Abstract

Multiple breakdowns in liquids still remains obscure for its complex, non-equilibrium and transient dynamic process. We introduced three methods, namely, plasma imaging, light-scattering technique, and acoustic detection, to measure the multiple breakdown in water induced by focused nanosecond laser pulses simultaneously. Our results showed that linear dependence existed among the cavitation-bubble lifetime, the far-field peak pressure of the initial shock wave, and the corresponding plasma volume. Such a relationship can be used to evaluate the ideal size and energy of each bubble during multiple breakdown. The major bubble lifetime was hardly affected by the inevitable coalescence of cavitation bubbles, thereby confirming the availability of light-scattering technique on the estimation of bubble size during multiple breakdown. Whereas, the strength of collapse-shock-wave and the subsequent rebound of bubbles was strongly influenced, i.e., the occurrence of multiple breakdown suppressed the cavitation-bubble energy being converted into collapse-shock-wave energy but enhanced conversion into rebound-bubble energy. This study is a valuable contribution to research on the rapid mixing of microfluidics, damage control of microsurgery, and photoacoustic applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effect of focusing conditions on laser-induced shock waves at titanium–water interface

Arpita Nath and Alika Khare
Appl. Opt. 50(19) 3275-3281 (2011)

Pump-probe imaging of nanosecond laser-induced bubbles in agar gel

R. Evans, S. Camacho-López, F. G. Pérez-Gutiérrez, and G. Aguilar
Opt. Express 16(10) 7481-7492 (2008)

Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water

Xiao Chen, Rong-Qing Xu, Jian-Ping Chen, Zhong-Hua Shen, Lu Jian, and Xiao-Wu Ni
Appl. Opt. 43(16) 3251-3257 (2004)

References

  • View by:
  • |
  • |
  • |

  1. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
    [Crossref]
  2. I. Tanev, V. Tanev, and A. J. Kanellopoulos, “Nanosecond laser-assisted cataract surgery: Endothelial cell study,” J. Cataract Refract. Surg. 42(5), 725–730 (2016).
    [Crossref] [PubMed]
  3. C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
    [Crossref]
  4. I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
    [PubMed]
  5. H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
    [Crossref] [PubMed]
  6. P. S. Binder, “One thousand consecutive IntraLase laser in situ keratomileusis flaps,” J. Cataract Refract. Surg. 32(6), 962–969 (2006).
    [Crossref] [PubMed]
  7. R. L. Harzic, S. Martin, R. Buckle, C. Wullner, C. Donitzky, I. Riemann, and K. Konig, “New developments in corneal refractive surgery with femtosecond laser pulses,” Proc. SPIE 6138, 61381J (2006).
    [Crossref]
  8. T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
    [Crossref] [PubMed]
  9. H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
    [Crossref] [PubMed]
  10. J. Di, J. Kim, Q. Hu, X. Jiang, and Z. Gu, “Spatiotemporal drug delivery using laser-generated-focused ultrasound system,” J. Control. Release 220(Pt B), 592–599 (2015).
    [Crossref] [PubMed]
  11. E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152(2), 286–293 (2011).
    [Crossref] [PubMed]
  12. A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J. Biophotonics 1(1), 24–35 (2008).
    [Crossref] [PubMed]
  13. Y. C. Wu, T. H. Wu, D. L. Clemens, B. Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P. Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
    [Crossref] [PubMed]
  14. N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, and E. Mazur, “Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates,” ACS Nano 11(4), 3671–3680 (2017).
    [Crossref] [PubMed]
  15. T. Kodama, A. G. Doukas, and M. R. Hamblin, “Shock wave-mediated molecular delivery into cells,” Biochim. Biophys. Acta 1542(1-3), 186–194 (2002).
    [Crossref] [PubMed]
  16. Y. Hosokawa, S. Iguchi, R. Yasukuni, Y. Hiraki, C. Shukunami, and H. Masuhara, “Gene delivery process in a single animal cell after femtosecond laser microinjection,” Appl. Surf. Sci. 255(24), 9880–9884 (2009).
    [Crossref]
  17. Q. H. Fan, W. Q. Hu, and A. T. Ohta, “Light-induced microbubble poration of localized cells,” in Proceedings of IEEE Conference on IEEE engineering in medicine and biology society (IEEE, 2013), pp. 4482–4485.
  18. C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
    [Crossref] [PubMed]
  19. C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
    [Crossref] [PubMed]
  20. G. N. Sankin, F. Yuan, and P. Zhong, “Pulsating tandem microbubble for localized and directional single-cell membrane poration,” Phys. Rev. Lett. 105(7), 078101 (2010).
    [Crossref] [PubMed]
  21. M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
    [Crossref] [PubMed]
  22. K. Pallav, I. Saxena, and K. F. Ehmann, “Laser-induced plasma micromachining process: principles and performance,” J. Micro. Nano-Manuf. 3(3), 031004 (2015).
    [Crossref]
  23. S. Jolly, N. Savidis, B. Datta, T. Karydis, W. Langford, N. Gershenfeld, and V. M. Bove, “Progress in fabrication of anisotropic Bragg gratings fabricated in lithium niobate via femtosecond laser micromachining,” Proc. SPIE 10544, 105440D (2018).
  24. X. F. Du, D. M. Dong, X. D. Zhao, L. Z. Jiao, P. C. Han, and Y. Lang, “Detection of pesticide residues on fruit surfaces using laser induced breakdown spectroscopy,” Rsc Adv 5(97), 79956–79963 (2015).
    [Crossref]
  25. V. Lazic, S. Jovicevic, R. Fantoni, and F. Colao, “Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy,” Spectrochim. Acta B. 62(12), 1433–1442 (2007).
    [Crossref]
  26. Y. Dixit, M. P. Casado-Gavalda, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, F. Jacoby, P. J. Cullen, and C. Sullivan, “Introduction to laser induced breakdown spectroscopy imaging in food: salt diffusion in meat,” J. Food Eng. 216, 120–124 (2018).
    [Crossref]
  27. T. H. Wu, L. Y. Gao, Y. Chen, K. Wei, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
    [Crossref]
  28. A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
    [Crossref] [PubMed]
  29. R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip 8(10), 1676–1681 (2008).
    [Crossref] [PubMed]
  30. N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
    [Crossref]
  31. A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
    [Crossref]
  32. K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. II. transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
    [Crossref]
  33. F. Docchio, “Spatial and temporal dynamics of light attenuation and transmission by plasmas induced in liquids by nanosecond Nd: YAG laser pulses,” Nuovo Cimento D 13(1), 87–98 (1991).
    [Crossref]
  34. C. Schaffer, N. Nishimura, E. Glezer, A. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
    [Crossref] [PubMed]
  35. F. Docchio, P. Regondi, M. R. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times,” Appl. Opt. 27(17), 3661–3668 (1988).
    [Crossref] [PubMed]
  36. W. Lauterborn and A. Vogel, “Shock wave emission by laser generated bubbles,” in Bubble dynamics and shock waves, C. F. Delale, ed. (Springer, 2013), pp. 67–103.
  37. A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Noninvasive determination of shock-wave pressure generated by optical-breakdown,” Appl Phys B. 53(4), 237–245 (1991).
    [Crossref]
  38. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
    [Crossref]
  39. K. Johansen, J. H. Song, K. Johnston, and P. Prentice, “Deconvolution of acoustically detected bubble-collapse shock waves,” Ultrasonics 73, 144–153 (2017).
    [Crossref] [PubMed]
  40. C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminescence,” Philos T R Soc A 357(1751), 269–294 (1999).
    [Crossref]
  41. R. Petkovsek and P. Gregorcic, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
    [Crossref]
  42. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
    [Crossref] [PubMed]
  43. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
    [Crossref]
  44. Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
    [Crossref]
  45. A. Vogel, J. Noack, D. X. Hammer, and B. A. Rockwell, “Shock waves and cavitation effects in aqueous media induced by ultrafast laser pulses,” AIP Conf. Proc. 524, 397–401 (2000).
    [Crossref]
  46. Y. Tian, B. Y. Xue, J. J. Song, Y. Lu, and R. Zheng, “Stabilization of laser-induced plasma in bulk water using large focusing angle,” Appl. Phys. Lett. 109(6), 061104 (2016).
    [Crossref]
  47. N. Tinne, T. Ripken, H. Lubatschowski, and A. Heisterkamp, “Interaction dynamics of fs-laser induced cavitation bubbles and their impact on the laser-tissue-interaction of modern ophthalmic laser systems,” Proc. SPIE 8092, 80921H (2011).
    [Crossref]
  48. S. Rungsiyaphornrat, E. Klaseboer, B. C. Khoo, and K. S. Yeo, “The merging of two gaseous bubbles with an application to underwater explosions,” Comput. Fluids 32(8), 1049–1074 (2003).
    [Crossref]
  49. Y. Tagawa, N. Oudalov, A. El Ghalbzouri, C. Sun, and D. Lohse, “Needle-free injection into skin and soft matter with highly focused microjets,” Lab Chip 13(7), 1357–1363 (2013).
    [Crossref] [PubMed]
  50. Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly focused supersonic microjets,” Phys. Rev. X 2(3), 031002 (2012).
    [Crossref]
  51. V. Menezes, S. Kumar, and K. Takayama, “Shock wave driven liquid microjets for drug delivery,” J. Appl. Phys. 106(8), 086102 (2009).
    [Crossref]
  52. W. Lauterborn and K. J. Ebeling, “High-speed holography of laser-induced breakdown in liquids,” Appl. Phys. Lett. 31(10), 663–664 (1977).
    [Crossref]
  53. M. Capon, F. Docchio, and J. Mellerio, “Investigations of multiple plasmas from ophthalmic Nd: YAG lasers,” Lasers Ophthalmol 1, 147–153 (1987).
  54. T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ= 1064 nm nanosecond pulses,” Chem. Phys. Lett. 500(4-6), 242–250 (2010).
    [Crossref]
  55. A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
    [Crossref] [PubMed]
  56. L. R. Evans and C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22(21), 1099–1102 (1969).
    [Crossref]
  57. R. Evans and S. Camacho-Lopez, “Pump-probe imaging of nanosecond laser-induced bubbles in distilled water solutions: observations of laser-produced-plasma,” J. Appl. Phys. 108(10), 103106 (2010).
    [Crossref]
  58. F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “Highly extended high density filaments in tight focusing geometry in water: from femtoseconds to microseconds,” New J. Phys. 17(5), 053010 (2015).
    [Crossref]
  59. Y. Tagawa, S. Yamamoto, K. Hayasaka, and M. Kameda, “On pressure impulse of a laser-induced underwater shock wave,” J. Fluid Mech. 808, 5–18 (2016).
    [Crossref]
  60. M. R. C. Capon, F. Docchio, and J. Mellerio, “Nd:YAG laser photodisruption: an experimental investigation on shielding and multiple plasma formation,” Graefes Arch. Clin. Exp. Ophthalmol. 226(4), 362–366 (1988).
    [Crossref] [PubMed]
  61. S. L. Genc, H. Ma, and V. Venugopalan, “Low-density plasma formation in aqueous biological media using sub-nanosecond laser pulses,” Appl. Phys. Lett. 105(6), 063701 (2014).
    [Crossref] [PubMed]
  62. J. Blake, P. Robinson, A. Shima, and Y. Tomita, “Interaction of two cavitation bubbles with a rigid boundary,” J. Fluid Mech. 255(-1), 707–721 (1993).
    [Crossref]
  63. W. Lauterborn and W. Hentschel, “Cavitation bubble dynamics studied by high speed photography and holography: part one,” Ultrasonics 23(6), 260–268 (1985).
    [Crossref]
  64. A. Nath and A. Khare, “Transient evolution of multiple bubbles in laser induced breakdown in water,” Laser Part. Beams 29(1), 1–9 (2011).
    [Crossref]
  65. N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt. 15(6), 068003 (2010).
    [Crossref] [PubMed]
  66. F. V. Potemkin and E. I. Mareev, “Dynamics of multiple bubbles, excited by a femtosecond filament in water,” Laser Phys. Lett. 12(1), 015405 (2015).
    [Crossref]
  67. P. A. Quinto-Su, V. Venugopalan, and C. D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
    [Crossref] [PubMed]
  68. K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C. D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
    [Crossref] [PubMed]
  69. G. N. Sankin, Y. Zhou, and P. Zhong, “Focusing of shock waves induced by optical breakdown in water,” J. Acoust. Soc. Am. 123(6), 4071–4081 (2008).
    [Crossref] [PubMed]
  70. F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “Laser control of filament-induced shock wave in water,” Laser Phys. Lett. 11(10), 106001 (2014).
    [Crossref]
  71. L. W. Chew, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Interaction of two differently sized oscillating bubbles in a free field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(6), 066307 (2011).
    [Crossref] [PubMed]
  72. B. Han, K. Kohler, K. Jungnickel, R. Mettin, W. Lauterborn, and A. Vogel, “Dynamics of laser-induced bubble pairs,” J. Fluid Mech. 771, 706–742 (2015).
    [Crossref]
  73. S. W. Fong, D. Adhikari, E. Klaseboer, and B. C. Khoo, “Interactions of multiple spark-generated bubbles with phase differences,” Exp. Fluids 46(4), 705–724 (2009).
    [Crossref]
  74. A. Vogel, N. Linz, S. Freidank, and X. X. Liang, “Controlled nonlinear energy deposition in transparent materials: experiments and theory,” in Proceedings of International Symposium on High Power Laser Ablation, C. R. Phipps, ed. (American Institute of Physics, 2010), pp. 51–55.
  75. P. Cui, Q. X. Wang, S. P. Wang, and A. M. Zhang, “Experimental study on interaction and coalescence of synchronized multiple bubbles,” Phys. Fluids 28(1), 012103 (2016).
    [Crossref]
  76. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
    [Crossref]
  77. Y. X. Yang, Q. X. Wang, and T. S. Keat, “Dynamic features of a laser-induced cavitation bubble near a solid boundary,” Ultrason. Sonochem. 20(4), 1098–1103 (2013).
    [Crossref] [PubMed]
  78. A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84(2), 719–731 (1988).
    [Crossref]
  79. J. C. Isselin, A. P. Alloncle, and M. Autric, “On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena,” J. Appl. Phys. 84(10), 5766–5771 (1998).
    [Crossref]

