Abstract

Yb3+/Al3+ co-doped silica fibers (YDFs) with almost identical core glass compositions were prepared using the sol-gel and modified chemical vapor deposition (MCVD) methods. The photodarkening (PD) and laser performance before and after the PD process were tested under 974 nm pumping. The doping homogeneity of Yb3+ ions and clusters of Yb3+ ions in preform slices of these two fibers were investigated via optical absorption spectroscopy, photoluminescence emission spectra, electron probe microanalysis (EPMA), and low-temperature (4 K) electron paramagnetic resonance (EPR). It is known that the PD resistance of YDFs prepared via the sol-gel method is significantly better than that of YDFs prepared via MCVD under the same test conditions. EPMA mapping reveals that the doping homogeneity of Yb3+ ions in the sol-gel fiber core glass is better than that in the MCVD fiber. The low-temperature (4 K) EPR and cooperative luminescence spectra of Yb3+ ions indicate that the clustering degree of Yb3+ ions in the sol-gel fiber is lower than that in the MCVD fiber. In the absorption and emission spectra, small amounts of Yb2+ ions are observed in the preform slice from the sol-gel method. A model of the color-center generation in the PD process was proposed to explain the mechanism of PD resistance improvement for the YDFs fabricated via the sol-gel method.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method

Shikai Wang, Wenbin Xu, Fengguang Lou, Lei Zhang, Qinling Zhou, Danping Chen, Wei Chen, Suya Feng, Meng Wang, Chunlei Yu, and Lili Hu
Opt. Mater. Express 6(1) 69-78 (2016)

Yb3+-doped silica glass rod with high optical quality and low optical attenuation prepared by modified sol-gel technology for large mode area fiber

Shikai Wang, Wenbin Xu, Fan Wang, Fengguang Lou, Lei Zhang, Qinling Zhou, Danping Chen, Suya Feng, Meng Wang, Chunlei Yu, and Lili Hu
Opt. Mater. Express 7(6) 2012-2022 (2017)

2 μm laser properties of Tm3+-doped large core sol-gel silica fiber

Fengguang Lou, Pei-Wen Kuan, Lei Zhang, Shikai Wang, Qinling Zhou, Meng Wang, Suya Feng, Kefeng Li, Chunlei Yu, and Lili Hu
Opt. Mater. Express 4(6) 1267-1275 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  2. M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
    [Crossref]
  3. M. Jiang, P. Ma, L. Huang, J. Xu, P. Zhou, and X. Gu, “kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme,” High Power Laser Sci. Eng. 5(4), e30 (2017).
  4. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
    [Crossref] [PubMed]
  5. H. J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
    [Crossref] [PubMed]
  6. N. Li, S. Yoo, X. Yu, D. Jain, and J. K. Sahu, “Pump power depreciation by photodarkening in ytterbium-doped fibers and amplifiers,” IEEE Photonics Technol. Lett. 26(2), 115–118 (2014).
    [Crossref]
  7. C. Jauregui, H. J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
    [Crossref] [PubMed]
  8. M. Engholm, L. Norin, and D. Aberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32(22), 3352–3354 (2007).
    [Crossref] [PubMed]
  9. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32(12), 1626–1628 (2007).
    [Crossref] [PubMed]
  10. R. Peretti, C. Gonnet, and A. M. Jurdyc, “A new vision of photodarkening in Yb3+-doped fibers,” in Photonics West (2012), 825705–825707.
  11. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, J. Fiebrandt, M. Jäger, and J. Kirchhof, “Evidence of Tm impact in low-photodarkening Yb-doped fibers,” Opt. Express 21(6), 7590–7598 (2013).
    [Crossref] [PubMed]
  12. K. E. Mattsson, “Photo darkening of rare earth doped silica,” Opt. Express 19(21), 19797–19812 (2011).
    [Crossref] [PubMed]
  13. S. Rydberg and M. Engholm, “Experimental evidence for the formation of divalent ytterbium in the photodarkening process of Yb-doped fiber lasers,” Opt. Express 21(6), 6681–6688 (2013).
    [Crossref] [PubMed]
  14. S. Jetschke, S. Unger, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. SPIE 68731, 68710 (2008).
  15. J. Jasapara, M. Andrejco, D. Digiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference on Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006 (2006), 1 - 2.
  16. M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” Proc. SPIE 68731, 6873 (2008).
  17. T. Deschamps, H. Vezin, C. Gonnet, and N. Ollier, “Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber,” Opt. Express 21(7), 8382–8392 (2013).
    [Crossref] [PubMed]
  18. T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
    [Crossref] [PubMed]
  19. H. Gebavi, S. Taccheo, D. Milanese, A. Monteville, O. Le Goffic, D. Landais, D. Mechin, D. Tregoat, B. Cadier, and T. Robin, “Temporal evolution and correlation between cooperative luminescence and photodarkening in ytterbium doped silica fibers,” Opt. Express 19(25), 25077–25083 (2011).
    [Crossref] [PubMed]
  20. J. Koponen, M. Söderlund, H. J. Hoffman, D. A. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47(9), 1247–1256 (2008).
    [Crossref] [PubMed]
  21. S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34(1), 109–111 (2009).
    [Crossref] [PubMed]
  22. D. Jain, Y. Jung, P. Barua, S. Alam, and J. K. Sahu, “Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers,” Opt. Express 23(6), 7407–7415 (2015).
    [Crossref] [PubMed]
  23. E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Noncryst. Sol. 354(42–44), 4737–4742 (2008).
    [Crossref]
  24. A. Dhar, M. Ch. Paul, M. Pal, A. K. Mondal, S. Sen, H. S. Maiti, and R. Sen, “Characterization of porous core layer for controlling rare earth incorporation in optical fiber,” Opt. Express 14(20), 9006–9015 (2006).
    [Crossref] [PubMed]
  25. S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
    [Crossref] [PubMed]
  26. S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4406–4414 (2014).
    [Crossref]
  27. V. Reichel, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers,” Proc. SPIE 72121, 7212 (2009).
  28. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett. 34(8), 1285–1287 (2009).
    [Crossref] [PubMed]
  29. C. Y. Shao, W. B. Xu, N. Ollier, M. Guzik, G. Boulon, L. Yu, L. Zhang, C. L. Yu, S. K. Wang, and L. L. Hu, “Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses,” J. Appl. Phys. 120(15), 8 (2016).
  30. M. Chatterjee and M. K. Naskar, “Sol–gel synthesis of lithium aluminum silicate powders: The effect of silica source,” Ceram. Int. 32(6), 623–632 (2006).
    [Crossref]
  31. H. Xiong, B. Shen, Z. Chen, X. Zhang, H. Li, Y. Tang, and L. Hu, “Preparation of ultra-broadband antireflective coatings for amplifier blast shields by a sol–gel method,” High Power Laser Sci. Eng. 5(4), 29–31 (2017).
    [Crossref]
  32. U. Pedrazza, V. Romano, and W. Lüthy, “Yb:Al:sol–gel silica glass fiber laser,” Opt. Mater. 29(7), 905–907 (2007).
    [Crossref]
  33. S. Wang, Z. Li, C. Yu, M. Wang, S. Feng, Q. Zhou, D. Chen, and L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol–gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
    [Crossref]
  34. A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
    [Crossref]
  35. Z. Wang, Q. Li, Z. Wang, F. Zou, Y. Bai, S. Feng, and J. Zhou, “255 W picosecond MOPA laser based on self-made Yb-doped very-large-mode-area photonic crystal fiber,” Chin. Opt. Lett. 14(8), 081401 (2016).
    [Crossref]
  36. W. Xu, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “Fabrication and Laser Amplification Behavior of Yb3+/Al3+ Co-Doped Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 28(4), 391–393 (2016).
    [Crossref]
  37. S. Jetschke, U. Röpke, S. Unger, and J. Kirchhof, “Characterization of photodarkening processes in Yb doped fibers,” Proc. SPIE 71951, 71912 (2009).
  38. H. Gebavi, S. Taccheo, D. Tregoat, A. Monteville, and T. Robin, “Photobleaching of photodarkening in ytterbium doped aluminosilicate fibers with 633 nm irradiation,” Opt. Mater. Express 2(9), 1286–1291 (2012).
    [Crossref]
  39. F. Xie, C. Shao, F. Lou, M. Wang, C. Yu, S. Feng, and L. Hu, “Effect of power scale of 974 and 633 nm lasers on the induced loss at 633 nm of Yb3+/Al3+ co-doped silica fiber,” Chin. Opt. Lett. 16(1), 010603 (2018).
    [Crossref]
  40. M. Engholm and L. Norin, “Comment on “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation”,” Opt. Lett. 33(11), 1216 (2008).
    [Crossref] [PubMed]
  41. L. Li and S. Zhang, “Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds,” J. Phys. Chem. B 110(43), 21438–21443 (2006).
    [Crossref] [PubMed]
  42. L. Van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000).
    [Crossref]
  43. M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
    [Crossref] [PubMed]
  44. C. Y. Shao, X. U. Wen-Bin, L. W. Liu, Q. H. Yang, H. U. Li-Li, Q. L. Zhou, and S. K. Wang, “Influence of Al3+/Yb3+/P5+-doping on UV Transmission and Fluorescence Spectra under the UV Excitation of Silica Glasses,” J. Inorg. Mater. 30(12), 1327 (2015).
    [Crossref]
  45. B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloys Compd. 300–301(8), 443–449 (2000).
    [Crossref]
  46. G. C. Yong, B. S. Yong, S. S. Hong, and K. H. Kim, “Spectral evolution of cooperative luminescence in an Yb3+ -doped silica optical fiber,” Chem. Phys. Lett. 364(1–2), 200–205 (2002).
  47. S. Sen, R. Rakhmatullin, R. Gubaydullin, and A. Silakov, “A pulsed EPR study of clustering of Yb3+ ions incorporated in GeO2 glass,” J. Noncryst. Sol. 333(1), 22–27 (2004).
    [Crossref]
  48. M. D. O. Jr, T. Uesbeck, T. Goncalves, C. J. Magon, P. S. Pizani, A. D. Camargo, and H. Eckert, “Network Structure and Rare-Earth Ion Local Environments in Fluoride Phosphate Photonic Glasses Studied by Solid-State NMR and Electron Paramagnetic Resonance Spectroscopies,” J. Phys. Chem. C 119(43), 24574–24587 (2015).
    [Crossref]
  49. C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
    [Crossref] [PubMed]
  50. A. A. Rybaltovsky, K. K. Bobkov, A. A. Umnikov, and E. M. Dianov, “The Yb-doped aluminosilicate fibers photodarkening mechanism based on the charge-transfer state excitation,” Proc. SPIE 8961(1), 18–20 (2014).
  51. J. Kirchhof, S. Unger, S. Jetschke, V. Reichel, and M. Leich, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. SPIE 75980, 75911 (2010).

