Abstract

The Multiplexed Structured Image Capture (MUSIC) technique is used to demonstrate single-shot multiframe passive imaging, with a nanosecond difference between the resulting images. This technique uses modulation of light from a scene before imaging, in order to encode the target’s temporal evolution into spatial frequency shifts, each of which corresponds to a unique time and results in individual and distinct snapshots. The resulting images correspond to different effective imaging gate times, because of the optical path delays. Computer processing of the multiplexed single-shot image recovers the nanosecond-resolution evolution. The MUSIC technique is used to demonstrate imaging of a laser-induced plasma. Simultaneous single-shot measurements of electron numbers by coherent microwave scattering were obtained and showed good agreement with MUSIC characterization. The MUSIC technique demonstrates spatial modulation of images used for passive imaging. This allows multiple frames to be stacked into a single image. This method could also pave the way for real-time imaging and characterization of ultrafast processes and visualization, as well as general tracking of fast objects.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed flame chemiluminescence imaging using time-multiplexed structured detection

Mark Gragston, Cary D. Smith, and Zhili Zhang
Appl. Opt. 57(11) 2923-2929 (2018)

Single-shot ultrafast optical imaging

Jinyang Liang and Lihong V. Wang
Optica 5(9) 1113-1127 (2018)

In-line holographic imaging and electron density extraction of ultrafast ionized air filaments

George Rodriguez, Anthony R. Valenzuela, Balakishore Yellampalle, Mark J. Schmitt, and Ki-Yong Kim
J. Opt. Soc. Am. B 25(12) 1988-1997 (2008)

References

  • View by:
  • |
  • |
  • |

  1. H. Mikami, L. Gao, and K. Goda, “Ultrafast optical imaging technology: principles and applications of emerging methods,” in Nanophotonics (2016), p. 497.
  2. T. G. Etoh, D. V. Son, T. Yamada, and E. Charbon, “Toward One Giga Frames per Second-Evolution of in Situ Storage Image Sensors,” Sensors (Basel) 13(4), 4640–4658 (2013).
    [Crossref] [PubMed]
  3. T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
    [Crossref] [PubMed]
  4. G. P. Wakeham and K. A. Nelson, “Dual-echelon single-shot femtosecond spectroscopy,” Opt. Lett. 25(7), 505–507 (2000).
    [Crossref] [PubMed]
  5. M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
    [Crossref]
  6. S. P. Duran, J. M. Porter, and T. E. Parker, “Ballistic imaging of diesel sprays using a picosecond laser: characterization and demonstration,” Appl. Opt. 54(7), 1743–1750 (2015).
    [Crossref]
  7. A. Velten, R. Raskar, D. Wu, B. Masia, A. Jarabo, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, and D. Gutierrez, “Imaging the propagation of light through scenes at picosecond resolution,” Commun. ACM 59(9), 79–86 (2016).
    [Crossref]
  8. G. Bub, M. Tecza, M. Helmes, P. Lee, and P. Kohl, “Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging,” Nat. Methods 7(3), 209–211 (2010).
    [Crossref] [PubMed]
  9. J. Liang, L. Zhu, and L. V. Wang, “Single-shot real-time femtosecond imaging of temporal focusing,” Light Sci. Appl. 7(1), 42 (2018).
    [Crossref]
  10. L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
    [Crossref] [PubMed]
  11. A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light Sci. Appl. 6(9), e17045 (2017).
    [Crossref] [PubMed]
  12. M. Gragston, C. D. Smith, and Z. Zhang, “High-speed flame chemiluminescence imaging using time-multiplexed structured detection,” Appl. Opt. 57(11), 2923–2929 (2018).
    [Crossref] [PubMed]
  13. S. R. Khan, M. Feldman, and B. K. Gunturk, “Extracting sub-exposure images from a single capture through Fourier-based optical modulation,” Signal Process. Image Commun. 60, 107–115 (2018).
    [Crossref]
  14. J. Liang and L. V. Wang, “Single-shot ultrafast optical imaging,” Optica 5(9), 1113–1127 (2018).
    [Crossref]
  15. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995).
    [Crossref] [PubMed]
  16. B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
    [Crossref]
  17. A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
    [Crossref] [PubMed]
  18. M. B. Shattan, D. J. Miller, M. T. Cook, A. C. Stowe, J. D. Auxier, C. Parigger, and H. L. Hall, “Detection of uranyl fluoride and sand surface contamination on metal substrates by hand-held laser-induced breakdown spectroscopy,” Appl. Opt. 56(36), 9868–9875 (2017).
    [Crossref]
  19. B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B At. Spectrosc. 61(3), 301–313 (2006).
    [Crossref]
  20. P. S. Hsu, M. Gragston, Y. Wu, Z. Zhang, A. K. Patnaik, J. Kiefer, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar,” Appl. Opt. 55(28), 8042–8048 (2016).
    [Crossref] [PubMed]
  21. P. S. Hsu, S. Roy, Z. Zhang, J. Sawyer, M. N. Slipchenko, J. G. Mance, and J. R. Gord, “High-repetition-rate laser ignition of fuel-air mixtures,” Opt. Lett. 41(7), 1570–1573 (2016).
    [Crossref] [PubMed]
  22. Y. Wu, J. C. Sawyer, L. Su, and Z. Zhang, “Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown,” J. Appl. Phys. 119(17), 173303 (2016).
    [Crossref]
  23. Z. Zhang, M. N. Shneider, and R. B. Miles, “Microwave diagnostics of laser-induced avalanche ionization in air,” J. Appl. Phys. 100(7), 074912 (2006).
    [Crossref]
  24. Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett 98, 265005 (2007).
  25. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
    [Crossref]
  26. A. Perelomov and V. Popov, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).
  27. J. Schwarz, P. Rambo, M. Kimmel, and B. Atherton, “Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor,” Opt. Express 20(8), 8791–8803 (2012).
    [Crossref] [PubMed]
  28. V. D. Mur, S. V. Popruzhenko, and V. S. Popov, “Energy and momentum spectra of photoelectrons under conditions of ionization by strong laser radiation (The case of elliptic polarization),” J. Exp. Theor. Phys. 92(5), 777–788 (2001).
    [Crossref]