2018 (2)

S. Jolly, N. Savidis, B. Datta, T. Karydis, W. Langford, N. Gershenfeld, and V. M. Bove, “Progress in fabrication of anisotropic Bragg gratings fabricated in lithium niobate via femtosecond laser micromachining,” Proc. SPIE 10544, 105440D (2018).

Y. Dixit, M. P. Casado-Gavalda, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, F. Jacoby, P. J. Cullen, and C. Sullivan, “Introduction to laser induced breakdown spectroscopy imaging in food: salt diffusion in meat,” J. Food Eng. 216, 120–124 (2018).
[Crossref]

2017 (3)

K. Johansen, J. H. Song, K. Johnston, and P. Prentice, “Deconvolution of acoustically detected bubble-collapse shock waves,” Ultrasonics 73, 144–153 (2017).
[Crossref] [PubMed]

T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
[Crossref] [PubMed]

N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, and E. Mazur, “Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates,” ACS Nano 11(4), 3671–3680 (2017).
[Crossref] [PubMed]

2016 (4)

I. Tanev, V. Tanev, and A. J. Kanellopoulos, “Nanosecond laser-assisted cataract surgery: Endothelial cell study,” J. Cataract Refract. Surg. 42(5), 725–730 (2016).
[Crossref] [PubMed]

Y. Tian, B. Y. Xue, J. J. Song, Y. Lu, and R. Zheng, “Stabilization of laser-induced plasma in bulk water using large focusing angle,” Appl. Phys. Lett. 109(6), 061104 (2016).
[Crossref]

Y. Tagawa, S. Yamamoto, K. Hayasaka, and M. Kameda, “On pressure impulse of a laser-induced underwater shock wave,” J. Fluid Mech. 808, 5–18 (2016).
[Crossref]

P. Cui, Q. X. Wang, S. P. Wang, and A. M. Zhang, “Experimental study on interaction and coalescence of synchronized multiple bubbles,” Phys. Fluids 28(1), 012103 (2016).
[Crossref]

2015 (8)

B. Han, K. Kohler, K. Jungnickel, R. Mettin, W. Lauterborn, and A. Vogel, “Dynamics of laser-induced bubble pairs,” J. Fluid Mech. 771, 706–742 (2015).
[Crossref]

F. V. Potemkin and E. I. Mareev, “Dynamics of multiple bubbles, excited by a femtosecond filament in water,” Laser Phys. Lett. 12(1), 015405 (2015).
[Crossref]

F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “Highly extended high density filaments in tight focusing geometry in water: from femtoseconds to microseconds,” New J. Phys. 17(5), 053010 (2015).
[Crossref]

J. Di, J. Kim, Q. Hu, X. Jiang, and Z. Gu, “Spatiotemporal drug delivery using laser-generated-focused ultrasound system,” J. Control. Release 220(Pt B), 592–599 (2015).
[Crossref] [PubMed]

Y. C. Wu, T. H. Wu, D. L. Clemens, B. Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P. Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

K. Pallav, I. Saxena, and K. F. Ehmann, “Laser-induced plasma micromachining process: principles and performance,” J. Micro. Nano-Manuf. 3(3), 031004 (2015).
[Crossref]

X. F. Du, D. M. Dong, X. D. Zhao, L. Z. Jiao, P. C. Han, and Y. Lang, “Detection of pesticide residues on fruit surfaces using laser induced breakdown spectroscopy,” Rsc Adv 5(97), 79956–79963 (2015).
[Crossref]

2014 (3)

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “Laser control of filament-induced shock wave in water,” Laser Phys. Lett. 11(10), 106001 (2014).
[Crossref]

S. L. Genc, H. Ma, and V. Venugopalan, “Low-density plasma formation in aqueous biological media using sub-nanosecond laser pulses,” Appl. Phys. Lett. 105(6), 063701 (2014).
[Crossref] [PubMed]

2013 (2)

Y. X. Yang, Q. X. Wang, and T. S. Keat, “Dynamic features of a laser-induced cavitation bubble near a solid boundary,” Ultrason. Sonochem. 20(4), 1098–1103 (2013).
[Crossref] [PubMed]

Y. Tagawa, N. Oudalov, A. El Ghalbzouri, C. Sun, and D. Lohse, “Needle-free injection into skin and soft matter with highly focused microjets,” Lab Chip 13(7), 1357–1363 (2013).
[Crossref] [PubMed]

2012 (2)

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly focused supersonic microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

2011 (4)

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152(2), 286–293 (2011).
[Crossref] [PubMed]

N. Tinne, T. Ripken, H. Lubatschowski, and A. Heisterkamp, “Interaction dynamics of fs-laser induced cavitation bubbles and their impact on the laser-tissue-interaction of modern ophthalmic laser systems,” Proc. SPIE 8092, 80921H (2011).
[Crossref]

A. Nath and A. Khare, “Transient evolution of multiple bubbles in laser induced breakdown in water,” Laser Part. Beams 29(1), 1–9 (2011).
[Crossref]

L. W. Chew, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Interaction of two differently sized oscillating bubbles in a free field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(6), 066307 (2011).
[Crossref] [PubMed]

2010 (5)

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C. D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt. 15(6), 068003 (2010).
[Crossref] [PubMed]

R. Evans and S. Camacho-Lopez, “Pump-probe imaging of nanosecond laser-induced bubbles in distilled water solutions: observations of laser-produced-plasma,” J. Appl. Phys. 108(10), 103106 (2010).
[Crossref]

T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ= 1064 nm nanosecond pulses,” Chem. Phys. Lett. 500(4-6), 242–250 (2010).
[Crossref]

G. N. Sankin, F. Yuan, and P. Zhong, “Pulsating tandem microbubble for localized and directional single-cell membrane poration,” Phys. Rev. Lett. 105(7), 078101 (2010).
[Crossref] [PubMed]

2009 (4)

Y. Hosokawa, S. Iguchi, R. Yasukuni, Y. Hiraki, C. Shukunami, and H. Masuhara, “Gene delivery process in a single animal cell after femtosecond laser microinjection,” Appl. Surf. Sci. 255(24), 9880–9884 (2009).
[Crossref]

C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
[Crossref] [PubMed]

V. Menezes, S. Kumar, and K. Takayama, “Shock wave driven liquid microjets for drug delivery,” J. Appl. Phys. 106(8), 086102 (2009).
[Crossref]

S. W. Fong, D. Adhikari, E. Klaseboer, and B. C. Khoo, “Interactions of multiple spark-generated bubbles with phase differences,” Exp. Fluids 46(4), 705–724 (2009).
[Crossref]

2008 (6)

G. N. Sankin, Y. Zhou, and P. Zhong, “Focusing of shock waves induced by optical breakdown in water,” J. Acoust. Soc. Am. 123(6), 4071–4081 (2008).
[Crossref] [PubMed]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J. Biophotonics 1(1), 24–35 (2008).
[Crossref] [PubMed]

R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip 8(10), 1676–1681 (2008).
[Crossref] [PubMed]

T. H. Wu, L. Y. Gao, Y. Chen, K. Wei, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

P. A. Quinto-Su, V. Venugopalan, and C. D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[Crossref] [PubMed]

2007 (4)

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[Crossref] [PubMed]

V. Lazic, S. Jovicevic, R. Fantoni, and F. Colao, “Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy,” Spectrochim. Acta B. 62(12), 1433–1442 (2007).
[Crossref]

R. Petkovsek and P. Gregorcic, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
[Crossref]

2006 (2)

P. S. Binder, “One thousand consecutive IntraLase laser in situ keratomileusis flaps,” J. Cataract Refract. Surg. 32(6), 962–969 (2006).
[Crossref] [PubMed]

R. L. Harzic, S. Martin, R. Buckle, C. Wullner, C. Donitzky, I. Riemann, and K. Konig, “New developments in corneal refractive surgery with femtosecond laser pulses,” Proc. SPIE 6138, 61381J (2006).
[Crossref]

2005 (1)

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[Crossref] [PubMed]

2003 (2)

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

S. Rungsiyaphornrat, E. Klaseboer, B. C. Khoo, and K. S. Yeo, “The merging of two gaseous bubbles with an application to underwater explosions,” Comput. Fluids 32(8), 1049–1074 (2003).
[Crossref]

2002 (2)

2000 (2)

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

A. Vogel, J. Noack, D. X. Hammer, and B. A. Rockwell, “Shock waves and cavitation effects in aqueous media induced by ultrafast laser pulses,” AIP Conf. Proc. 524, 397–401 (2000).
[Crossref]