2018 (2)

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref] [PubMed]

F. Xie, C. Shao, F. Lou, M. Wang, C. Yu, S. Feng, and L. Hu, “Effect of power scale of 974 and 633 nm lasers on the induced loss at 633 nm of Yb3+/Al3+ co-doped silica fiber,” Chin. Opt. Lett. 16(1), 010603 (2018).
[Crossref]

2017 (2)

M. Jiang, P. Ma, L. Huang, J. Xu, P. Zhou, and X. Gu, “kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme,” High Power Laser Sci. Eng. 5(4), e30 (2017).

H. Xiong, B. Shen, Z. Chen, X. Zhang, H. Li, Y. Tang, and L. Hu, “Preparation of ultra-broadband antireflective coatings for amplifier blast shields by a sol–gel method,” High Power Laser Sci. Eng. 5(4), 29–31 (2017).
[Crossref]

2016 (3)

C. Y. Shao, W. B. Xu, N. Ollier, M. Guzik, G. Boulon, L. Yu, L. Zhang, C. L. Yu, S. K. Wang, and L. L. Hu, “Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses,” J. Appl. Phys. 120(15), 8 (2016).

W. Xu, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “Fabrication and Laser Amplification Behavior of Yb3+/Al3+ Co-Doped Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 28(4), 391–393 (2016).
[Crossref]

Z. Wang, Q. Li, Z. Wang, F. Zou, Y. Bai, S. Feng, and J. Zhou, “255 W picosecond MOPA laser based on self-made Yb-doped very-large-mode-area photonic crystal fiber,” Chin. Opt. Lett. 14(8), 081401 (2016).
[Crossref]

2015 (5)

D. Jain, Y. Jung, P. Barua, S. Alam, and J. K. Sahu, “Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers,” Opt. Express 23(6), 7407–7415 (2015).
[Crossref] [PubMed]

H. J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

C. Jauregui, H. J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
[Crossref] [PubMed]

C. Y. Shao, X. U. Wen-Bin, L. W. Liu, Q. H. Yang, H. U. Li-Li, Q. L. Zhou, and S. K. Wang, “Influence of Al3+/Yb3+/P5+-doping on UV Transmission and Fluorescence Spectra under the UV Excitation of Silica Glasses,” J. Inorg. Mater. 30(12), 1327 (2015).
[Crossref]

M. D. O. Jr, T. Uesbeck, T. Goncalves, C. J. Magon, P. S. Pizani, A. D. Camargo, and H. Eckert, “Network Structure and Rare-Earth Ion Local Environments in Fluoride Phosphate Photonic Glasses Studied by Solid-State NMR and Electron Paramagnetic Resonance Spectroscopies,” J. Phys. Chem. C 119(43), 24574–24587 (2015).
[Crossref]

2014 (4)

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

A. A. Rybaltovsky, K. K. Bobkov, A. A. Umnikov, and E. M. Dianov, “The Yb-doped aluminosilicate fibers photodarkening mechanism based on the charge-transfer state excitation,” Proc. SPIE 8961(1), 18–20 (2014).

N. Li, S. Yoo, X. Yu, D. Jain, and J. K. Sahu, “Pump power depreciation by photodarkening in ytterbium-doped fibers and amplifiers,” IEEE Photonics Technol. Lett. 26(2), 115–118 (2014).
[Crossref]

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4406–4414 (2014).
[Crossref]

2013 (5)

2012 (3)

2011 (2)

2010 (2)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
[Crossref]

J. Kirchhof, S. Unger, S. Jetschke, V. Reichel, and M. Leich, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. SPIE 75980, 75911 (2010).

