, 16349–16356 (2016).
    [Crossref] [PubMed]
  2. D. Melati, A. Waqas, A. Alippi, and A. Melloni, “Wavelength and composition dependence of the thermo-optic coefficient for ingaasp-based integrated waveguides,” J. Appl. Phys. 120, 213102 (2016).
    [Crossref]
  3. K. Okamoto, “Progress and technical challenge for planar waveguide devices: silica and silicon waveguides,” Laser & Photonics Rev. 6, 14–23 (2011).
    [Crossref]
  4. C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Light. Technol. 24, 4763–4789 (2006).
    [Crossref]
  5. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
    [Crossref]
  6. S. Pathak, P. Dumon, D. V. Thourhout, and W. Bogaerts, “Comparison of awgs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photonics J. 6, 1–9 (2014).
    [Crossref]
  7. S. Kamei, T. Kitoh, M. Itoh, T. Shibata, and M. Kohtoku, “50-ghz-spacing athermal mach-zehnder interferometer-synchronized arrayed-waveguide grating with improved temperature insensitivity,” IEEE Photonics Technol. Lett. 21, 1205–1207 (2009).
    [Crossref]
  8. S. Namnabat, K.-J. Kim, A. Jones, R. Himmelhuber, C. T. DeRose, D. C. Trotter, A. L. Starbuck, A. Pomerene, A. L. Lentine, and R. A. Norwood, “Athermal silicon optical add-drop multiplexers based on thermo-optic coefficient tuning of sol-gel material,” Opt. Express 25, 21471–21482 (2017).
    [Crossref] [PubMed]
  9. S. Grillanda, V. Raghunathan, V. Singh, F. Morichetti, J. Michel, L. Kimerling, A. Melloni, and A. Agarwal, “Post-fabrication trimming of athermal silicon waveguides,” Opt. Lett. 38, 5450–5453 (2013).
    [Crossref] [PubMed]
  10. J. H. Schmid, M. Ibrahim, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, W. N. Ye, and D.-X. Xu, “Temperature-independent silicon subwavelength grating waveguides,” Opt. Lett. 36, 2110–2112 (2011).
    [Crossref] [PubMed]
  11. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “Cmos-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).
    [Crossref] [PubMed]
  12. J.-J. He and E. S. Koteles, “Athermal waveguide grating based device having a temperature compensator in the slab waveguide region,” (2001). US Patent 6,169,838.
  13. M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599–601 (2009).
    [Crossref] [PubMed]
  14. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37, 2253–2255 (2012).
    [Crossref] [PubMed]
  15. K. Hassan, C. Sciancalepore, J. Harduin, T. Ferrotti, S. Menezo, and B. B. Bakir, “Toward athermal silicon-on-insulator (de)multiplexers in the o-band,” Opt. Lett. 40, 2641–2644 (2015).
    [Crossref] [PubMed]
  16. C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photonics Technol. Lett. 14, 56–58 (2002).
    [Crossref]
  17. C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photonics Technol. Lett. 15, 918–920 (2003).
    [Crossref]
  18. S. Kamei, T. Shibata, and Y. Inoue, “Compensation for second-order temperature dependence in athermal arrayed-waveguide grating realizing wide temperature range operation,” IEEE Photonics Technol. Lett. 21, 1695–1697 (2009).
    [Crossref]
  19. P. Cheben, A. Delage, S. Janz, and D.-X. Xu, “Echelle and arrayed waveguide gratings for wdm and spectral analysis,” in Advances in information optics and photonics, (SPIE Press2008), chap. 29, pp. 599–632.
    [Crossref]
  20. Lumerical Inc. http://www.lumerical.com/ .
  21. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 6273–6284 (2006).
  22. D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
    [Crossref]

2017 (1)

2016 (2)

X. Guan, X. Wang, and L. H. Frandsen, “Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon mach-zehnder interferometer,” Opt. Express 24, 16349–16356 (2016).
[Crossref] [PubMed]