1999 (4)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminescence,” Philos T R Soc A 357(1751), 269–294 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref] [PubMed]

1998 (1)

J. C. Isselin, A. P. Alloncle, and M. Autric, “On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena,” J. Appl. Phys. 84(10), 5766–5771 (1998).
[Crossref]

1997 (2)

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
[Crossref]

1996 (3)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. II. transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
[Crossref]

1993 (1)

J. Blake, P. Robinson, A. Shima, and Y. Tomita, “Interaction of two cavitation bubbles with a rigid boundary,” J. Fluid Mech. 255(-1), 707–721 (1993).
[Crossref]

1991 (2)

F. Docchio, “Spatial and temporal dynamics of light attenuation and transmission by plasmas induced in liquids by nanosecond Nd: YAG laser pulses,” Nuovo Cimento D 13(1), 87–98 (1991).
[Crossref]

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Noninvasive determination of shock-wave pressure generated by optical-breakdown,” Appl Phys B. 53(4), 237–245 (1991).
[Crossref]

1988 (3)

F. Docchio, P. Regondi, M. R. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times,” Appl. Opt. 27(17), 3661–3668 (1988).
[Crossref] [PubMed]

A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84(2), 719–731 (1988).
[Crossref]

M. R. C. Capon, F. Docchio, and J. Mellerio, “Nd:YAG laser photodisruption: an experimental investigation on shielding and multiple plasma formation,” Graefes Arch. Clin. Exp. Ophthalmol. 226(4), 362–366 (1988).
[Crossref] [PubMed]

1987 (1)

M. Capon, F. Docchio, and J. Mellerio, “Investigations of multiple plasmas from ophthalmic Nd: YAG lasers,” Lasers Ophthalmol 1, 147–153 (1987).

1985 (1)

W. Lauterborn and W. Hentschel, “Cavitation bubble dynamics studied by high speed photography and holography: part one,” Ultrasonics 23(6), 260–268 (1985).
[Crossref]

1977 (1)

W. Lauterborn and K. J. Ebeling, “High-speed holography of laser-induced breakdown in liquids,” Appl. Phys. Lett. 31(10), 663–664 (1977).
[Crossref]

1969 (1)

L. R. Evans and C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22(21), 1099–1102 (1969).
[Crossref]

Adhikari, D.

S. W. Fong, D. Adhikari, E. Klaseboer, and B. C. Khoo, “Interactions of multiple spark-generated bubbles with phase differences,” Exp. Fluids 46(4), 705–724 (2009).
[Crossref]

Allbritton, N. L.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Alloncle, A. P.

J. C. Isselin, A. P. Alloncle, and M. Autric, “On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena,” J. Appl. Phys. 84(10), 5766–5771 (1998).
[Crossref]

Arnold, C. L.

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt. 15(6), 068003 (2010).
[Crossref] [PubMed]

Autric, M.

J. C. Isselin, A. P. Alloncle, and M. Autric, “On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena,” J. Appl. Phys. 84(10), 5766–5771 (1998).
[Crossref]

Baac, H. W.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Bae, S.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Ben-Yakar, A.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Binder, P. S.

P. S. Binder, “One thousand consecutive IntraLase laser in situ keratomileusis flaps,” J. Cataract Refract. Surg. 32(6), 962–969 (2006).
[Crossref] [PubMed]

Birngruber, R.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref] [PubMed]

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Noninvasive determination of shock-wave pressure generated by optical-breakdown,” Appl Phys B. 53(4), 237–245 (1991).
[Crossref]

Blake, J.

J. Blake, P. Robinson, A. Shima, and Y. Tomita, “Interaction of two cavitation bubbles with a rigid boundary,” J. Fluid Mech. 255(-1), 707–721 (1993).
[Crossref]

Bove, V. M.

S. Jolly, N. Savidis, B. Datta, T. Karydis, W. Langford, N. Gershenfeld, and V. M. Bove, “Progress in fabrication of anisotropic Bragg gratings fabricated in lithium niobate via femtosecond laser micromachining,” Proc. SPIE 10544, 105440D (2018).

Buckle, R.

R. L. Harzic, S. Martin, R. Buckle, C. Wullner, C. Donitzky, I. Riemann, and K. Konig, “New developments in corneal refractive surgery with femtosecond laser pulses,” Proc. SPIE 6138, 61381J (2006).
[Crossref]

Bulatov, V.

T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ= 1064 nm nanosecond pulses,” Chem. Phys. Lett. 500(4-6), 242–250 (2010).
[Crossref]

Busch, S.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Camacho-Lopez, S.

R. Evans and S. Camacho-Lopez, “Pump-probe imaging of nanosecond laser-induced bubbles in distilled water solutions: observations of laser-produced-plasma,” J. Appl. Phys. 108(10), 103106 (2010).
[Crossref]

Cama-Moncunill, R.

Y. Dixit, M. P. Casado-Gavalda, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, F. Jacoby, P. J. Cullen, and C. Sullivan, “Introduction to laser induced breakdown spectroscopy imaging in food: salt diffusion in meat,” J. Food Eng. 216, 120–124 (2018).
[Crossref]

Cama-Moncunill, X.

Y. Dixit, M. P. Casado-Gavalda, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, F. Jacoby, P. J. Cullen, and C. Sullivan, “Introduction to laser induced breakdown spectroscopy imaging in food: salt diffusion in meat,” J. Food Eng. 216, 120–124 (2018).
[Crossref]

Capon, M.

M. Capon, F. Docchio, and J. Mellerio, “Investigations of multiple plasmas from ophthalmic Nd: YAG lasers,” Lasers Ophthalmol 1, 147–153 (1987).

Capon, M. R.

Capon, M. R. C.

M. R. C. Capon, F. Docchio, and J. Mellerio, “Nd:YAG laser photodisruption: an experimental investigation on shielding and multiple plasma formation,” Graefes Arch. Clin. Exp. Ophthalmol. 226(4), 362–366 (1988).
[Crossref] [PubMed]

Casado-Gavalda, M. P.

Y. Dixit, M. P. Casado-Gavalda, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, F. Jacoby, P. J. Cullen, and C. Sullivan, “Introduction to laser induced breakdown spectroscopy imaging in food: salt diffusion in meat,” J. Food Eng. 216, 120–124 (2018).
[Crossref]

Chan, K. M. C.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Chang, C. C.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152(2), 286–293 (2011).
[Crossref] [PubMed]

Chen, Y.

T. H. Wu, L. Y. Gao, Y. Chen, K. Wei, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Chen, Y. C.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Chew, L. W.

L. W. Chew, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Interaction of two differently sized oscillating bubbles in a free field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(6), 066307 (2011).
[Crossref] [PubMed]

Chiou, P. Y.

Y. C. Wu, T. H. Wu, D. L. Clemens, B. Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P. Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

T. H. Wu, L. Y. Gao, Y. Chen, K. Wei, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Clemens, D. L.

Y. C. Wu, T. H. Wu, D. L. Clemens, B. Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P. Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

Colao, F.

V. Lazic, S. Jovicevic, R. Fantoni, and F. Colao, “Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy,” Spectrochim. Acta B. 62(12), 1433–1442 (2007).
[Crossref]

Cook, K.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

Cui, P.

P. Cui, Q. X. Wang, S. P. Wang, and A. M. Zhang, “Experimental study on interaction and coalescence of synchronized multiple bubbles,” Phys. Fluids 28(1), 012103 (2016).
[Crossref]

Cullen, P. J.

Y. Dixit, M. P. Casado-Gavalda, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, F. Jacoby, P. J. Cullen, and C. Sullivan, “Introduction to laser induced breakdown spectroscopy imaging in food: salt diffusion in meat,” J. Food Eng. 216, 120–124 (2018).
[Crossref]

Datta, B.

S. Jolly, N. Savidis, B. Datta, T. Karydis, W. Langford, N. Gershenfeld, and V. M. Bove, “Progress in fabrication of anisotropic Bragg gratings fabricated in lithium niobate via femtosecond laser micromachining,” Proc. SPIE 10544, 105440D (2018).

Demirci, H.

T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
[Crossref] [PubMed]

Deutsch, T. F.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Noninvasive determination of shock-wave pressure generated by optical-breakdown,” Appl Phys B. 53(4), 237–245 (1991).
[Crossref]

Di, J.

J. Di, J. Kim, Q. Hu, X. Jiang, and Z. Gu, “Spatiotemporal drug delivery using laser-generated-focused ultrasound system,” J. Control. Release 220(Pt B), 592–599 (2015).
[Crossref] [PubMed]

Dijkink, R.

R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip 8(10), 1676–1681 (2008).
[Crossref] [PubMed]

Dixit, Y.

Y. Dixit, M. P. Casado-Gavalda, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, F. Jacoby, P. J. Cullen, and C. Sullivan, “Introduction to laser induced breakdown spectroscopy imaging in food: salt diffusion in meat,” J. Food Eng. 216, 120–124 (2018).
[Crossref]

Docchio, F.

F. Docchio, “Spatial and temporal dynamics of light attenuation and transmission by plasmas induced in liquids by nanosecond Nd: YAG laser pulses,” Nuovo Cimento D 13(1), 87–98 (1991).
[Crossref]

M. R. C. Capon, F. Docchio, and J. Mellerio, “Nd:YAG laser photodisruption: an experimental investigation on shielding and multiple plasma formation,” Graefes Arch. Clin. Exp. Ophthalmol. 226(4), 362–366 (1988).
[Crossref] [PubMed]

F. Docchio, P. Regondi, M. R. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times,” Appl. Opt. 27(17), 3661–3668 (1988).
[Crossref] [PubMed]

M. Capon, F. Docchio, and J. Mellerio, “Investigations of multiple plasmas from ophthalmic Nd: YAG lasers,” Lasers Ophthalmol 1, 147–153 (1987).

Dong, D. M.

X. F. Du, D. M. Dong, X. D. Zhao, L. Z. Jiao, P. C. Han, and Y. Lang, “Detection of pesticide residues on fruit surfaces using laser induced breakdown spectroscopy,” Rsc Adv 5(97), 79956–79963 (2015).
[Crossref]

Donitzky, C.

R. L. Harzic, S. Martin, R. Buckle, C. Wullner, C. Donitzky, I. Riemann, and K. Konig, “New developments in corneal refractive surgery with femtosecond laser pulses,” Proc. SPIE 6138, 61381J (2006).
[Crossref]

Doukas, A. G.

T. Kodama, A. G. Doukas, and M. R. Hamblin, “Shock wave-mediated molecular delivery into cells,” Biochim. Biophys. Acta 1542(1-3), 186–194 (2002).
[Crossref] [PubMed]

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Noninvasive determination of shock-wave pressure generated by optical-breakdown,” Appl Phys B. 53(4), 237–245 (1991).
[Crossref]

Drommer, W.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Du, X. F.

X. F. Du, D. M. Dong, X. D. Zhao, L. Z. Jiao, P. C. Han, and Y. Lang, “Detection of pesticide residues on fruit surfaces using laser induced breakdown spectroscopy,” Rsc Adv 5(97), 79956–79963 (2015).
[Crossref]

Ebeling, K. J.

W. Lauterborn and K. J. Ebeling, “High-speed holography of laser-induced breakdown in liquids,” Appl. Phys. Lett. 31(10), 663–664 (1977).
[Crossref]

Ehmann, K. F.