2009 (4)

S. Jetschke, U. Röpke, S. Unger, and J. Kirchhof, “Characterization of photodarkening processes in Yb doped fibers,” Proc. SPIE 71951, 71912 (2009).

V. Reichel, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers,” Proc. SPIE 72121, 7212 (2009).

S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34(1), 109–111 (2009).
[Crossref] [PubMed]

M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett. 34(8), 1285–1287 (2009).
[Crossref] [PubMed]

2008 (6)

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Noncryst. Sol. 354(42–44), 4737–4742 (2008).
[Crossref]

S. Jetschke, S. Unger, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. SPIE 68731, 68710 (2008).

M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” Proc. SPIE 68731, 6873 (2008).

M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
[Crossref] [PubMed]

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47(9), 1247–1256 (2008).
[Crossref] [PubMed]

M. Engholm and L. Norin, “Comment on “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation”,” Opt. Lett. 33(11), 1216 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (4)

L. Li and S. Zhang, “Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds,” J. Phys. Chem. B 110(43), 21438–21443 (2006).
[Crossref] [PubMed]

M. Chatterjee and M. K. Naskar, “Sol–gel synthesis of lithium aluminum silicate powders: The effect of silica source,” Ceram. Int. 32(6), 623–632 (2006).
[Crossref]

A. Dhar, M. Ch. Paul, M. Pal, A. K. Mondal, S. Sen, H. S. Maiti, and R. Sen, “Characterization of porous core layer for controlling rare earth incorporation in optical fiber,” Opt. Express 14(20), 9006–9015 (2006).
[Crossref] [PubMed]

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
[Crossref] [PubMed]

2004 (1)

S. Sen, R. Rakhmatullin, R. Gubaydullin, and A. Silakov, “A pulsed EPR study of clustering of Yb3+ ions incorporated in GeO2 glass,” J. Noncryst. Sol. 333(1), 22–27 (2004).
[Crossref]

2002 (1)

G. C. Yong, B. S. Yong, S. S. Hong, and K. H. Kim, “Spectral evolution of cooperative luminescence in an Yb3+ -doped silica optical fiber,” Chem. Phys. Lett. 364(1–2), 200–205 (2002).

2000 (2)

B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloys Compd. 300–301(8), 443–449 (2000).
[Crossref]

L. Van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000).
[Crossref]

Aberg, D.

Alam, S.

Andrejco, M.

J. Jasapara, M. Andrejco, D. Digiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference on Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006 (2006), 1 - 2.

Auzel, F.

B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloys Compd. 300–301(8), 443–449 (2000).
[Crossref]

Bai, Y.

Barua, P.

D. Jain, Y. Jung, P. Barua, S. Alam, and J. K. Sahu, “Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers,” Opt. Express 23(6), 7407–7415 (2015).
[Crossref] [PubMed]

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Noncryst. Sol. 354(42–44), 4737–4742 (2008).
[Crossref]

Basu, C.

Baz, A.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Bigot, L.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Bobkov, K. K.

A. A. Rybaltovsky, K. K. Bobkov, A. A. Umnikov, and E. M. Dianov, “The Yb-doped aluminosilicate fibers photodarkening mechanism based on the charge-transfer state excitation,” Proc. SPIE 8961(1), 18–20 (2014).

Bouazaoui, M.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Boulon, G.

C. Y. Shao, W. B. Xu, N. Ollier, M. Guzik, G. Boulon, L. Yu, L. Zhang, C. L. Yu, S. K. Wang, and L. L. Hu, “Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses,” J. Appl. Phys. 120(15), 8 (2016).

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4406–4414 (2014).
[Crossref]

Bouwmans, G.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Boyland, A. J.

Cadier, B.

Camargo, A. D.

M. D. O. Jr, T. Uesbeck, T. Goncalves, C. J. Magon, P. S. Pizani, A. D. Camargo, and H. Eckert, “Network Structure and Rare-Earth Ion Local Environments in Fluoride Phosphate Photonic Glasses Studied by Solid-State NMR and Electron Paramagnetic Resonance Spectroscopies,” J. Phys. Chem. C 119(43), 24574–24587 (2015).
[Crossref]

Chatterjee, M.

M. Chatterjee and M. K. Naskar, “Sol–gel synthesis of lithium aluminum silicate powders: The effect of silica source,” Ceram. Int. 32(6), 623–632 (2006).
[Crossref]

Chen, D.

W. Xu, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “Fabrication and Laser Amplification Behavior of Yb3+/Al3+ Co-Doped Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 28(4), 391–393 (2016).
[Crossref]

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4406–4414 (2014).
[Crossref]

S. Wang, Z. Li, C. Yu, M. Wang, S. Feng, Q. Zhou, D. Chen, and L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol–gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Chen, W.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4406–4414 (2014).
[Crossref]

Chen, Z.

H. Xiong, B. Shen, Z. Chen, X. Zhang, H. Li, Y. Tang, and L. Hu, “Preparation of ultra-broadband antireflective coatings for amplifier blast shields by a sol–gel method,” High Power Laser Sci. Eng. 5(4), 29–31 (2017).
[Crossref]

Clarkson, W. A.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

De Heer, E.

L. Van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000).
[Crossref]

Deschamps, T.

T. Deschamps, H. Vezin, C. Gonnet, and N. Ollier, “Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber,” Opt. Express 21(7), 8382–8392 (2013).
[Crossref] [PubMed]

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

Dhar, A.

Dianov, E. M.

A. A. Rybaltovsky, K. K. Bobkov, A. A. Umnikov, and E. M. Dianov, “The Yb-doped aluminosilicate fibers photodarkening mechanism based on the charge-transfer state excitation,” Proc. SPIE 8961(1), 18–20 (2014).

Digiovanni, D.

J. Jasapara, M. Andrejco, D. Digiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference on Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006 (2006), 1 - 2.

Eckert, H.

M. D. O. Jr, T. Uesbeck, T. Goncalves, C. J. Magon, P. S. Pizani, A. D. Camargo, and H. Eckert, “Network Structure and Rare-Earth Ion Local Environments in Fluoride Phosphate Photonic Glasses Studied by Solid-State NMR and Electron Paramagnetic Resonance Spectroscopies,” J. Phys. Chem. C 119(43), 24574–24587 (2015).
[Crossref]

El Hamzaoui, H.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Engholm, M.

Feng, S.

F. Xie, C. Shao, F. Lou, M. Wang, C. Yu, S. Feng, and L. Hu, “Effect of power scale of 974 and 633 nm lasers on the induced loss at 633 nm of Yb3+/Al3+ co-doped silica fiber,” Chin. Opt. Lett. 16(1), 010603 (2018).
[Crossref]

Z. Wang, Q. Li, Z. Wang, F. Zou, Y. Bai, S. Feng, and J. Zhou, “255 W picosecond MOPA laser based on self-made Yb-doped very-large-mode-area photonic crystal fiber,” Chin. Opt. Lett. 14(8), 081401 (2016).
[Crossref]

W. Xu, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “Fabrication and Laser Amplification Behavior of Yb3+/Al3+ Co-Doped Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 28(4), 391–393 (2016).
[Crossref]

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4406–4414 (2014).
[Crossref]

S. Wang, Z. Li, C. Yu, M. Wang, S. Feng, Q. Zhou, D. Chen, and L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol–gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Fiebrandt, J.