2018 (4)

J. Liang, L. Zhu, and L. V. Wang, “Single-shot real-time femtosecond imaging of temporal focusing,” Light Sci. Appl. 7(1), 42 (2018).
[Crossref]

M. Gragston, C. D. Smith, and Z. Zhang, “High-speed flame chemiluminescence imaging using time-multiplexed structured detection,” Appl. Opt. 57(11), 2923–2929 (2018).
[Crossref] [PubMed]

S. R. Khan, M. Feldman, and B. K. Gunturk, “Extracting sub-exposure images from a single capture through Fourier-based optical modulation,” Signal Process. Image Commun. 60, 107–115 (2018).
[Crossref]

J. Liang and L. V. Wang, “Single-shot ultrafast optical imaging,” Optica 5(9), 1113–1127 (2018).
[Crossref]

2017 (3)

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light Sci. Appl. 6(9), e17045 (2017).
[Crossref] [PubMed]

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

M. B. Shattan, D. J. Miller, M. T. Cook, A. C. Stowe, J. D. Auxier, C. Parigger, and H. L. Hall, “Detection of uranyl fluoride and sand surface contamination on metal substrates by hand-held laser-induced breakdown spectroscopy,” Appl. Opt. 56(36), 9868–9875 (2017).
[Crossref]

2016 (4)

P. S. Hsu, M. Gragston, Y. Wu, Z. Zhang, A. K. Patnaik, J. Kiefer, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar,” Appl. Opt. 55(28), 8042–8048 (2016).
[Crossref] [PubMed]

P. S. Hsu, S. Roy, Z. Zhang, J. Sawyer, M. N. Slipchenko, J. G. Mance, and J. R. Gord, “High-repetition-rate laser ignition of fuel-air mixtures,” Opt. Lett. 41(7), 1570–1573 (2016).
[Crossref] [PubMed]

Y. Wu, J. C. Sawyer, L. Su, and Z. Zhang, “Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown,” J. Appl. Phys. 119(17), 173303 (2016).
[Crossref]

A. Velten, R. Raskar, D. Wu, B. Masia, A. Jarabo, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, and D. Gutierrez, “Imaging the propagation of light through scenes at picosecond resolution,” Commun. ACM 59(9), 79–86 (2016).
[Crossref]

2015 (1)

2014 (1)

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

2013 (1)

T. G. Etoh, D. V. Son, T. Yamada, and E. Charbon, “Toward One Giga Frames per Second-Evolution of in Situ Storage Image Sensors,” Sensors (Basel) 13(4), 4640–4658 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[Crossref] [PubMed]

2010 (1)

G. Bub, M. Tecza, M. Helmes, P. Lee, and P. Kohl, “Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging,” Nat. Methods 7(3), 209–211 (2010).
[Crossref] [PubMed]

2007 (1)

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett 98, 265005 (2007).