K. Pallav, I. Saxena, and K. F. Ehmann, “Laser-induced plasma micromachining process: principles and performance,” J. Micro. Nano-Manuf. 3(3), 031004 (2015).
[Crossref]

El Ghalbzouri, A.

Y. Tagawa, N. Oudalov, A. El Ghalbzouri, C. Sun, and D. Lohse, “Needle-free injection into skin and soft matter with highly focused microjets,” Lab Chip 13(7), 1357–1363 (2013).
[Crossref] [PubMed]

Endl, E.

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[Crossref] [PubMed]

Ertmer, W.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Evans, L. R.

L. R. Evans and C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22(21), 1099–1102 (1969).
[Crossref]

Evans, R.

R. Evans and S. Camacho-Lopez, “Pump-probe imaging of nanosecond laser-induced bubbles in distilled water solutions: observations of laser-produced-plasma,” J. Appl. Phys. 108(10), 103106 (2010).
[Crossref]

Fan, Q. H.

Q. H. Fan, W. Q. Hu, and A. T. Ohta, “Light-induced microbubble poration of localized cells,” in Proceedings of IEEE Conference on IEEE engineering in medicine and biology society (IEEE, 2013), pp. 4482–4485.

Fantoni, R.

V. Lazic, S. Jovicevic, R. Fantoni, and F. Colao, “Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy,” Spectrochim. Acta B. 62(12), 1433–1442 (2007).
[Crossref]

Feng, Q.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

Ferhanoglu, O.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Ferincz, I. E.

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

Fong, S. W.

S. W. Fong, D. Adhikari, E. Klaseboer, and B. C. Khoo, “Interactions of multiple spark-generated bubbles with phase differences,” Exp. Fluids 46(4), 705–724 (2009).
[Crossref]

Freidank, S.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

A. Vogel, N. Linz, S. Freidank, and X. X. Liang, “Controlled nonlinear energy deposition in transparent materials: experiments and theory,” in Proceedings of International Symposium on High Power Laser Ablation, C. R. Phipps, ed. (American Institute of Physics, 2010), pp. 51–55.

Frisoli, J. K.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Noninvasive determination of shock-wave pressure generated by optical-breakdown,” Appl Phys B. 53(4), 237–245 (1991).
[Crossref]

Gao, L. Y.

T. H. Wu, L. Y. Gao, Y. Chen, K. Wei, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Geisler, R.

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminescence,” Philos T R Soc A 357(1751), 269–294 (1999).
[Crossref]

Genc, S. L.

S. L. Genc, H. Ma, and V. Venugopalan, “Low-density plasma formation in aqueous biological media using sub-nanosecond laser pulses,” Appl. Phys. Lett. 105(6), 063701 (2014).
[Crossref] [PubMed]

Gerdes, J.

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[Crossref] [PubMed]

Gershenfeld, N.

S. Jolly, N. Savidis, B. Datta, T. Karydis, W. Langford, N. Gershenfeld, and V. M. Bove, “Progress in fabrication of anisotropic Bragg gratings fabricated in lithium niobate via femtosecond laser micromachining,” Proc. SPIE 10544, 105440D (2018).

Glezer, E.

Gordienko, V. M.

F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “Highly extended high density filaments in tight focusing geometry in water: from femtoseconds to microseconds,” New J. Phys. 17(5), 053010 (2015).
[Crossref]

F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “Laser control of filament-induced shock wave in water,” Laser Phys. Lett. 11(10), 106001 (2014).
[Crossref]

Gregorcic, P.

R. Petkovsek and P. Gregorcic, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
[Crossref]

Gu, Z.

J. Di, J. Kim, Q. Hu, X. Jiang, and Z. Gu, “Spatiotemporal drug delivery using laser-generated-focused ultrasound system,” J. Control. Release 220(Pt B), 592–599 (2015).
[Crossref] [PubMed]

Guo, L. J.

T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
[Crossref] [PubMed]

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Hamblin, M. R.

T. Kodama, A. G. Doukas, and M. R. Hamblin, “Shock wave-mediated molecular delivery into cells,” Biochim. Biophys. Acta 1542(1-3), 186–194 (2002).
[Crossref] [PubMed]

Hammer, D. X.

A. Vogel, J. Noack, D. X. Hammer, and B. A. Rockwell, “Shock waves and cavitation effects in aqueous media induced by ultrafast laser pulses,” AIP Conf. Proc. 524, 397–401 (2000).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
[Crossref]

Han, B.

B. Han, K. Kohler, K. Jungnickel, R. Mettin, W. Lauterborn, and A. Vogel, “Dynamics of laser-induced bubble pairs,” J. Fluid Mech. 771, 706–742 (2015).
[Crossref]

Han, P. C.

X. F. Du, D. M. Dong, X. D. Zhao, L. Z. Jiao, P. C. Han, and Y. Lang, “Detection of pesticide residues on fruit surfaces using laser induced breakdown spectroscopy,” Rsc Adv 5(97), 79956–79963 (2015).
[Crossref]

Hart, A. J.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Harzic, R. L.

R. L. Harzic, S. Martin, R. Buckle, C. Wullner, C. Donitzky, I. Riemann, and K. Konig, “New developments in corneal refractive surgery with femtosecond laser pulses,” Proc. SPIE 6138, 61381J (2006).
[Crossref]

Hayasaka, K.

Y. Tagawa, S. Yamamoto, K. Hayasaka, and M. Kameda, “On pressure impulse of a laser-induced underwater shock wave,” J. Fluid Mech. 808, 5–18 (2016).
[Crossref]

Heisterkamp, A.

N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, and E. Mazur, “Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates,” ACS Nano 11(4), 3671–3680 (2017).
[Crossref] [PubMed]

N. Tinne, T. Ripken, H. Lubatschowski, and A. Heisterkamp, “Interaction dynamics of fs-laser induced cavitation bubbles and their impact on the laser-tissue-interaction of modern ophthalmic laser systems,” Proc. SPIE 8092, 80921H (2011).
[Crossref]

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Hellman, A. N.

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J. Biophotonics 1(1), 24–35 (2008).
[Crossref] [PubMed]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Hentschel, W.

W. Lauterborn and W. Hentschel, “Cavitation bubble dynamics studied by high speed photography and holography: part one,” Ultrasonics 23(6), 260–268 (1985).
[Crossref]

Hetzel, U.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Hiraki, Y.

Y. Hosokawa, S. Iguchi, R. Yasukuni, Y. Hiraki, C. Shukunami, and H. Masuhara, “Gene delivery process in a single animal cell after femtosecond laser microinjection,” Appl. Surf. Sci. 255(24), 9880–9884 (2009).
[Crossref]

Horwitz, M. A.

Y. C. Wu, T. H. Wu, D. L. Clemens, B. Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P. Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

Hosokawa, Y.

Y. Hosokawa, S. Iguchi, R. Yasukuni, Y. Hiraki, C. Shukunami, and H. Masuhara, “Gene delivery process in a single animal cell after femtosecond laser microinjection,” Appl. Surf. Sci. 255(24), 9880–9884 (2009).
[Crossref]

Hoy, C. L.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Hu, Q.

J. Di, J. Kim, Q. Hu, X. Jiang, and Z. Gu, “Spatiotemporal drug delivery using laser-generated-focused ultrasound system,” J. Control. Release 220(Pt B), 592–599 (2015).
[Crossref] [PubMed]

Hu, W. Q.

Q. H. Fan, W. Q. Hu, and A. T. Ohta, “Light-induced microbubble poration of localized cells,” in Proceedings of IEEE Conference on IEEE engineering in medicine and biology society (IEEE, 2013), pp. 4482–4485.

Huber, M.

N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, and E. Mazur, “Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates,” ACS Nano 11(4), 3671–3680 (2017).
[Crossref] [PubMed]

Hutson, M. S.

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[Crossref] [PubMed]

Hüttmann, G.

C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
[Crossref] [PubMed]

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[Crossref] [PubMed]

Iguchi, S.

Y. Hosokawa, S. Iguchi, R. Yasukuni, Y. Hiraki, C. Shukunami, and H. Masuhara, “Gene delivery process in a single animal cell after femtosecond laser microinjection,” Appl. Surf. Sci. 255(24), 9880–9884 (2009).
[Crossref]

Isselin, J. C.

J. C. Isselin, A. P. Alloncle, and M. Autric, “On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena,” J. Appl. Phys. 84(10), 5766–5771 (1998).
[Crossref]

Jacoby, F.

Y. Dixit, M. P. Casado-Gavalda, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, F. Jacoby, P. J. Cullen, and C. Sullivan, “Introduction to laser induced breakdown spectroscopy imaging in food: salt diffusion in meat,” J. Food Eng. 216, 120–124 (2018).
[Crossref]

Jiang, X.

J. Di, J. Kim, Q. Hu, X. Jiang, and Z. Gu, “Spatiotemporal drug delivery using laser-generated-focused ultrasound system,” J. Control. Release 220(Pt B), 592–599 (2015).
[Crossref] [PubMed]

Jiao, L. Z.

X. F. Du, D. M. Dong, X. D. Zhao, L. Z. Jiao, P. C. Han, and Y. Lang, “Detection of pesticide residues on fruit surfaces using laser induced breakdown spectroscopy,” Rsc Adv 5(97), 79956–79963 (2015).
[Crossref]

Johansen, K.

K. Johansen, J. H. Song, K. Johnston, and P. Prentice, “Deconvolution of acoustically detected bubble-collapse shock waves,” Ultrasonics 73, 144–153 (2017).
[Crossref] [PubMed]

Johnston, K.

K. Johansen, J. H. Song, K. Johnston, and P. Prentice, “Deconvolution of acoustically detected bubble-collapse shock waves,” Ultrasonics 73, 144–153 (2017).
[Crossref] [PubMed]

Jolly, S.

S. Jolly, N. Savidis, B. Datta, T. Karydis, W. Langford, N. Gershenfeld, and V. M. Bove, “Progress in fabrication of anisotropic Bragg gratings fabricated in lithium niobate via femtosecond laser micromachining,” Proc. SPIE 10544, 105440D (2018).

Jovicevic, S.

V. Lazic, S. Jovicevic, R. Fantoni, and F. Colao, “Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy,” Spectrochim. Acta B. 62(12), 1433–1442 (2007).
[Crossref]

Juhasz, T.

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

Jungnickel, K.

B. Han, K. Kohler, K. Jungnickel, R. Mettin, W. Lauterborn, and A. Vogel, “Dynamics of laser-induced bubble pairs,” J. Fluid Mech. 771, 706–742 (2015).
[Crossref]

Kameda, M.

Y. Tagawa, S. Yamamoto, K. Hayasaka, and M. Kameda, “On pressure impulse of a laser-induced underwater shock wave,” J. Fluid Mech. 808, 5–18 (2016).
[Crossref]

Kanellopoulos, A. J.

I. Tanev, V. Tanev, and A. J. Kanellopoulos, “Nanosecond laser-assisted cataract surgery: Endothelial cell study,” J. Cataract Refract. Surg. 42(5), 725–730 (2016).
[Crossref] [PubMed]

Karajanagi, S. S.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Karydis, T.

S. Jolly, N. Savidis, B. Datta, T. Karydis, W. Langford, N. Gershenfeld, and V. M. Bove, “Progress in fabrication of anisotropic Bragg gratings fabricated in lithium niobate via femtosecond laser micromachining,” Proc. SPIE 10544, 105440D (2018).