D. Melati, A. Waqas, A. Alippi, and A. Melloni, “Wavelength and composition dependence of the thermo-optic coefficient for ingaasp-based integrated waveguides,” J. Appl. Phys. 120, 213102 (2016).
[Crossref]

2015 (1)

2014 (2)

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

S. Pathak, P. Dumon, D. V. Thourhout, and W. Bogaerts, “Comparison of awgs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photonics J. 6, 1–9 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (2)

2009 (3)

S. Kamei, T. Kitoh, M. Itoh, T. Shibata, and M. Kohtoku, “50-ghz-spacing athermal mach-zehnder interferometer-synchronized arrayed-waveguide grating with improved temperature insensitivity,” IEEE Photonics Technol. Lett. 21, 1205–1207 (2009).
[Crossref]

S. Kamei, T. Shibata, and Y. Inoue, “Compensation for second-order temperature dependence in athermal arrayed-waveguide grating realizing wide temperature range operation,” IEEE Photonics Technol. Lett. 21, 1695–1697 (2009).
[Crossref]

M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599–601 (2009).
[Crossref] [PubMed]

2006 (2)

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 6273–6284 (2006).

C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Light. Technol. 24, 4763–4789 (2006).
[Crossref]

2004 (1)

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

2003 (1)

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photonics Technol. Lett. 15, 918–920 (2003).
[Crossref]

2002 (1)

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photonics Technol. Lett. 14, 56–58 (2002).
[Crossref]

Agarwal, A.

Alippi, A.

D. Melati, A. Waqas, A. Alippi, and A. Melloni, “Wavelength and composition dependence of the thermo-optic coefficient for ingaasp-based integrated waveguides,” J. Appl. Phys. 120, 213102 (2016).
[Crossref]

Bakir, B. B.

Balakrishnan, A.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

Basak, J.

Bock, P. J.

Bogaerts, W.

S. Pathak, P. Dumon, D. V. Thourhout, and W. Bogaerts, “Comparison of awgs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photonics J. 6, 1–9 (2014).
[Crossref]

Charbonneau, S.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

Cheben, P.

J. H. Schmid, M. Ibrahim, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, W. N. Ye, and D.-X. Xu, “Temperature-independent silicon subwavelength grating waveguides,” Opt. Lett. 36, 2110–2112 (2011).
[Crossref] [PubMed]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

P. Cheben, A. Delage, S. Janz, and D.-X. Xu, “Echelle and arrayed waveguide gratings for wdm and spectral analysis,” in Advances in information optics and photonics, (SPIE Press2008), chap. 29, pp. 599–632.
[Crossref]

Chen, X.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Cheung, S. T. S.

Cloutier, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

Delage, A.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

P. Cheben, A. Delage, S. Janz, and D.-X. Xu, “Echelle and arrayed waveguide gratings for wdm and spectral analysis,” in Advances in information optics and photonics, (SPIE Press2008), chap. 29, pp. 599–632.
[Crossref]

Densmore, A.

DeRose, C. T.

Djordjevic, S. S.

Doerr, C. R.

C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Light. Technol. 24, 4763–4789 (2006).
[Crossref]

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photonics Technol. Lett. 15, 918–920 (2003).
[Crossref]

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photonics Technol. Lett. 14, 56–58 (2002).
[Crossref]

Dossou, K.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

Dumon, P.

S. Pathak, P. Dumon, D. V. Thourhout, and W. Bogaerts, “Comparison of awgs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photonics J. 6, 1–9 (2014).
[Crossref]

Erickson, L.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

Ferrotti, T.

Frandsen, L. H.

Frey, B. J.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 6273–6284 (2006).

Gao, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

Grillanda, S.

Guan, B.

Guan, X.

Guha, B.

Harduin, J.

Hassan, K.

He, J.-J.

J.-J. He and E. S. Koteles, “Athermal waveguide grating based device having a temperature compensator in the slab waveguide region,” (2001). US Patent 6,169,838.

Himmelhuber, R.

Ibrahim, M.

Inoue, Y.