Fsaifes, I.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Gebavi, H.

Goldner, P.

B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloys Compd. 300–301(8), 443–449 (2000).
[Crossref]

Goncalves, T.

M. D. O. Jr, T. Uesbeck, T. Goncalves, C. J. Magon, P. S. Pizani, A. D. Camargo, and H. Eckert, “Network Structure and Rare-Earth Ion Local Environments in Fluoride Phosphate Photonic Glasses Studied by Solid-State NMR and Electron Paramagnetic Resonance Spectroscopies,” J. Phys. Chem. C 119(43), 24574–24587 (2015).
[Crossref]

Gonnet, C.

T. Deschamps, H. Vezin, C. Gonnet, and N. Ollier, “Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber,” Opt. Express 21(7), 8382–8392 (2013).
[Crossref] [PubMed]

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

Gu, X.

M. Jiang, P. Ma, L. Huang, J. Xu, P. Zhou, and X. Gu, “kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme,” High Power Laser Sci. Eng. 5(4), e30 (2017).

Gubaydullin, R.

S. Sen, R. Rakhmatullin, R. Gubaydullin, and A. Silakov, “A pulsed EPR study of clustering of Yb3+ ions incorporated in GeO2 glass,” J. Noncryst. Sol. 333(1), 22–27 (2004).
[Crossref]

Guzik, M.

C. Y. Shao, W. B. Xu, N. Ollier, M. Guzik, G. Boulon, L. Yu, L. Zhang, C. L. Yu, S. K. Wang, and L. L. Hu, “Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses,” J. Appl. Phys. 120(15), 8 (2016).

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4406–4414 (2014).
[Crossref]

Heeroma, M.

L. Van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000).
[Crossref]

Hoffman, H. J.

Hong, S. S.

G. C. Yong, B. S. Yong, S. S. Hong, and K. H. Kim, “Spectral evolution of cooperative luminescence in an Yb3+ -doped silica optical fiber,” Chem. Phys. Lett. 364(1–2), 200–205 (2002).

Hotoleanu, M.

Hu, L.

F. Xie, C. Shao, F. Lou, M. Wang, C. Yu, S. Feng, and L. Hu, “Effect of power scale of 974 and 633 nm lasers on the induced loss at 633 nm of Yb3+/Al3+ co-doped silica fiber,” Chin. Opt. Lett. 16(1), 010603 (2018).
[Crossref]

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref] [PubMed]

H. Xiong, B. Shen, Z. Chen, X. Zhang, H. Li, Y. Tang, and L. Hu, “Preparation of ultra-broadband antireflective coatings for amplifier blast shields by a sol–gel method,” High Power Laser Sci. Eng. 5(4), 29–31 (2017).
[Crossref]

W. Xu, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “Fabrication and Laser Amplification Behavior of Yb3+/Al3+ Co-Doped Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 28(4), 391–393 (2016).
[Crossref]

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4406–4414 (2014).
[Crossref]

S. Wang, Z. Li, C. Yu, M. Wang, S. Feng, Q. Zhou, D. Chen, and L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol–gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Hu, L. L.

C. Y. Shao, W. B. Xu, N. Ollier, M. Guzik, G. Boulon, L. Yu, L. Zhang, C. L. Yu, S. K. Wang, and L. L. Hu, “Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses,” J. Appl. Phys. 120(15), 8 (2016).

Huang, L.

M. Jiang, P. Ma, L. Huang, J. Xu, P. Zhou, and X. Gu, “kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme,” High Power Laser Sci. Eng. 5(4), e30 (2017).

Ikushima, A. J.

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Noncryst. Sol. 354(42–44), 4737–4742 (2008).
[Crossref]

Jäger, M.

Jain, D.

D. Jain, Y. Jung, P. Barua, S. Alam, and J. K. Sahu, “Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers,” Opt. Express 23(6), 7407–7415 (2015).
[Crossref] [PubMed]

N. Li, S. Yoo, X. Yu, D. Jain, and J. K. Sahu, “Pump power depreciation by photodarkening in ytterbium-doped fibers and amplifiers,” IEEE Photonics Technol. Lett. 26(2), 115–118 (2014).
[Crossref]

Jasapara, J.

J. Jasapara, M. Andrejco, D. Digiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference on Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006 (2006), 1 - 2.

Jauregui, C.

Jelger, P.

Jetschke, S.

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, J. Fiebrandt, M. Jäger, and J. Kirchhof, “Evidence of Tm impact in low-photodarkening Yb-doped fibers,” Opt. Express 21(6), 7590–7598 (2013).
[Crossref] [PubMed]

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, S. Jetschke, V. Reichel, and M. Leich, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. SPIE 75980, 75911 (2010).

S. Jetschke, U. Röpke, S. Unger, and J. Kirchhof, “Characterization of photodarkening processes in Yb doped fibers,” Proc. SPIE 71951, 71912 (2009).

S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34(1), 109–111 (2009).
[Crossref] [PubMed]

S. Jetschke, S. Unger, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. SPIE 68731, 68710 (2008).

Jiang, M.

M. Jiang, P. Ma, L. Huang, J. Xu, P. Zhou, and X. Gu, “kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme,” High Power Laser Sci. Eng. 5(4), e30 (2017).

Jr, M. D. O.

M. D. O. Jr, T. Uesbeck, T. Goncalves, C. J. Magon, P. S. Pizani, A. D. Camargo, and H. Eckert, “Network Structure and Rare-Earth Ion Local Environments in Fluoride Phosphate Photonic Glasses Studied by Solid-State NMR and Electron Paramagnetic Resonance Spectroscopies,” J. Phys. Chem. C 119(43), 24574–24587 (2015).
[Crossref]

Jung, Y.

Kim, K. H.

G. C. Yong, B. S. Yong, S. S. Hong, and K. H. Kim, “Spectral evolution of cooperative luminescence in an Yb3+ -doped silica optical fiber,” Chem. Phys. Lett. 364(1–2), 200–205 (2002).

Kirchhof, J.

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, J. Fiebrandt, M. Jäger, and J. Kirchhof, “Evidence of Tm impact in low-photodarkening Yb-doped fibers,” Opt. Express 21(6), 7590–7598 (2013).
[Crossref] [PubMed]

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, S. Jetschke, V. Reichel, and M. Leich, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. SPIE 75980, 75911 (2010).

S. Jetschke, U. Röpke, S. Unger, and J. Kirchhof, “Characterization of photodarkening processes in Yb doped fibers,” Proc. SPIE 71951, 71912 (2009).

S. Jetschke, S. Unger, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. SPIE 68731, 68710 (2008).

Kliner, D. A.

Koplow, J. P.

Koponen, J.

Koponen, J. J.

Landais, D.

Laurell, F.

Le Goffic, O.

Leich, M.

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, J. Fiebrandt, M. Jäger, and J. Kirchhof, “Evidence of Tm impact in low-photodarkening Yb-doped fibers,” Opt. Express 21(6), 7590–7598 (2013).
[Crossref] [PubMed]

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, S. Jetschke, V. Reichel, and M. Leich, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. SPIE 75980, 75911 (2010).