Keat, T. S.

Y. X. Yang, Q. X. Wang, and T. S. Keat, “Dynamic features of a laser-induced cavitation bubble near a solid boundary,” Ultrason. Sonochem. 20(4), 1098–1103 (2013).
[Crossref] [PubMed]

Kennedy, P. K.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
[Crossref]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

Khare, A.

A. Nath and A. Khare, “Transient evolution of multiple bubbles in laser induced breakdown in water,” Laser Part. Beams 29(1), 1–9 (2011).
[Crossref]

Khoo, B. C.

L. W. Chew, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Interaction of two differently sized oscillating bubbles in a free field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(6), 066307 (2011).
[Crossref] [PubMed]

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C. D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

S. W. Fong, D. Adhikari, E. Klaseboer, and B. C. Khoo, “Interactions of multiple spark-generated bubbles with phase differences,” Exp. Fluids 46(4), 705–724 (2009).
[Crossref]

S. Rungsiyaphornrat, E. Klaseboer, B. C. Khoo, and K. S. Yeo, “The merging of two gaseous bubbles with an application to underwater explosions,” Comput. Fluids 32(8), 1049–1074 (2003).
[Crossref]

Kim, A.

Kim, J.

J. Di, J. Kim, Q. Hu, X. Jiang, and Z. Gu, “Spatiotemporal drug delivery using laser-generated-focused ultrasound system,” J. Control. Release 220(Pt B), 592–599 (2015).
[Crossref] [PubMed]

Kim, K. H.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Klaseboer, E.

L. W. Chew, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Interaction of two differently sized oscillating bubbles in a free field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(6), 066307 (2011).
[Crossref] [PubMed]

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C. D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

S. W. Fong, D. Adhikari, E. Klaseboer, and B. C. Khoo, “Interactions of multiple spark-generated bubbles with phase differences,” Exp. Fluids 46(4), 705–724 (2009).
[Crossref]

S. Rungsiyaphornrat, E. Klaseboer, B. C. Khoo, and K. S. Yeo, “The merging of two gaseous bubbles with an application to underwater explosions,” Comput. Fluids 32(8), 1049–1074 (2003).
[Crossref]

Kobler, J. B.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Kodama, T.

T. Kodama, A. G. Doukas, and M. R. Hamblin, “Shock wave-mediated molecular delivery into cells,” Biochim. Biophys. Acta 1542(1-3), 186–194 (2002).
[Crossref] [PubMed]

Kohler, K.

B. Han, K. Kohler, K. Jungnickel, R. Mettin, W. Lauterborn, and A. Vogel, “Dynamics of laser-induced bubble pairs,” J. Fluid Mech. 771, 706–742 (2015).
[Crossref]

Konig, K.

R. L. Harzic, S. Martin, R. Buckle, C. Wullner, C. Donitzky, I. Riemann, and K. Konig, “New developments in corneal refractive surgery with femtosecond laser pulses,” Proc. SPIE 6138, 61381J (2006).
[Crossref]

Kovalchuk, T.

T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ= 1064 nm nanosecond pulses,” Chem. Phys. Lett. 500(4-6), 242–250 (2010).
[Crossref]

Krueger, R. R.

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

Kumar, S.

V. Menezes, S. Kumar, and K. Takayama, “Shock wave driven liquid microjets for drug delivery,” J. Appl. Phys. 106(8), 086102 (2009).
[Crossref]

Kurtz, R. M.

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

Kurz, T.

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminescence,” Philos T R Soc A 357(1751), 269–294 (1999).
[Crossref]

Lang, Y.

X. F. Du, D. M. Dong, X. D. Zhao, L. Z. Jiao, P. C. Han, and Y. Lang, “Detection of pesticide residues on fruit surfaces using laser induced breakdown spectroscopy,” Rsc Adv 5(97), 79956–79963 (2015).
[Crossref]

Langford, W.

S. Jolly, N. Savidis, B. Datta, T. Karydis, W. Langford, N. Gershenfeld, and V. M. Bove, “Progress in fabrication of anisotropic Bragg gratings fabricated in lithium niobate via femtosecond laser micromachining,” Proc. SPIE 10544, 105440D (2018).

Lapotko, D. O.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152(2), 286–293 (2011).
[Crossref] [PubMed]

Lauterborn, W.

B. Han, K. Kohler, K. Jungnickel, R. Mettin, W. Lauterborn, and A. Vogel, “Dynamics of laser-induced bubble pairs,” J. Fluid Mech. 771, 706–742 (2015).
[Crossref]

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminescence,” Philos T R Soc A 357(1751), 269–294 (1999).
[Crossref]

A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84(2), 719–731 (1988).
[Crossref]

W. Lauterborn and W. Hentschel, “Cavitation bubble dynamics studied by high speed photography and holography: part one,” Ultrasonics 23(6), 260–268 (1985).
[Crossref]

W. Lauterborn and K. J. Ebeling, “High-speed holography of laser-induced breakdown in liquids,” Appl. Phys. Lett. 31(10), 663–664 (1977).
[Crossref]

Lazic, V.

V. Lazic, S. Jovicevic, R. Fantoni, and F. Colao, “Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy,” Spectrochim. Acta B. 62(12), 1433–1442 (2007).
[Crossref]

Lee, B. Y.

Y. C. Wu, T. H. Wu, D. L. Clemens, B. Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P. Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

Lee, K. T.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Lee, T.

T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
[Crossref] [PubMed]

Li, Q.

T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
[Crossref] [PubMed]

Liang, X. X.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and X. X. Liang, “Controlled nonlinear energy deposition in transparent materials: experiments and theory,” in Proceedings of International Symposium on High Power Laser Ablation, C. R. Phipps, ed. (American Institute of Physics, 2010), pp. 51–55.

Lim, K. Y.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C. D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

Lindau, O.

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminescence,” Philos T R Soc A 357(1751), 269–294 (1999).
[Crossref]

Linz, N.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

A. Vogel, N. Linz, S. Freidank, and X. X. Liang, “Controlled nonlinear energy deposition in transparent materials: experiments and theory,” in Proceedings of International Symposium on High Power Laser Ablation, C. R. Phipps, ed. (American Institute of Physics, 2010), pp. 51–55.

Lohse, D.

Y. Tagawa, N. Oudalov, A. El Ghalbzouri, C. Sun, and D. Lohse, “Needle-free injection into skin and soft matter with highly focused microjets,” Lab Chip 13(7), 1357–1363 (2013).
[Crossref] [PubMed]

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly focused supersonic microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Lu, Y.

Y. Tian, B. Y. Xue, J. J. Song, Y. Lu, and R. Zheng, “Stabilization of laser-induced plasma in bulk water using large focusing angle,” Appl. Phys. Lett. 109(6), 061104 (2016).
[Crossref]

Lubatschowski, H.

N. Tinne, T. Ripken, H. Lubatschowski, and A. Heisterkamp, “Interaction dynamics of fs-laser induced cavitation bubbles and their impact on the laser-tissue-interaction of modern ophthalmic laser systems,” Proc. SPIE 8092, 80921H (2011).
[Crossref]

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt. 15(6), 068003 (2010).
[Crossref] [PubMed]

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Lukianova-Hleb, E. Y.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152(2), 286–293 (2011).
[Crossref] [PubMed]

Luo, W.

T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
[Crossref] [PubMed]

Ma, H.

S. L. Genc, H. Ma, and V. Venugopalan, “Low-density plasma formation in aqueous biological media using sub-nanosecond laser pulses,” Appl. Phys. Lett. 105(6), 063701 (2014).
[Crossref] [PubMed]

Ma, X.

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[Crossref] [PubMed]

Maatz, G.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Madrid, M.

N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, and E. Mazur, “Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates,” ACS Nano 11(4), 3671–3680 (2017).
[Crossref] [PubMed]

Mareev, E. I.

F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “Highly extended high density filaments in tight focusing geometry in water: from femtoseconds to microseconds,” New J. Phys. 17(5), 053010 (2015).
[Crossref]

F. V. Potemkin and E. I. Mareev, “Dynamics of multiple bubbles, excited by a femtosecond filament in water,” Laser Phys. Lett. 12(1), 015405 (2015).
[Crossref]

F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “Laser control of filament-induced shock wave in water,” Laser Phys. Lett. 11(10), 106001 (2014).
[Crossref]

Markiewicz-Keszycka, M.

Y. Dixit, M. P. Casado-Gavalda, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, F. Jacoby, P. J. Cullen, and C. Sullivan, “Introduction to laser induced breakdown spectroscopy imaging in food: salt diffusion in meat,” J. Food Eng. 216, 120–124 (2018).
[Crossref]

Martin, S.

R. L. Harzic, S. Martin, R. Buckle, C. Wullner, C. Donitzky, I. Riemann, and K. Konig, “New developments in corneal refractive surgery with femtosecond laser pulses,” Proc. SPIE 6138, 61381J (2006).
[Crossref]

Masuhara, H.

Y. Hosokawa, S. Iguchi, R. Yasukuni, Y. Hiraki, C. Shukunami, and H. Masuhara, “Gene delivery process in a single animal cell after femtosecond laser microinjection,” Appl. Surf. Sci. 255(24), 9880–9884 (2009).
[Crossref]

Maxwell, A.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Mazur, E.

N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, and E. Mazur, “Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates,” ACS Nano 11(4), 3671–3680 (2017).
[Crossref] [PubMed]

C. Schaffer, N. Nishimura, E. Glezer, A. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
[Crossref] [PubMed]

McClelland, A. A.

N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, and E. Mazur, “Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates,” ACS Nano 11(4), 3671–3680 (2017).
[Crossref] [PubMed]

Mellerio, J.

M. R. C. Capon, F. Docchio, and J. Mellerio, “Nd:YAG laser photodisruption: an experimental investigation on shielding and multiple plasma formation,” Graefes Arch. Clin. Exp. Ophthalmol. 226(4), 362–366 (1988).
[Crossref] [PubMed]

F. Docchio, P. Regondi, M. R. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times,” Appl. Opt. 27(17), 3661–3668 (1988).
[Crossref] [PubMed]

M. Capon, F. Docchio, and J. Mellerio, “Investigations of multiple plasmas from ophthalmic Nd: YAG lasers,” Lasers Ophthalmol 1, 147–153 (1987).

Menezes, V.

V. Menezes, S. Kumar, and K. Takayama, “Shock wave driven liquid microjets for drug delivery,” J. Appl. Phys. 106(8), 086102 (2009).
[Crossref]

Metelitsa, L. S.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152(2), 286–293 (2011).
[Crossref] [PubMed]

Mettin, R.

B. Han, K. Kohler, K. Jungnickel, R. Mettin, W. Lauterborn, and A. Vogel, “Dynamics of laser-induced bubble pairs,” J. Fluid Mech. 771, 706–742 (2015).
[Crossref]

Moloney, J. V.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

Morgan, C. G.

L. R. Evans and C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22(21), 1099–1102 (1969).
[Crossref]

Nahen, K.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref] [PubMed]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. II. transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
[Crossref]

Nath, A.

A. Nath and A. Khare, “Transient evolution of multiple bubbles in laser induced breakdown in water,” Laser Part. Beams 29(1), 1–9 (2011).
[Crossref]

Nelson, J.