S. Kamei, T. Shibata, and Y. Inoue, “Compensation for second-order temperature dependence in athermal arrayed-waveguide grating realizing wide temperature range operation,” IEEE Photonics Technol. Lett. 21, 1695–1697 (2009).
[Crossref]

Itoh, M.

S. Kamei, T. Kitoh, M. Itoh, T. Shibata, and M. Kohtoku, “50-ghz-spacing athermal mach-zehnder interferometer-synchronized arrayed-waveguide grating with improved temperature insensitivity,” IEEE Photonics Technol. Lett. 21, 1205–1207 (2009).
[Crossref]

Janz, S.

J. H. Schmid, M. Ibrahim, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, W. N. Ye, and D.-X. Xu, “Temperature-independent silicon subwavelength grating waveguides,” Opt. Lett. 36, 2110–2112 (2011).
[Crossref] [PubMed]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

P. Cheben, A. Delage, S. Janz, and D.-X. Xu, “Echelle and arrayed waveguide gratings for wdm and spectral analysis,” in Advances in information optics and photonics, (SPIE Press2008), chap. 29, pp. 599–632.
[Crossref]

Jones, A.

Kamei, S.

S. Kamei, T. Shibata, and Y. Inoue, “Compensation for second-order temperature dependence in athermal arrayed-waveguide grating realizing wide temperature range operation,” IEEE Photonics Technol. Lett. 21, 1695–1697 (2009).
[Crossref]

S. Kamei, T. Kitoh, M. Itoh, T. Shibata, and M. Kohtoku, “50-ghz-spacing athermal mach-zehnder interferometer-synchronized arrayed-waveguide grating with improved temperature insensitivity,” IEEE Photonics Technol. Lett. 21, 1205–1207 (2009).
[Crossref]

Keyvaninia, S.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Kim, K.-J.

Kimerling, L.

Kitoh, T.

S. Kamei, T. Kitoh, M. Itoh, T. Shibata, and M. Kohtoku, “50-ghz-spacing athermal mach-zehnder interferometer-synchronized arrayed-waveguide grating with improved temperature insensitivity,” IEEE Photonics Technol. Lett. 21, 1205–1207 (2009).
[Crossref]

Kohtoku, M.

S. Kamei, T. Kitoh, M. Itoh, T. Shibata, and M. Kohtoku, “50-ghz-spacing athermal mach-zehnder interferometer-synchronized arrayed-waveguide grating with improved temperature insensitivity,” IEEE Photonics Technol. Lett. 21, 1205–1207 (2009).
[Crossref]

Koteles, E. S.

J.-J. He and E. S. Koteles, “Athermal waveguide grating based device having a temperature compensator in the slab waveguide region,” (2001). US Patent 6,169,838.

Krug, P. A.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

Lamontagne, B.

J. H. Schmid, M. Ibrahim, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, W. N. Ye, and D.-X. Xu, “Temperature-independent silicon subwavelength grating waveguides,” Opt. Lett. 36, 2110–2112 (2011).
[Crossref] [PubMed]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

Lapointe, J.

Lentine, A. L.

Leviton, D. B.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 6273–6284 (2006).

Liao, L.

Lipson, M.

Liu, H.-F.

Ma, R.

Mashanovich, G. Z.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Melati, D.

D. Melati, A. Waqas, A. Alippi, and A. Melloni, “Wavelength and composition dependence of the thermo-optic coefficient for ingaasp-based integrated waveguides,” J. Appl. Phys. 120, 213102 (2016).
[Crossref]

Melloni, A.

D. Melati, A. Waqas, A. Alippi, and A. Melloni, “Wavelength and composition dependence of the thermo-optic coefficient for ingaasp-based integrated waveguides,” J. Appl. Phys. 120, 213102 (2016).
[Crossref]

S. Grillanda, V. Raghunathan, V. Singh, F. Morichetti, J. Michel, L. Kimerling, A. Melloni, and A. Agarwal, “Post-fabrication trimming of athermal silicon waveguides,” Opt. Lett. 38, 5450–5453 (2013).
[Crossref] [PubMed]

Menezo, S.