S. Jetschke, S. Unger, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. SPIE 68731, 68710 (2008).

Li, H.

H. Xiong, B. Shen, Z. Chen, X. Zhang, H. Li, Y. Tang, and L. Hu, “Preparation of ultra-broadband antireflective coatings for amplifier blast shields by a sol–gel method,” High Power Laser Sci. Eng. 5(4), 29–31 (2017).
[Crossref]

Li, L.

L. Li and S. Zhang, “Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds,” J. Phys. Chem. B 110(43), 21438–21443 (2006).
[Crossref] [PubMed]

Li, N.

N. Li, S. Yoo, X. Yu, D. Jain, and J. K. Sahu, “Pump power depreciation by photodarkening in ytterbium-doped fibers and amplifiers,” IEEE Photonics Technol. Lett. 26(2), 115–118 (2014).
[Crossref]

Li, Q.

Li, Z.

S. Wang, Z. Li, C. Yu, M. Wang, S. Feng, Q. Zhou, D. Chen, and L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol–gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Li-Li, H. U.

C. Y. Shao, X. U. Wen-Bin, L. W. Liu, Q. H. Yang, H. U. Li-Li, Q. L. Zhou, and S. K. Wang, “Influence of Al3+/Yb3+/P5+-doping on UV Transmission and Fluorescence Spectra under the UV Excitation of Silica Glasses,” J. Inorg. Mater. 30(12), 1327 (2015).
[Crossref]

Limpert, J.

Liu, L. W.

C. Y. Shao, X. U. Wen-Bin, L. W. Liu, Q. H. Yang, H. U. Li-Li, Q. L. Zhou, and S. K. Wang, “Influence of Al3+/Yb3+/P5+-doping on UV Transmission and Fluorescence Spectra under the UV Excitation of Silica Glasses,” J. Inorg. Mater. 30(12), 1327 (2015).
[Crossref]

Lou, F.

F. Xie, C. Shao, F. Lou, M. Wang, C. Yu, S. Feng, and L. Hu, “Effect of power scale of 974 and 633 nm lasers on the induced loss at 633 nm of Yb3+/Al3+ co-doped silica fiber,” Chin. Opt. Lett. 16(1), 010603 (2018).
[Crossref]

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4406–4414 (2014).
[Crossref]

Lüthy, W.

U. Pedrazza, V. Romano, and W. Lüthy, “Yb:Al:sol–gel silica glass fiber laser,” Opt. Mater. 29(7), 905–907 (2007).
[Crossref]

Ma, P.

M. Jiang, P. Ma, L. Huang, J. Xu, P. Zhou, and X. Gu, “kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme,” High Power Laser Sci. Eng. 5(4), e30 (2017).

Magon, C. J.

M. D. O. Jr, T. Uesbeck, T. Goncalves, C. J. Magon, P. S. Pizani, A. D. Camargo, and H. Eckert, “Network Structure and Rare-Earth Ion Local Environments in Fluoride Phosphate Photonic Glasses Studied by Solid-State NMR and Electron Paramagnetic Resonance Spectroscopies,” J. Phys. Chem. C 119(43), 24574–24587 (2015).
[Crossref]

Maiti, H. S.

Mattsson, K. E.

Mechin, D.

Meijerink, A.

L. Van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000).
[Crossref]

Milanese, D.

Modsching, N.

Mondal, A. K.

Monteville, A.

Naskar, M. K.

M. Chatterjee and M. K. Naskar, “Sol–gel synthesis of lithium aluminum silicate powders: The effect of silica source,” Ceram. Int. 32(6), 623–632 (2006).
[Crossref]

Nilsson, J.

Norin, L.

Ollier, N.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref] [PubMed]

C. Y. Shao, W. B. Xu, N. Ollier, M. Guzik, G. Boulon, L. Yu, L. Zhang, C. L. Yu, S. K. Wang, and L. L. Hu, “Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses,” J. Appl. Phys. 120(15), 8 (2016).

T. Deschamps, H. Vezin, C. Gonnet, and N. Ollier, “Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber,” Opt. Express 21(7), 8382–8392 (2013).
[Crossref] [PubMed]

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

Otto, H. J.

Pal, M.

Paul, M. Ch.

Payne, D.

Pedrazza, U.

U. Pedrazza, V. Romano, and W. Lüthy, “Yb:Al:sol–gel silica glass fiber laser,” Opt. Mater. 29(7), 905–907 (2007).
[Crossref]

Pizani, P. S.

M. D. O. Jr, T. Uesbeck, T. Goncalves, C. J. Magon, P. S. Pizani, A. D. Camargo, and H. Eckert, “Network Structure and Rare-Earth Ion Local Environments in Fluoride Phosphate Photonic Glasses Studied by Solid-State NMR and Electron Paramagnetic Resonance Spectroscopies,” J. Phys. Chem. C 119(43), 24574–24587 (2015).
[Crossref]

Prassas, M.

B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloys Compd. 300–301(8), 443–449 (2000).
[Crossref]

Rakhmatullin, R.

S. Sen, R. Rakhmatullin, R. Gubaydullin, and A. Silakov, “A pulsed EPR study of clustering of Yb3+ ions incorporated in GeO2 glass,” J. Noncryst. Sol. 333(1), 22–27 (2004).
[Crossref]

Reichel, V.

J. Kirchhof, S. Unger, S. Jetschke, V. Reichel, and M. Leich, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. SPIE 75980, 75911 (2010).

V. Reichel, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers,” Proc. SPIE 72121, 7212 (2009).

S. Jetschke, S. Unger, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. SPIE 68731, 68710 (2008).

Ren, J.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref] [PubMed]

Richardson, D. J.

Robin, T.

Romano, V.

U. Pedrazza, V. Romano, and W. Lüthy, “Yb:Al:sol–gel silica glass fiber laser,” Opt. Mater. 29(7), 905–907 (2007).
[Crossref]

Röpke, U.

S. Jetschke, U. Röpke, S. Unger, and J. Kirchhof, “Characterization of photodarkening processes in Yb doped fibers,” Proc. SPIE 71951, 71912 (2009).

S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34(1), 109–111 (2009).
[Crossref] [PubMed]

Rybaltovsky, A. A.

A. A. Rybaltovsky, K. K. Bobkov, A. A. Umnikov, and E. M. Dianov, “The Yb-doped aluminosilicate fibers photodarkening mechanism based on the charge-transfer state excitation,” Proc. SPIE 8961(1), 18–20 (2014).

Rydberg, S.

Sahu, J. K.

Saito, K.

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Noncryst. Sol. 354(42–44), 4737–4742 (2008).
[Crossref]

Schaudel, B.

B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloys Compd. 300–301(8), 443–449 (2000).
[Crossref]

Schwuchow, A.

Sekiya, E. H.

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Noncryst. Sol. 354(42–44), 4737–4742 (2008).
[Crossref]

Sen, R.

Sen, S.