N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, and E. Mazur, “Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates,” ACS Nano 11(4), 3671–3680 (2017).
[Crossref] [PubMed]

Newell, A. C.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

Nishimura, N.

Noack, J.

A. Vogel, J. Noack, D. X. Hammer, and B. A. Rockwell, “Shock waves and cavitation effects in aqueous media induced by ultrafast laser pulses,” AIP Conf. Proc. 524, 397–401 (2000).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

Noojin, G. D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Nuzzo, V.

N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, and E. Mazur, “Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates,” ACS Nano 11(4), 3671–3680 (2017).
[Crossref] [PubMed]

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt. 15(6), 068003 (2010).
[Crossref] [PubMed]

Ohl, C. D.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C. D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

P. A. Quinto-Su, V. Venugopalan, and C. D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[Crossref] [PubMed]

R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip 8(10), 1676–1681 (2008).
[Crossref] [PubMed]

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminescence,” Philos T R Soc A 357(1751), 269–294 (1999).
[Crossref]

Ohl, S. W.

L. W. Chew, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Interaction of two differently sized oscillating bubbles in a free field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(6), 066307 (2011).
[Crossref] [PubMed]

Ohta, A. T.

Q. H. Fan, W. Q. Hu, and A. T. Ohta, “Light-induced microbubble poration of localized cells,” in Proceedings of IEEE Conference on IEEE engineering in medicine and biology society (IEEE, 2013), pp. 4482–4485.

Ok, J. G.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Oudalov, N.

Y. Tagawa, N. Oudalov, A. El Ghalbzouri, C. Sun, and D. Lohse, “Needle-free injection into skin and soft matter with highly focused microjets,” Lab Chip 13(7), 1357–1363 (2013).
[Crossref] [PubMed]

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly focused supersonic microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Pallav, K.

K. Pallav, I. Saxena, and K. F. Ehmann, “Laser-induced plasma micromachining process: principles and performance,” J. Micro. Nano-Manuf. 3(3), 031004 (2015).
[Crossref]

Palmer, J. F.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Parlitz, U.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Peters, I. R.

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly focused supersonic microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Petkovsek, R.

R. Petkovsek and P. Gregorcic, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
[Crossref]

Phillips, K. S.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Podshivalov, A. A.

F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “Highly extended high density filaments in tight focusing geometry in water: from femtoseconds to microseconds,” New J. Phys. 17(5), 053010 (2015).
[Crossref]

F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “Laser control of filament-induced shock wave in water,” Laser Phys. Lett. 11(10), 106001 (2014).
[Crossref]

Potemkin, F. V.

F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “Highly extended high density filaments in tight focusing geometry in water: from femtoseconds to microseconds,” New J. Phys. 17(5), 053010 (2015).
[Crossref]

F. V. Potemkin and E. I. Mareev, “Dynamics of multiple bubbles, excited by a femtosecond filament in water,” Laser Phys. Lett. 12(1), 015405 (2015).
[Crossref]

F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “Laser control of filament-induced shock wave in water,” Laser Phys. Lett. 11(10), 106001 (2014).
[Crossref]

Prentice, P.

K. Johansen, J. H. Song, K. Johnston, and P. Prentice, “Deconvolution of acoustically detected bubble-collapse shock waves,” Ultrasonics 73, 144–153 (2017).
[Crossref] [PubMed]

Prosperetti, A.

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly focused supersonic microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Qu, X.

C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
[Crossref] [PubMed]

Quinto-Su, P. A.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C. D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

P. A. Quinto-Su, V. Venugopalan, and C. D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[Crossref] [PubMed]

Rahmanzadeh, R.

C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
[Crossref] [PubMed]

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[Crossref] [PubMed]

Ratkay-Traub, I.

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

Rau, K. R.

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J. Biophotonics 1(1), 24–35 (2008).
[Crossref] [PubMed]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Regondi, P.

Riemann, I.

R. L. Harzic, S. Martin, R. Buckle, C. Wullner, C. Donitzky, I. Riemann, and K. Konig, “New developments in corneal refractive surgery with femtosecond laser pulses,” Proc. SPIE 6138, 61381J (2006).
[Crossref]

Ripken, T.

N. Tinne, T. Ripken, H. Lubatschowski, and A. Heisterkamp, “Interaction dynamics of fs-laser induced cavitation bubbles and their impact on the laser-tissue-interaction of modern ophthalmic laser systems,” Proc. SPIE 8092, 80921H (2011).
[Crossref]

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt. 15(6), 068003 (2010).
[Crossref] [PubMed]

Robinson, P.

J. Blake, P. Robinson, A. Shima, and Y. Tomita, “Interaction of two cavitation bubbles with a rigid boundary,” J. Fluid Mech. 255(-1), 707–721 (1993).
[Crossref]

Rockwell, B. A.

A. Vogel, J. Noack, D. X. Hammer, and B. A. Rockwell, “Shock waves and cavitation effects in aqueous media induced by ultrafast laser pulses,” AIP Conf. Proc. 524, 397–401 (2000).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref] [PubMed]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
[Crossref]

Rungsiyaphornrat, S.

S. Rungsiyaphornrat, E. Klaseboer, B. C. Khoo, and K. S. Yeo, “The merging of two gaseous bubbles with an application to underwater explosions,” Comput. Fluids 32(8), 1049–1074 (2003).
[Crossref]

Saklayen, N.

N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, and E. Mazur, “Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates,” ACS Nano 11(4), 3671–3680 (2017).
[Crossref] [PubMed]

Samaniego, A. P.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152(2), 286–293 (2011).
[Crossref] [PubMed]

Sankin, G. N.

G. N. Sankin, F. Yuan, and P. Zhong, “Pulsating tandem microbubble for localized and directional single-cell membrane poration,” Phys. Rev. Lett. 105(7), 078101 (2010).
[Crossref] [PubMed]

G. N. Sankin, Y. Zhou, and P. Zhong, “Focusing of shock waves induced by optical breakdown in water,” J. Acoust. Soc. Am. 123(6), 4071–4081 (2008).
[Crossref] [PubMed]

Savidis, N.

S. Jolly, N. Savidis, B. Datta, T. Karydis, W. Langford, N. Gershenfeld, and V. M. Bove, “Progress in fabrication of anisotropic Bragg gratings fabricated in lithium niobate via femtosecond laser micromachining,” Proc. SPIE 10544, 105440D (2018).

Saxena, I.

K. Pallav, I. Saxena, and K. F. Ehmann, “Laser-induced plasma micromachining process: principles and performance,” J. Micro. Nano-Manuf. 3(3), 031004 (2015).
[Crossref]

Schaffer, C.

Schechter, I.

T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ= 1064 nm nanosecond pulses,” Chem. Phys. Lett. 500(4-6), 242–250 (2010).
[Crossref]

Schumacher, S.

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt. 15(6), 068003 (2010).
[Crossref] [PubMed]

Shen, W.

N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, and E. Mazur, “Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates,” ACS Nano 11(4), 3671–3680 (2017).
[Crossref] [PubMed]

Shima, A.

J. Blake, P. Robinson, A. Shima, and Y. Tomita, “Interaction of two cavitation bubbles with a rigid boundary,” J. Fluid Mech. 255(-1), 707–721 (1993).
[Crossref]

Shukunami, C.

Y. Hosokawa, S. Iguchi, R. Yasukuni, Y. Hiraki, C. Shukunami, and H. Masuhara, “Gene delivery process in a single animal cell after femtosecond laser microinjection,” Appl. Surf. Sci. 255(24), 9880–9884 (2009).
[Crossref]

Song, J. H.

K. Johansen, J. H. Song, K. Johnston, and P. Prentice, “Deconvolution of acoustically detected bubble-collapse shock waves,” Ultrasonics 73, 144–153 (2017).
[Crossref] [PubMed]

Song, J. J.

Y. Tian, B. Y. Xue, J. J. Song, Y. Lu, and R. Zheng, “Stabilization of laser-induced plasma in bulk water using large focusing angle,” Appl. Phys. Lett. 109(6), 061104 (2016).
[Crossref]

Sullivan, C.

Y. Dixit, M. P. Casado-Gavalda, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, F. Jacoby, P. J. Cullen, and C. Sullivan, “Introduction to laser induced breakdown spectroscopy imaging in food: salt diffusion in meat,” J. Food Eng. 216, 120–124 (2018).
[Crossref]

Sun, C.

Y. Tagawa, N. Oudalov, A. El Ghalbzouri, C. Sun, and D. Lohse, “Needle-free injection into skin and soft matter with highly focused microjets,” Lab Chip 13(7), 1357–1363 (2013).
[Crossref] [PubMed]

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly focused supersonic microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Tagawa, Y.

Y. Tagawa, S. Yamamoto, K. Hayasaka, and M. Kameda, “On pressure impulse of a laser-induced underwater shock wave,” J. Fluid Mech. 808, 5–18 (2016).
[Crossref]

Y. Tagawa, N. Oudalov, A. El Ghalbzouri, C. Sun, and D. Lohse, “Needle-free injection into skin and soft matter with highly focused microjets,” Lab Chip 13(7), 1357–1363 (2013).
[Crossref] [PubMed]

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly focused supersonic microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Takayama, K.

V. Menezes, S. Kumar, and K. Takayama, “Shock wave driven liquid microjets for drug delivery,” J. Appl. Phys. 106(8), 086102 (2009).
[Crossref]

Tanev, I.

I. Tanev, V. Tanev, and A. J. Kanellopoulos, “Nanosecond laser-assisted cataract surgery: Endothelial cell study,” J. Cataract Refract. Surg. 42(5), 725–730 (2016).
[Crossref] [PubMed]

Tanev, V.

I. Tanev, V. Tanev, and A. J. Kanellopoulos, “Nanosecond laser-assisted cataract surgery: Endothelial cell study,” J. Cataract Refract. Surg. 42(5), 725–730 (2016).
[Crossref] [PubMed]

Teitell, M. A.

Y. C. Wu, T. H. Wu, D. L. Clemens, B. Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P. Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

Theisen, D.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref] [PubMed]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

Thomas, R. J.

Thompson, C. R.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

Tian, Y.

Y. Tian, B. Y. Xue, J. J. Song, Y. Lu, and R. Zheng, “Stabilization of laser-induced plasma in bulk water using large focusing angle,” Appl. Phys. Lett. 109(6), 061104 (2016).
[Crossref]

Tinne, N.

N. Tinne, T. Ripken, H. Lubatschowski, and A. Heisterkamp, “Interaction dynamics of fs-laser induced cavitation bubbles and their impact on the laser-tissue-interaction of modern ophthalmic laser systems,” Proc. SPIE 8092, 80921H (2011).
[Crossref]

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt. 15(6), 068003 (2010).
[Crossref] [PubMed]

Toker, G.

T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ= 1064 nm nanosecond pulses,” Chem. Phys. Lett. 500(4-6), 242–250 (2010).
[Crossref]

Tomita, Y.

J. Blake, P. Robinson, A. Shima, and Y. Tomita, “Interaction of two cavitation bubbles with a rigid boundary,” J. Fluid Mech. 255(-1), 707–721 (1993).
[Crossref]

Trickl, T.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

van der Meer, D.

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly focused supersonic microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Venugopalan, V.