Michel, J.

Morichetti, F.

Motooka, T.

Namnabat, S.

Nedeljkovic, M.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Norwood, R. A.

Okamoto, K.

K. Okamoto, “Progress and technical challenge for planar waveguide devices: silica and silicon waveguides,” Laser & Photonics Rev. 6, 14–23 (2011).
[Crossref]

C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Light. Technol. 24, 4763–4789 (2006).
[Crossref]

Packirisamy, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

Pafchek, R.

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photonics Technol. Lett. 15, 918–920 (2003).
[Crossref]

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photonics Technol. Lett. 14, 56–58 (2002).
[Crossref]

Pathak, S.

S. Pathak, P. Dumon, D. V. Thourhout, and W. Bogaerts, “Comparison of awgs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photonics J. 6, 1–9 (2014).
[Crossref]

Pearson, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

Pomerene, A.

Preston, K.

Raghunathan, V.

Reed, G. T.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Schmid, J. H.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

J. H. Schmid, M. Ibrahim, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, W. N. Ye, and D.-X. Xu, “Temperature-independent silicon subwavelength grating waveguides,” Opt. Lett. 36, 2110–2112 (2011).
[Crossref] [PubMed]

Sciancalepore, C.

Selvaraja, S. K.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Shang, K.

Shibata, T.

S. Kamei, T. Shibata, and Y. Inoue, “Compensation for second-order temperature dependence in athermal arrayed-waveguide grating realizing wide temperature range operation,” IEEE Photonics Technol. Lett. 21, 1695–1697 (2009).
[Crossref]

S. Kamei, T. Kitoh, M. Itoh, T. Shibata, and M. Kohtoku, “50-ghz-spacing athermal mach-zehnder interferometer-synchronized arrayed-waveguide grating with improved temperature insensitivity,” IEEE Photonics Technol. Lett. 21, 1205–1207 (2009).
[Crossref]

Shunk, S.

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photonics Technol. Lett. 14, 56–58 (2002).
[Crossref]

Singh, V.

Starbuck, A. L.

Stulz, L. W.

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photonics Technol. Lett. 15, 918–920 (2003).
[Crossref]

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photonics Technol. Lett. 14, 56–58 (2002).
[Crossref]

Thomson, D. J.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

Thourhout, D. V.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

S. Pathak, P. Dumon, D. V. Thourhout, and W. Bogaerts, “Comparison of awgs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photonics J. 6, 1–9 (2014).
[Crossref]

Trotter, D. C.

Uenuma, M.

Wang, X.

Waqas, A.

D. Melati, A. Waqas, A. Alippi, and A. Melloni, “Wavelength and composition dependence of the thermo-optic coefficient for ingaasp-based integrated waveguides,” J. Appl. Phys. 120, 213102 (2016).
[Crossref]

Xu, D. X.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

Xu, D.-X.

J. H. Schmid, M. Ibrahim, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, W. N. Ye, and D.-X. Xu, “Temperature-independent silicon subwavelength grating waveguides,” Opt. Lett. 36, 2110–2112 (2011).
[Crossref] [PubMed]

P. Cheben, A. Delage, S. Janz, and D.-X. Xu, “Echelle and arrayed waveguide gratings for wdm and spectral analysis,” in Advances in information optics and photonics, (SPIE Press2008), chap. 29, pp. 599–632.
[Crossref]

Ye, W. N.

Yoo, S. J. B.