A. Dhar, M. Ch. Paul, M. Pal, A. K. Mondal, S. Sen, H. S. Maiti, and R. Sen, “Characterization of porous core layer for controlling rare earth incorporation in optical fiber,” Opt. Express 14(20), 9006–9015 (2006).
[Crossref] [PubMed]

S. Sen, R. Rakhmatullin, R. Gubaydullin, and A. Silakov, “A pulsed EPR study of clustering of Yb3+ ions incorporated in GeO2 glass,” J. Noncryst. Sol. 333(1), 22–27 (2004).
[Crossref]

Shao, C.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref] [PubMed]

F. Xie, C. Shao, F. Lou, M. Wang, C. Yu, S. Feng, and L. Hu, “Effect of power scale of 974 and 633 nm lasers on the induced loss at 633 nm of Yb3+/Al3+ co-doped silica fiber,” Chin. Opt. Lett. 16(1), 010603 (2018).
[Crossref]

Shao, C. Y.

C. Y. Shao, W. B. Xu, N. Ollier, M. Guzik, G. Boulon, L. Yu, L. Zhang, C. L. Yu, S. K. Wang, and L. L. Hu, “Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses,” J. Appl. Phys. 120(15), 8 (2016).

C. Y. Shao, X. U. Wen-Bin, L. W. Liu, Q. H. Yang, H. U. Li-Li, Q. L. Zhou, and S. K. Wang, “Influence of Al3+/Yb3+/P5+-doping on UV Transmission and Fluorescence Spectra under the UV Excitation of Silica Glasses,” J. Inorg. Mater. 30(12), 1327 (2015).
[Crossref]

Shen, B.

H. Xiong, B. Shen, Z. Chen, X. Zhang, H. Li, Y. Tang, and L. Hu, “Preparation of ultra-broadband antireflective coatings for amplifier blast shields by a sol–gel method,” High Power Laser Sci. Eng. 5(4), 29–31 (2017).
[Crossref]

Silakov, A.

S. Sen, R. Rakhmatullin, R. Gubaydullin, and A. Silakov, “A pulsed EPR study of clustering of Yb3+ ions incorporated in GeO2 glass,” J. Noncryst. Sol. 333(1), 22–27 (2004).
[Crossref]

Söderlund, M.

Söderlund, M. J.

Sones, C.

Stutzki, F.

Taccheo, S.

Tammela, S. K.

Tang, Y.

H. Xiong, B. Shen, Z. Chen, X. Zhang, H. Li, Y. Tang, and L. Hu, “Preparation of ultra-broadband antireflective coatings for amplifier blast shields by a sol–gel method,” High Power Laser Sci. Eng. 5(4), 29–31 (2017).
[Crossref]

Tregoat, D.

Tünnermann, A.

Uesbeck, T.

M. D. O. Jr, T. Uesbeck, T. Goncalves, C. J. Magon, P. S. Pizani, A. D. Camargo, and H. Eckert, “Network Structure and Rare-Earth Ion Local Environments in Fluoride Phosphate Photonic Glasses Studied by Solid-State NMR and Electron Paramagnetic Resonance Spectroscopies,” J. Phys. Chem. C 119(43), 24574–24587 (2015).
[Crossref]

Umnikov, A. A.

A. A. Rybaltovsky, K. K. Bobkov, A. A. Umnikov, and E. M. Dianov, “The Yb-doped aluminosilicate fibers photodarkening mechanism based on the charge-transfer state excitation,” Proc. SPIE 8961(1), 18–20 (2014).

Unger, S.

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, J. Fiebrandt, M. Jäger, and J. Kirchhof, “Evidence of Tm impact in low-photodarkening Yb-doped fibers,” Opt. Express 21(6), 7590–7598 (2013).
[Crossref] [PubMed]

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, S. Jetschke, V. Reichel, and M. Leich, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. SPIE 75980, 75911 (2010).

S. Jetschke, U. Röpke, S. Unger, and J. Kirchhof, “Characterization of photodarkening processes in Yb doped fibers,” Proc. SPIE 71951, 71912 (2009).

S. Jetschke, S. Unger, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. SPIE 68731, 68710 (2008).

Van Pieterson, L.

L. Van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000).
[Crossref]

Vezin, H.

T. Deschamps, H. Vezin, C. Gonnet, and N. Ollier, “Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber,” Opt. Express 21(7), 8382–8392 (2013).
[Crossref] [PubMed]

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

Wang, F.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref] [PubMed]

Wang, M.

F. Xie, C. Shao, F. Lou, M. Wang, C. Yu, S. Feng, and L. Hu, “Effect of power scale of 974 and 633 nm lasers on the induced loss at 633 nm of Yb3+/Al3+ co-doped silica fiber,” Chin. Opt. Lett. 16(1), 010603 (2018).
[Crossref]

W. Xu, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “Fabrication and Laser Amplification Behavior of Yb3+/Al3+ Co-Doped Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 28(4), 391–393 (2016).
[Crossref]

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4406–4414 (2014).
[Crossref]

S. Wang, Z. Li, C. Yu, M. Wang, S. Feng, Q. Zhou, D. Chen, and L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol–gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Wang, S.

W. Xu, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “Fabrication and Laser Amplification Behavior of Yb3+/Al3+ Co-Doped Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 28(4), 391–393 (2016).
[Crossref]

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4406–4414 (2014).
[Crossref]

S. Wang, Z. Li, C. Yu, M. Wang, S. Feng, Q. Zhou, D. Chen, and L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol–gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Wang, S. K.

C. Y. Shao, W. B. Xu, N. Ollier, M. Guzik, G. Boulon, L. Yu, L. Zhang, C. L. Yu, S. K. Wang, and L. L. Hu, “Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses,” J. Appl. Phys. 120(15), 8 (2016).

C. Y. Shao, X. U. Wen-Bin, L. W. Liu, Q. H. Yang, H. U. Li-Li, Q. L. Zhou, and S. K. Wang, “Influence of Al3+/Yb3+/P5+-doping on UV Transmission and Fluorescence Spectra under the UV Excitation of Silica Glasses,” J. Inorg. Mater. 30(12), 1327 (2015).
[Crossref]

Wang, Z.

Wen-Bin, X. U.

C. Y. Shao, X. U. Wen-Bin, L. W. Liu, Q. H. Yang, H. U. Li-Li, Q. L. Zhou, and S. K. Wang, “Influence of Al3+/Yb3+/P5+-doping on UV Transmission and Fluorescence Spectra under the UV Excitation of Silica Glasses,” J. Inorg. Mater. 30(12), 1327 (2015).
[Crossref]

Windeler, R.

J. Jasapara, M. Andrejco, D. Digiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference on Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006 (2006), 1 - 2.

Xie, F.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref] [PubMed]

F. Xie, C. Shao, F. Lou, M. Wang, C. Yu, S. Feng, and L. Hu, “Effect of power scale of 974 and 633 nm lasers on the induced loss at 633 nm of Yb3+/Al3+ co-doped silica fiber,” Chin. Opt. Lett. 16(1), 010603 (2018).
[Crossref]

Xiong, H.

H. Xiong, B. Shen, Z. Chen, X. Zhang, H. Li, Y. Tang, and L. Hu, “Preparation of ultra-broadband antireflective coatings for amplifier blast shields by a sol–gel method,” High Power Laser Sci. Eng. 5(4), 29–31 (2017).
[Crossref]

Xu, J.

M. Jiang, P. Ma, L. Huang, J. Xu, P. Zhou, and X. Gu, “kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme,” High Power Laser Sci. Eng. 5(4), e30 (2017).