S. L. Genc, H. Ma, and V. Venugopalan, “Low-density plasma formation in aqueous biological media using sub-nanosecond laser pulses,” Appl. Phys. Lett. 105(6), 063701 (2014).
[Crossref] [PubMed]

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C. D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J. Biophotonics 1(1), 24–35 (2008).
[Crossref] [PubMed]

P. A. Quinto-Su, V. Venugopalan, and C. D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[Crossref] [PubMed]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Visser, C. W.

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly focused supersonic microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Vogel, A.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

B. Han, K. Kohler, K. Jungnickel, R. Mettin, W. Lauterborn, and A. Vogel, “Dynamics of laser-induced bubble pairs,” J. Fluid Mech. 771, 706–742 (2015).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

A. Vogel, J. Noack, D. X. Hammer, and B. A. Rockwell, “Shock waves and cavitation effects in aqueous media induced by ultrafast laser pulses,” AIP Conf. Proc. 524, 397–401 (2000).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref] [PubMed]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. II. transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
[Crossref]

A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84(2), 719–731 (1988).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and X. X. Liang, “Controlled nonlinear energy deposition in transparent materials: experiments and theory,” in Proceedings of International Symposium on High Power Laser Ablation, C. R. Phipps, ed. (American Institute of Physics, 2010), pp. 51–55.

Vogelmann, H.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

Vulis, D. I.

N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, and E. Mazur, “Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates,” ACS Nano 11(4), 3671–3680 (2017).
[Crossref] [PubMed]

Wang, Q. X.

P. Cui, Q. X. Wang, S. P. Wang, and A. M. Zhang, “Experimental study on interaction and coalescence of synchronized multiple bubbles,” Phys. Fluids 28(1), 012103 (2016).
[Crossref]

Y. X. Yang, Q. X. Wang, and T. S. Keat, “Dynamic features of a laser-induced cavitation bubble near a solid boundary,” Ultrason. Sonochem. 20(4), 1098–1103 (2013).
[Crossref] [PubMed]

Wang, S. P.

P. Cui, Q. X. Wang, S. P. Wang, and A. M. Zhang, “Experimental study on interaction and coalescence of synchronized multiple bubbles,” Phys. Fluids 28(1), 012103 (2016).
[Crossref]

Wei, K.

T. H. Wu, L. Y. Gao, Y. Chen, K. Wei, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Welling, H.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Wen, J.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152(2), 286–293 (2011).
[Crossref] [PubMed]

Wen, X.

Y. C. Wu, T. H. Wu, D. L. Clemens, B. Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P. Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

Wright, E. M.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

Wu, T. H.

Y. C. Wu, T. H. Wu, D. L. Clemens, B. Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P. Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

T. H. Wu, L. Y. Gao, Y. Chen, K. Wei, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Wu, Y. C.

Y. C. Wu, T. H. Wu, D. L. Clemens, B. Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P. Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

Wullner, C.

R. L. Harzic, S. Martin, R. Buckle, C. Wullner, C. Donitzky, I. Riemann, and K. Konig, “New developments in corneal refractive surgery with femtosecond laser pulses,” Proc. SPIE 6138, 61381J (2006).
[Crossref]

Xu, Z.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Xue, B. Y.

Y. Tian, B. Y. Xue, J. J. Song, Y. Lu, and R. Zheng, “Stabilization of laser-induced plasma in bulk water using large focusing angle,” Appl. Phys. Lett. 109(6), 061104 (2016).
[Crossref]

Yamamoto, S.

Y. Tagawa, S. Yamamoto, K. Hayasaka, and M. Kameda, “On pressure impulse of a laser-induced underwater shock wave,” J. Fluid Mech. 808, 5–18 (2016).
[Crossref]

Yang, Y. X.

Y. X. Yang, Q. X. Wang, and T. S. Keat, “Dynamic features of a laser-induced cavitation bubble near a solid boundary,” Ultrason. Sonochem. 20(4), 1098–1103 (2013).
[Crossref] [PubMed]

Yao, C.

C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
[Crossref] [PubMed]

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[Crossref] [PubMed]

Yasukuni, R.

Y. Hosokawa, S. Iguchi, R. Yasukuni, Y. Hiraki, C. Shukunami, and H. Masuhara, “Gene delivery process in a single animal cell after femtosecond laser microinjection,” Appl. Surf. Sci. 255(24), 9880–9884 (2009).
[Crossref]

Yeo, K. S.

S. Rungsiyaphornrat, E. Klaseboer, B. C. Khoo, and K. S. Yeo, “The merging of two gaseous bubbles with an application to underwater explosions,” Comput. Fluids 32(8), 1049–1074 (2003).
[Crossref]

Yildirim, M.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Yoon, E.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Yoon, H. H.

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J. Biophotonics 1(1), 24–35 (2008).
[Crossref] [PubMed]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Yuan, F.

G. N. Sankin, F. Yuan, and P. Zhong, “Pulsating tandem microbubble for localized and directional single-cell membrane poration,” Phys. Rev. Lett. 105(7), 078101 (2010).
[Crossref] [PubMed]

Zeitels, S. M.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Zhang, A. M.

P. Cui, Q. X. Wang, S. P. Wang, and A. M. Zhang, “Experimental study on interaction and coalescence of synchronized multiple bubbles,” Phys. Fluids 28(1), 012103 (2016).
[Crossref]

Zhang, Z.

C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
[Crossref] [PubMed]

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[Crossref] [PubMed]

Zhao, X. D.

X. F. Du, D. M. Dong, X. D. Zhao, L. Z. Jiao, P. C. Han, and Y. Lang, “Detection of pesticide residues on fruit surfaces using laser induced breakdown spectroscopy,” Rsc Adv 5(97), 79956–79963 (2015).
[Crossref]

Zheng, R.

Y. Tian, B. Y. Xue, J. J. Song, Y. Lu, and R. Zheng, “Stabilization of laser-induced plasma in bulk water using large focusing angle,” Appl. Phys. Lett. 109(6), 061104 (2016).
[Crossref]

Zhong, P.

G. N. Sankin, F. Yuan, and P. Zhong, “Pulsating tandem microbubble for localized and directional single-cell membrane poration,” Phys. Rev. Lett. 105(7), 078101 (2010).
[Crossref] [PubMed]

G. N. Sankin, Y. Zhou, and P. Zhong, “Focusing of shock waves induced by optical breakdown in water,” J. Acoust. Soc. Am. 123(6), 4071–4081 (2008).
[Crossref] [PubMed]

Zhou, Y.

G. N. Sankin, Y. Zhou, and P. Zhong, “Focusing of shock waves induced by optical breakdown in water,” J. Acoust. Soc. Am. 123(6), 4071–4081 (2008).
[Crossref] [PubMed]

Zweig, A. D.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Noninvasive determination of shock-wave pressure generated by optical-breakdown,” Appl Phys B. 53(4), 237–245 (1991).
[Crossref]

ACS Nano (1)

N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, and E. Mazur, “Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates,” ACS Nano 11(4), 3671–3680 (2017).
[Crossref] [PubMed]

AIP Conf. Proc. (1)

A. Vogel, J. Noack, D. X. Hammer, and B. A. Rockwell, “Shock waves and cavitation effects in aqueous media induced by ultrafast laser pulses,” AIP Conf. Proc. 524, 397–401 (2000).
[Crossref]

Anal. Chem. (1)

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, “Laser-induced mixing in microfluidic channels,” Anal. Chem. 79(12), 4484–4492 (2007).
[Crossref] [PubMed]

Appl Phys B. (1)

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Noninvasive determination of shock-wave pressure generated by optical-breakdown,” Appl Phys B. 53(4), 237–245 (1991).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Appl. Phys. Lett. (4)

S. L. Genc, H. Ma, and V. Venugopalan, “Low-density plasma formation in aqueous biological media using sub-nanosecond laser pulses,” Appl. Phys. Lett. 105(6), 063701 (2014).
[Crossref] [PubMed]

T. H. Wu, L. Y. Gao, Y. Chen, K. Wei, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett. 93(14), 144102 (2008).
[Crossref]

Y. Tian, B. Y. Xue, J. J. Song, Y. Lu, and R. Zheng, “Stabilization of laser-induced plasma in bulk water using large focusing angle,” Appl. Phys. Lett. 109(6), 061104 (2016).
[Crossref]

W. Lauterborn and K. J. Ebeling, “High-speed holography of laser-induced breakdown in liquids,” Appl. Phys. Lett. 31(10), 663–664 (1977).
[Crossref]

Appl. Surf. Sci. (1)

Y. Hosokawa, S. Iguchi, R. Yasukuni, Y. Hiraki, C. Shukunami, and H. Masuhara, “Gene delivery process in a single animal cell after femtosecond laser microinjection,” Appl. Surf. Sci. 255(24), 9880–9884 (2009).
[Crossref]

Biochim. Biophys. Acta (1)

T. Kodama, A. G. Doukas, and M. R. Hamblin, “Shock wave-mediated molecular delivery into cells,” Biochim. Biophys. Acta 1542(1-3), 186–194 (2002).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ= 1064 nm nanosecond pulses,” Chem. Phys. Lett. 500(4-6), 242–250 (2010).
[Crossref]

Comput. Fluids (1)

S. Rungsiyaphornrat, E. Klaseboer, B. C. Khoo, and K. S. Yeo, “The merging of two gaseous bubbles with an application to underwater explosions,” Comput. Fluids 32(8), 1049–1074 (2003).
[Crossref]

Exp. Fluids (1)

S. W. Fong, D. Adhikari, E. Klaseboer, and B. C. Khoo, “Interactions of multiple spark-generated bubbles with phase differences,” Exp. Fluids 46(4), 705–724 (2009).
[Crossref]

Graefes Arch. Clin. Exp. Ophthalmol. (2)

M. R. C. Capon, F. Docchio, and J. Mellerio, “Nd:YAG laser photodisruption: an experimental investigation on shielding and multiple plasma formation,” Graefes Arch. Clin. Exp. Ophthalmol. 226(4), 362–366 (1988).
[Crossref] [PubMed]

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (2)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33(2), 127–137 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2(4), 847–860 (1996).
[Crossref]

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. II. transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
[Crossref]

J. Acoust. Soc. Am. (3)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

G. N. Sankin, Y. Zhou, and P. Zhong, “Focusing of shock waves induced by optical breakdown in water,” J. Acoust. Soc. Am. 123(6), 4071–4081 (2008).
[Crossref] [PubMed]

A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84(2), 719–731 (1988).
[Crossref]

J. Appl. Phys. (4)

J. C. Isselin, A. P. Alloncle, and M. Autric, “On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena,” J. Appl. Phys. 84(10), 5766–5771 (1998).
[Crossref]

R. Evans and S. Camacho-Lopez, “Pump-probe imaging of nanosecond laser-induced bubbles in distilled water solutions: observations of laser-produced-plasma,” J. Appl. Phys. 108(10), 103106 (2010).
[Crossref]

V. Menezes, S. Kumar, and K. Takayama, “Shock wave driven liquid microjets for drug delivery,” J. Appl. Phys. 106(8), 086102 (2009).
[Crossref]

R. Petkovsek and P. Gregorcic, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
[Crossref]

J. Biomed. Opt. (3)

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt. 15(6), 068003 (2010).
[Crossref] [PubMed]

C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009).
[Crossref] [PubMed]

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[Crossref] [PubMed]

J. Biophotonics (1)

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, “Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery,” J. Biophotonics 1(1), 24–35 (2008).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (2)