IEEE J. Sel. Top. Quantum Electron. (1)

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform - have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 189–205 (2014).
[Crossref]

IEEE Photonics J. (1)

S. Pathak, P. Dumon, D. V. Thourhout, and W. Bogaerts, “Comparison of awgs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photonics J. 6, 1–9 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (5)

S. Kamei, T. Kitoh, M. Itoh, T. Shibata, and M. Kohtoku, “50-ghz-spacing athermal mach-zehnder interferometer-synchronized arrayed-waveguide grating with improved temperature insensitivity,” IEEE Photonics Technol. Lett. 21, 1205–1207 (2009).
[Crossref]

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photonics Technol. Lett. 14, 56–58 (2002).
[Crossref]

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photonics Technol. Lett. 15, 918–920 (2003).
[Crossref]

S. Kamei, T. Shibata, and Y. Inoue, “Compensation for second-order temperature dependence in athermal arrayed-waveguide grating realizing wide temperature range operation,” IEEE Photonics Technol. Lett. 21, 1695–1697 (2009).
[Crossref]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photonics Technol. Lett. 16, 503–505 (2004).
[Crossref]

J. Appl. Phys. (1)

D. Melati, A. Waqas, A. Alippi, and A. Melloni, “Wavelength and composition dependence of the thermo-optic coefficient for ingaasp-based integrated waveguides,” J. Appl. Phys. 120, 213102 (2016).
[Crossref]

J. Light. Technol. (1)

C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Light. Technol. 24, 4763–4789 (2006).
[Crossref]

Laser & Photonics Rev. (1)

K. Okamoto, “Progress and technical challenge for planar waveguide devices: silica and silicon waveguides,” Laser & Photonics Rev. 6, 14–23 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Proc. SPIE (1)

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 6273–6284 (2006).

Other (3)

J.-J. He and E. S. Koteles, “Athermal waveguide grating based device having a temperature compensator in the slab waveguide region,” (2001). US Patent 6,169,838.

P. Cheben, A. Delage, S. Janz, and D.-X. Xu, “Echelle and arrayed waveguide gratings for wdm and spectral analysis,” in Advances in information optics and photonics, (SPIE Press2008), chap. 29, pp. 599–632.
[Crossref]

Lumerical Inc. http://www.lumerical.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the SOI athermal echelle grating with a temperature-synchronized Mach-Zehnder input for temperature-insensitive operation. The inset shows the designed changes of the optical field with temperature at the entrance of the slab area.
Fig. 2
Fig. 2 Effective thermo-optic coefficient (TOC) and group index for the fundamental TE-like mode of an SOI waveguide as function of the waveguide width. The dashed lines mark the chosen widths w1 = 380 nm and w2 = 800 nm.
Fig. 3
Fig. 3 (a) Schematic of the interface 3-dB coupler. (b–d) Field profile |Ex|2 for λ = 1550 nm at the entrance to the echelle slab area for temperature of 290 K, 300 K and 310 K, respectively.
Fig. 4
Fig. 4 Simulations of the transfer functions of the four echelle filter channels with (a) a conventional 2-μm waveguide input and (b)) using the proposed temperature-synchronized input. The numerals denote the channel number. (c) Channel wavelength shift as a function of temperature in the case of waveguide input (black solid line - the same for all the channels) and T-synced input (red diamonds and blue crosses for channels 1 and 2, respectively). (d) Insertion loss for channels 1 and 2 calculated at the channel central wavelength at 300 K.
Fig. 5
Fig. 5 Worst-case fabrication tolerance analysis: pass-band of outer channel 1 (λ1 = 1540.56 nm) at 290 K, 300 K, and 310 K, respectively, with a waveguide width deviation of ±10 nm in the T-synced input.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Λ ( sin ϑ + sin φ k ) = m λ k n eff ( λ k ) .
FSR = λ 0 2 L 1 n g , 1 ( λ 0 , T 0 ) L 2 n g , 2 ( λ 0 , T 0 )
L 1 n g , 1 ( λ 0 , T 0 ) = L 2 n g , 2 ( λ 0 , T 0 ) .
L 1 n eff , 1 ( λ 0 , T ) T | T 0 Δ T L 2 n eff , 2 ( λ 0 , T ) T | T 0 Δ T = λ 0 2
M ( λ , T ) = [ e j φ s o 0 0 e j φ a o ] C [ e j β 1 L 1 0 0 e j β 2 L 2 ] C 1 [ e j β s f L f 0 0 e j β a f L f ] C [ 1 0 ]
C = [ 1 1 1 1 ]

Metrics