Xu, W.

W. Xu, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “Fabrication and Laser Amplification Behavior of Yb3+/Al3+ Co-Doped Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 28(4), 391–393 (2016).
[Crossref]

Xu, W. B.

C. Y. Shao, W. B. Xu, N. Ollier, M. Guzik, G. Boulon, L. Yu, L. Zhang, C. L. Yu, S. K. Wang, and L. L. Hu, “Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses,” J. Appl. Phys. 120(15), 8 (2016).

Yang, Q. H.

C. Y. Shao, X. U. Wen-Bin, L. W. Liu, Q. H. Yang, H. U. Li-Li, Q. L. Zhou, and S. K. Wang, “Influence of Al3+/Yb3+/P5+-doping on UV Transmission and Fluorescence Spectra under the UV Excitation of Silica Glasses,” J. Inorg. Mater. 30(12), 1327 (2015).
[Crossref]

Yong, B. S.

G. C. Yong, B. S. Yong, S. S. Hong, and K. H. Kim, “Spectral evolution of cooperative luminescence in an Yb3+ -doped silica optical fiber,” Chem. Phys. Lett. 364(1–2), 200–205 (2002).

Yong, G. C.

G. C. Yong, B. S. Yong, S. S. Hong, and K. H. Kim, “Spectral evolution of cooperative luminescence in an Yb3+ -doped silica optical fiber,” Chem. Phys. Lett. 364(1–2), 200–205 (2002).

Yoo, S.

N. Li, S. Yoo, X. Yu, D. Jain, and J. K. Sahu, “Pump power depreciation by photodarkening in ytterbium-doped fibers and amplifiers,” IEEE Photonics Technol. Lett. 26(2), 115–118 (2014).
[Crossref]

S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32(12), 1626–1628 (2007).
[Crossref] [PubMed]

Yu, C.

F. Xie, C. Shao, F. Lou, M. Wang, C. Yu, S. Feng, and L. Hu, “Effect of power scale of 974 and 633 nm lasers on the induced loss at 633 nm of Yb3+/Al3+ co-doped silica fiber,” Chin. Opt. Lett. 16(1), 010603 (2018).
[Crossref]

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref] [PubMed]

W. Xu, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “Fabrication and Laser Amplification Behavior of Yb3+/Al3+ Co-Doped Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 28(4), 391–393 (2016).
[Crossref]

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4406–4414 (2014).
[Crossref]

S. Wang, Z. Li, C. Yu, M. Wang, S. Feng, Q. Zhou, D. Chen, and L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol–gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Yu, C. L.

C. Y. Shao, W. B. Xu, N. Ollier, M. Guzik, G. Boulon, L. Yu, L. Zhang, C. L. Yu, S. K. Wang, and L. L. Hu, “Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses,” J. Appl. Phys. 120(15), 8 (2016).

Yu, L.

C. Y. Shao, W. B. Xu, N. Ollier, M. Guzik, G. Boulon, L. Yu, L. Zhang, C. L. Yu, S. K. Wang, and L. L. Hu, “Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses,” J. Appl. Phys. 120(15), 8 (2016).

Yu, X.

N. Li, S. Yoo, X. Yu, D. Jain, and J. K. Sahu, “Pump power depreciation by photodarkening in ytterbium-doped fibers and amplifiers,” IEEE Photonics Technol. Lett. 26(2), 115–118 (2014).
[Crossref]

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Zhang, L.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref] [PubMed]

W. Xu, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “Fabrication and Laser Amplification Behavior of Yb3+/Al3+ Co-Doped Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 28(4), 391–393 (2016).
[Crossref]

W. Xu, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “Fabrication and Laser Amplification Behavior of Yb3+/Al3+ Co-Doped Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 28(4), 391–393 (2016).
[Crossref]

C. Y. Shao, W. B. Xu, N. Ollier, M. Guzik, G. Boulon, L. Yu, L. Zhang, C. L. Yu, S. K. Wang, and L. L. Hu, “Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses,” J. Appl. Phys. 120(15), 8 (2016).

Zhang, S.

L. Li and S. Zhang, “Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds,” J. Phys. Chem. B 110(43), 21438–21443 (2006).
[Crossref] [PubMed]

Zhang, X.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref] [PubMed]

H. Xiong, B. Shen, Z. Chen, X. Zhang, H. Li, Y. Tang, and L. Hu, “Preparation of ultra-broadband antireflective coatings for amplifier blast shields by a sol–gel method,” High Power Laser Sci. Eng. 5(4), 29–31 (2017).
[Crossref]

Zhou, J.

Zhou, P.

M. Jiang, P. Ma, L. Huang, J. Xu, P. Zhou, and X. Gu, “kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme,” High Power Laser Sci. Eng. 5(4), e30 (2017).

Zhou, Q.

W. Xu, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “Fabrication and Laser Amplification Behavior of Yb3+/Al3+ Co-Doped Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 28(4), 391–393 (2016).
[Crossref]

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4406–4414 (2014).
[Crossref]

S. Wang, Z. Li, C. Yu, M. Wang, S. Feng, Q. Zhou, D. Chen, and L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol–gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Zhou, Q. L.

C. Y. Shao, X. U. Wen-Bin, L. W. Liu, Q. H. Yang, H. U. Li-Li, Q. L. Zhou, and S. K. Wang, “Influence of Al3+/Yb3+/P5+-doping on UV Transmission and Fluorescence Spectra under the UV Excitation of Silica Glasses,” J. Inorg. Mater. 30(12), 1327 (2015).
[Crossref]

Zou, F.

Appl. Opt. (2)

Ceram. Int. (1)

M. Chatterjee and M. K. Naskar, “Sol–gel synthesis of lithium aluminum silicate powders: The effect of silica source,” Ceram. Int. 32(6), 623–632 (2006).
[Crossref]

Chem. Phys. Lett. (1)

G. C. Yong, B. S. Yong, S. S. Hong, and K. H. Kim, “Spectral evolution of cooperative luminescence in an Yb3+ -doped silica optical fiber,” Chem. Phys. Lett. 364(1–2), 200–205 (2002).

Chin. Opt. Lett. (2)

High Power Laser Sci. Eng. (2)

H. Xiong, B. Shen, Z. Chen, X. Zhang, H. Li, Y. Tang, and L. Hu, “Preparation of ultra-broadband antireflective coatings for amplifier blast shields by a sol–gel method,” High Power Laser Sci. Eng. 5(4), 29–31 (2017).
[Crossref]

M. Jiang, P. Ma, L. Huang, J. Xu, P. Zhou, and X. Gu, “kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme,” High Power Laser Sci. Eng. 5(4), e30 (2017).

IEEE J. Sel. Top. Quantum Electron. (1)

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

N. Li, S. Yoo, X. Yu, D. Jain, and J. K. Sahu, “Pump power depreciation by photodarkening in ytterbium-doped fibers and amplifiers,” IEEE Photonics Technol. Lett. 26(2), 115–118 (2014).
[Crossref]

W. Xu, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “Fabrication and Laser Amplification Behavior of Yb3+/Al3+ Co-Doped Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 28(4), 391–393 (2016).
[Crossref]

J. Alloys Compd. (1)

B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloys Compd. 300–301(8), 443–449 (2000).
[Crossref]

J. Appl. Phys. (1)

C. Y. Shao, W. B. Xu, N. Ollier, M. Guzik, G. Boulon, L. Yu, L. Zhang, C. L. Yu, S. K. Wang, and L. L. Hu, “Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses,” J. Appl. Phys. 120(15), 8 (2016).