I. Tanev, V. Tanev, and A. J. Kanellopoulos, “Nanosecond laser-assisted cataract surgery: Endothelial cell study,” J. Cataract Refract. Surg. 42(5), 725–730 (2016).
[Crossref] [PubMed]

P. S. Binder, “One thousand consecutive IntraLase laser in situ keratomileusis flaps,” J. Cataract Refract. Surg. 32(6), 962–969 (2006).
[Crossref] [PubMed]

J. Control. Release (2)

J. Di, J. Kim, Q. Hu, X. Jiang, and Z. Gu, “Spatiotemporal drug delivery using laser-generated-focused ultrasound system,” J. Control. Release 220(Pt B), 592–599 (2015).
[Crossref] [PubMed]

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152(2), 286–293 (2011).
[Crossref] [PubMed]

J. Fluid Mech. (3)

J. Blake, P. Robinson, A. Shima, and Y. Tomita, “Interaction of two cavitation bubbles with a rigid boundary,” J. Fluid Mech. 255(-1), 707–721 (1993).
[Crossref]

Y. Tagawa, S. Yamamoto, K. Hayasaka, and M. Kameda, “On pressure impulse of a laser-induced underwater shock wave,” J. Fluid Mech. 808, 5–18 (2016).
[Crossref]

B. Han, K. Kohler, K. Jungnickel, R. Mettin, W. Lauterborn, and A. Vogel, “Dynamics of laser-induced bubble pairs,” J. Fluid Mech. 771, 706–742 (2015).
[Crossref]

J. Food Eng. (1)

Y. Dixit, M. P. Casado-Gavalda, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, F. Jacoby, P. J. Cullen, and C. Sullivan, “Introduction to laser induced breakdown spectroscopy imaging in food: salt diffusion in meat,” J. Food Eng. 216, 120–124 (2018).
[Crossref]

J. Micro. Nano-Manuf. (1)

K. Pallav, I. Saxena, and K. F. Ehmann, “Laser-induced plasma micromachining process: principles and performance,” J. Micro. Nano-Manuf. 3(3), 031004 (2015).
[Crossref]

J. Refract. Surg. (1)

I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg. 19(2), 94–103 (2003).
[PubMed]

Lab Chip (2)

R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip 8(10), 1676–1681 (2008).
[Crossref] [PubMed]

Y. Tagawa, N. Oudalov, A. El Ghalbzouri, C. Sun, and D. Lohse, “Needle-free injection into skin and soft matter with highly focused microjets,” Lab Chip 13(7), 1357–1363 (2013).
[Crossref] [PubMed]

Laser Part. Beams (1)

A. Nath and A. Khare, “Transient evolution of multiple bubbles in laser induced breakdown in water,” Laser Part. Beams 29(1), 1–9 (2011).
[Crossref]

Laser Phys. Lett. (2)

F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “Laser control of filament-induced shock wave in water,” Laser Phys. Lett. 11(10), 106001 (2014).
[Crossref]

F. V. Potemkin and E. I. Mareev, “Dynamics of multiple bubbles, excited by a femtosecond filament in water,” Laser Phys. Lett. 12(1), 015405 (2015).
[Crossref]

Lasers Ophthalmol (1)

M. Capon, F. Docchio, and J. Mellerio, “Investigations of multiple plasmas from ophthalmic Nd: YAG lasers,” Lasers Ophthalmol 1, 147–153 (1987).

Nat. Methods (1)

Y. C. Wu, T. H. Wu, D. L. Clemens, B. Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, and P. Y. Chiou, “Massively parallel delivery of large cargo into mammalian cells with light pulses,” Nat. Methods 12(5), 439–444 (2015).
[Crossref] [PubMed]

New J. Phys. (1)

F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “Highly extended high density filaments in tight focusing geometry in water: from femtoseconds to microseconds,” New J. Phys. 17(5), 053010 (2015).
[Crossref]

Nuovo Cimento D (1)

F. Docchio, “Spatial and temporal dynamics of light attenuation and transmission by plasmas induced in liquids by nanosecond Nd: YAG laser pulses,” Nuovo Cimento D 13(1), 87–98 (1991).
[Crossref]

Opt. Express (2)

Philos T R Soc A (1)

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, “Bubble dynamics, shock waves and sonoluminescence,” Philos T R Soc A 357(1751), 269–294 (1999).
[Crossref]

Phys. Fluids (1)

P. Cui, Q. X. Wang, S. P. Wang, and A. M. Zhang, “Experimental study on interaction and coalescence of synchronized multiple bubbles,” Phys. Fluids 28(1), 012103 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C. D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[Crossref] [PubMed]

L. W. Chew, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Interaction of two differently sized oscillating bubbles in a free field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(6), 066307 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

L. R. Evans and C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22(21), 1099–1102 (1969).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

G. N. Sankin, F. Yuan, and P. Zhong, “Pulsating tandem microbubble for localized and directional single-cell membrane poration,” Phys. Rev. Lett. 105(7), 078101 (2010).
[Crossref] [PubMed]

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[Crossref] [PubMed]

Phys. Rev. X (1)

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly focused supersonic microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Proc. SPIE (3)

N. Tinne, T. Ripken, H. Lubatschowski, and A. Heisterkamp, “Interaction dynamics of fs-laser induced cavitation bubbles and their impact on the laser-tissue-interaction of modern ophthalmic laser systems,” Proc. SPIE 8092, 80921H (2011).
[Crossref]

S. Jolly, N. Savidis, B. Datta, T. Karydis, W. Langford, N. Gershenfeld, and V. M. Bove, “Progress in fabrication of anisotropic Bragg gratings fabricated in lithium niobate via femtosecond laser micromachining,” Proc. SPIE 10544, 105440D (2018).

R. L. Harzic, S. Martin, R. Buckle, C. Wullner, C. Donitzky, I. Riemann, and K. Konig, “New developments in corneal refractive surgery with femtosecond laser pulses,” Proc. SPIE 6138, 61381J (2006).
[Crossref]

Prog. Quantum Electron. (1)

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21(3), 155–248 (1997).
[Crossref]

Rsc Adv (1)

X. F. Du, D. M. Dong, X. D. Zhao, L. Z. Jiao, P. C. Han, and Y. Lang, “Detection of pesticide residues on fruit surfaces using laser induced breakdown spectroscopy,” Rsc Adv 5(97), 79956–79963 (2015).
[Crossref]

Sci. Rep. (1)

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2(1), 989 (2012).
[Crossref] [PubMed]

Small (1)

T. Lee, W. Luo, Q. Li, H. Demirci, and L. J. Guo, “Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel,” Small 13(38), 1701555 (2017).
[Crossref] [PubMed]

Spectrochim. Acta B. (1)

V. Lazic, S. Jovicevic, R. Fantoni, and F. Colao, “Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy,” Spectrochim. Acta B. 62(12), 1433–1442 (2007).
[Crossref]

Ultrason. Sonochem. (1)

Y. X. Yang, Q. X. Wang, and T. S. Keat, “Dynamic features of a laser-induced cavitation bubble near a solid boundary,” Ultrason. Sonochem. 20(4), 1098–1103 (2013).
[Crossref] [PubMed]

Ultrasonics (2)

K. Johansen, J. H. Song, K. Johnston, and P. Prentice, “Deconvolution of acoustically detected bubble-collapse shock waves,” Ultrasonics 73, 144–153 (2017).
[Crossref] [PubMed]

W. Lauterborn and W. Hentschel, “Cavitation bubble dynamics studied by high speed photography and holography: part one,” Ultrasonics 23(6), 260–268 (1985).
[Crossref]

Other (3)

W. Lauterborn and A. Vogel, “Shock wave emission by laser generated bubbles,” in Bubble dynamics and shock waves, C. F. Delale, ed. (Springer, 2013), pp. 67–103.

Q. H. Fan, W. Q. Hu, and A. T. Ohta, “Light-induced microbubble poration of localized cells,” in Proceedings of IEEE Conference on IEEE engineering in medicine and biology society (IEEE, 2013), pp. 4482–4485.

A. Vogel, N. Linz, S. Freidank, and X. X. Liang, “Controlled nonlinear energy deposition in transparent materials: experiments and theory,” in Proceedings of International Symposium on High Power Laser Ablation, C. R. Phipps, ed. (American Institute of Physics, 2010), pp. 51–55.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the experimental setup and measured signals. (a) Schematic of the experimental setup used to measure laser-induced optical breakdown. (b) Schematic of multipl-breakdown structure model and multiple plasmas emiting multiple bubbles and shock waves. Differently colored arrows demonstrate the various paths of shock waves propagating to the transducer. (c) Diagram of optical-scattering technique. (d) Image of multiple plasmas generated in water. The light is incident from right. (e) Light-scattering response of cavitation-bubble oscillation. (f) Typical acoustic data of multiple breakdown.
Fig. 2
Fig. 2 Evolution of optical breakdown on laser pulse energy. (a) Number and probability of optical breakdown as a function of pulse energy. The black star represents the plasma number per pulse experiment, the red sphere represents the probability of breakdown, and the blue sphere represents the ratio of single breakdown to optical breakdown. (b) Plasma volume as a function of pulse energy. The black sphere represents the plasma volume of single breakdown, the blue sphere represents the total volume of plasmas during multiple breakdown, and the red sphere represents the major plasma volume of multiple breakdown. The line corresponds to linear dependence of both single breakdown and multiple breakdown. (c) Images of plasmas along the optical axis where averages of all images in the presence of plasma formation within each energy range are shown. The beam is incident from above.
Fig. 3
Fig. 3 Dynamics of cavitation bubbles in water induced by nanosecond laser pulses. The frame rate was 2.1 × 105 fps, and the exposure time was about 3.15 μs. (a) Oscillation dynamics of single bubble. (b) Oscillation dynamics of multiple bubbles.
Fig. 4
Fig. 4 FOP of cavitation bubbles. (a) FOP as a function of pulse energy. (b) FOP as a function of major plasma volume.
Fig. 5
Fig. 5 Rebound-bubble lifetime. (a) Rebound-bubble lifetime as a function of FOP. Different color represent different VROMPTTP: single breakdown (blue sphere); VROMPTTP over 0.9 (red sphere), range from 0.7 to 0.9 (green sphere), range from 0.5 to 0.7 (magenta sphere), and range below 0.5 (olive sphere). (b) Rebound-bubble lifetime as a function of VROMPTTP at the same FOP of 25.5 μs.
Fig. 6
Fig. 6 Conversion efficiency of cavitation-bubble energy into rebound-bubble energy. (a) Efficiency η as a function of total bubble energy. Different color symbols represent different VROMPTTP range. (b) Cavitation-bubble energy of 2 μJ, conversion efficiency η as a function of VROMPTTP.
Fig. 7
Fig. 7 Peak pressure of the initial shock waves in the far-field as a function of plasma volume.
Fig. 8
Fig. 8 Peak pressure distribution of FCSW in the far field. (a) Peak pressure of collapse shock waves in the far-field as a function of plasma volume. (b) Linear fitting of the peak pressure of FCSW with error bars. Different color symbols represent different VROMPTTP ranges. (c) The peak pressure of FCSW distribution with the same major bubble ideal size (maximum radius of 170 μm).(d) With the same cavitation-bubble energy of 2.2 µJ, the peak pressure of FCSW in the far-field as a function of rebound-bubble lifetime.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R max = T osc 1.83 ( p s p v ρ ) 1 2 .
E b = 4 3 π( p s p v ) R max 3 .

Metrics