J. Chem. Phys. (1)

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys. 136(1), 014503 (2012).
[Crossref] [PubMed]

J. Inorg. Mater. (1)

C. Y. Shao, X. U. Wen-Bin, L. W. Liu, Q. H. Yang, H. U. Li-Li, Q. L. Zhou, and S. K. Wang, “Influence of Al3+/Yb3+/P5+-doping on UV Transmission and Fluorescence Spectra under the UV Excitation of Silica Glasses,” J. Inorg. Mater. 30(12), 1327 (2015).
[Crossref]

J. Lumin. (1)

L. Van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(22), 4406–4414 (2014).
[Crossref]

J. Noncryst. Sol. (2)

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Noncryst. Sol. 354(42–44), 4737–4742 (2008).
[Crossref]

S. Sen, R. Rakhmatullin, R. Gubaydullin, and A. Silakov, “A pulsed EPR study of clustering of Yb3+ ions incorporated in GeO2 glass,” J. Noncryst. Sol. 333(1), 22–27 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref] [PubMed]

L. Li and S. Zhang, “Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds,” J. Phys. Chem. B 110(43), 21438–21443 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

M. D. O. Jr, T. Uesbeck, T. Goncalves, C. J. Magon, P. S. Pizani, A. D. Camargo, and H. Eckert, “Network Structure and Rare-Earth Ion Local Environments in Fluoride Phosphate Photonic Glasses Studied by Solid-State NMR and Electron Paramagnetic Resonance Spectroscopies,” J. Phys. Chem. C 119(43), 24574–24587 (2015).
[Crossref]

Laser Phys. Lett. (1)

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Opt. Express (11)

A. Dhar, M. Ch. Paul, M. Pal, A. K. Mondal, S. Sen, H. S. Maiti, and R. Sen, “Characterization of porous core layer for controlling rare earth incorporation in optical fiber,” Opt. Express 14(20), 9006–9015 (2006).
[Crossref] [PubMed]

D. Jain, Y. Jung, P. Barua, S. Alam, and J. K. Sahu, “Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers,” Opt. Express 23(6), 7407–7415 (2015).
[Crossref] [PubMed]

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
[Crossref] [PubMed]

H. J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

C. Jauregui, H. J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
[Crossref] [PubMed]

H. Gebavi, S. Taccheo, D. Milanese, A. Monteville, O. Le Goffic, D. Landais, D. Mechin, D. Tregoat, B. Cadier, and T. Robin, “Temporal evolution and correlation between cooperative luminescence and photodarkening in ytterbium doped silica fibers,” Opt. Express 19(25), 25077–25083 (2011).
[Crossref] [PubMed]

T. Deschamps, H. Vezin, C. Gonnet, and N. Ollier, “Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber,” Opt. Express 21(7), 8382–8392 (2013).
[Crossref] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, J. Fiebrandt, M. Jäger, and J. Kirchhof, “Evidence of Tm impact in low-photodarkening Yb-doped fibers,” Opt. Express 21(6), 7590–7598 (2013).
[Crossref] [PubMed]

K. E. Mattsson, “Photo darkening of rare earth doped silica,” Opt. Express 19(21), 19797–19812 (2011).
[Crossref] [PubMed]

S. Rydberg and M. Engholm, “Experimental evidence for the formation of divalent ytterbium in the photodarkening process of Yb-doped fiber lasers,” Opt. Express 21(6), 6681–6688 (2013).
[Crossref] [PubMed]

M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. (2)

U. Pedrazza, V. Romano, and W. Lüthy, “Yb:Al:sol–gel silica glass fiber laser,” Opt. Mater. 29(7), 905–907 (2007).
[Crossref]

S. Wang, Z. Li, C. Yu, M. Wang, S. Feng, Q. Zhou, D. Chen, and L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol–gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (6)

A. A. Rybaltovsky, K. K. Bobkov, A. A. Umnikov, and E. M. Dianov, “The Yb-doped aluminosilicate fibers photodarkening mechanism based on the charge-transfer state excitation,” Proc. SPIE 8961(1), 18–20 (2014).

J. Kirchhof, S. Unger, S. Jetschke, V. Reichel, and M. Leich, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. SPIE 75980, 75911 (2010).

S. Jetschke, U. Röpke, S. Unger, and J. Kirchhof, “Characterization of photodarkening processes in Yb doped fibers,” Proc. SPIE 71951, 71912 (2009).

V. Reichel, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers,” Proc. SPIE 72121, 7212 (2009).

S. Jetschke, S. Unger, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during preform collapsing,” Proc. SPIE 68731, 68710 (2008).

M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” Proc. SPIE 68731, 6873 (2008).

Other (2)

J. Jasapara, M. Andrejco, D. Digiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference on Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006 (2006), 1 - 2.

R. Peretti, C. Gonnet, and A. M. Jurdyc, “A new vision of photodarkening in Yb3+-doped fibers,” in Photonics West (2012), 825705–825707.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the PD measurement. (b) Experimental setup for core-pumped fiber lasers.
Fig. 2
Fig. 2 (a) Evolution of the induced loss at 633 nm. (b) Output laser power versus the absorbed power for the two YDF fibers prepared via MCVD and the sol-gel method, as well as the #N fiber. Inset: the geometry of the fiber cross section. The length of the fiber test is 15cm.
Fig. 3
Fig. 3 (a) Optical absorption spectroscopy. Inset: an enlargement of the absorption spectroscopy in 300 to 500 nm region. (b) Photoluminescence emission spectra (λex = 330 nm) for preform slices #M and #S. Inset: excitation spectrum (λem = 525 nm) for preform slice #S.
Fig. 4
Fig. 4 (a) Cooperative luminescence spectra (λex = 980 nm) of preform slices #M and #S. (b) Electron spin echo-detected EPR spectra for preforms #M and #S. Inset: EPR spectra obtained with a magnetic field of 0–400 mT.
Fig. 5
Fig. 5 EPMA mapping of fiber cross sections for (a) Yb3+ distribution in fiber #S, (b) Al3+ distribution in fiber #S, (d) Yb3+ distribution in fiber #M, (e) Al3+ distribution in fiber #M, and radial refractive index difference profiles of (c) fiber #S and (f) fiber #M at 633 nm. Inset of (a), (b), (d), (f): EPMA radial line scanning of fiber for Yb3+ and Al3+ distribution.
Fig. 6
Fig. 6 Model of color-center generation and annihilation in the PD process of the Yb3+/Al3+ co-doped silica fiber.

Tables (2)

Tables Icon

Table 1 Characteristics of investigated YDFs from different synthesis methods

Tables Icon

Table 2 Comparison of laser parameters of three kinds of YDFs before and after PD

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α(t)= α e q [1-exp (-t/τ ) β ]
Y b 3+ OAl+ e + h + Y b 2+ + O o Al (Al-OHC)

Metrics