2006 (5)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B At. Spectrosc. 61(3), 301–313 (2006).
[Crossref]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Microwave diagnostics of laser-induced avalanche ionization in air,” J. Appl. Phys. 100(7), 074912 (2006).
[Crossref]

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[Crossref]

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

2001 (1)

V. D. Mur, S. V. Popruzhenko, and V. S. Popov, “Energy and momentum spectra of photoelectrons under conditions of ionization by strong laser radiation (The case of elliptic polarization),” J. Exp. Theor. Phys. 92(5), 777–788 (2001).
[Crossref]

2000 (1)

1995 (1)

1966 (1)

A. Perelomov and V. Popov, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).

Aldén, M.

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light Sci. Appl. 6(9), e17045 (2017).
[Crossref] [PubMed]

Atherton, B.

Auxier, J. D.

Barsi, C.

A. Velten, R. Raskar, D. Wu, B. Masia, A. Jarabo, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, and D. Gutierrez, “Imaging the propagation of light through scenes at picosecond resolution,” Commun. ACM 59(9), 79–86 (2016).
[Crossref]

Bawendi, M.

A. Velten, R. Raskar, D. Wu, B. Masia, A. Jarabo, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, and D. Gutierrez, “Imaging the propagation of light through scenes at picosecond resolution,” Commun. ACM 59(9), 79–86 (2016).
[Crossref]

Berrocal, E.

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light Sci. Appl. 6(9), e17045 (2017).
[Crossref] [PubMed]

Bood, J.

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light Sci. Appl. 6(9), e17045 (2017).
[Crossref] [PubMed]

Braun, A.

Bub, G.

G. Bub, M. Tecza, M. Helmes, P. Lee, and P. Kohl, “Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging,” Nat. Methods 7(3), 209–211 (2010).
[Crossref] [PubMed]

Charbon, E.

T. G. Etoh, D. V. Son, T. Yamada, and E. Charbon, “Toward One Giga Frames per Second-Evolution of in Situ Storage Image Sensors,” Sensors (Basel) 13(4), 4640–4658 (2013).
[Crossref] [PubMed]

Clarke, R.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Cook, M. T.

Dogariu, A.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[Crossref] [PubMed]

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

Dromey, B.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Du, D.

Duran, S. P.

Ehn, A.

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light Sci. Appl. 6(9), e17045 (2017).
[Crossref] [PubMed]

Etoh, T. G.

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

T. G. Etoh, D. V. Son, T. Yamada, and E. Charbon, “Toward One Giga Frames per Second-Evolution of in Situ Storage Image Sensors,” Sensors (Basel) 13(4), 4640–4658 (2013).
[Crossref] [PubMed]

Feldman, M.

S. R. Khan, M. Feldman, and B. K. Gunturk, “Extracting sub-exposure images from a single capture through Fourier-based optical modulation,” Signal Process. Image Commun. 60, 107–115 (2018).
[Crossref]

Fichet, P.

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B At. Spectrosc. 61(3), 301–313 (2006).
[Crossref]

Gao, L.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Gopal, A.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Gord, J. R.

Gragston, M.

Gunturk, B. K.

S. R. Khan, M. Feldman, and B. K. Gunturk, “Extracting sub-exposure images from a single capture through Fourier-based optical modulation,” Signal Process. Image Commun. 60, 107–115 (2018).
[Crossref]

Gutierrez, D.

A. Velten, R. Raskar, D. Wu, B. Masia, A. Jarabo, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, and D. Gutierrez, “Imaging the propagation of light through scenes at picosecond resolution,” Commun. ACM 59(9), 79–86 (2016).
[Crossref]

Habara, H.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Hall, H. L.

Hall, T.

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[Crossref]

Helmes, M.

G. Bub, M. Tecza, M. Helmes, P. Lee, and P. Kohl, “Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging,” Nat. Methods 7(3), 209–211 (2010).
[Crossref] [PubMed]

Hsu, P. S.

Jarabo, A.

A. Velten, R. Raskar, D. Wu, B. Masia, A. Jarabo, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, and D. Gutierrez, “Imaging the propagation of light through scenes at picosecond resolution,” Commun. ACM 59(9), 79–86 (2016).
[Crossref]

Joshi, C.

A. Velten, R. Raskar, D. Wu, B. Masia, A. Jarabo, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, and D. Gutierrez, “Imaging the propagation of light through scenes at picosecond resolution,” Commun. ACM 59(9), 79–86 (2016).
[Crossref]

Kamakura, Y.

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

Karsch, S.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Khan, S. R.

S. R. Khan, M. Feldman, and B. K. Gunturk, “Extracting sub-exposure images from a single capture through Fourier-based optical modulation,” Signal Process. Image Commun. 60, 107–115 (2018).
[Crossref]

Kiefer, J.

Kimmel, M.

Kodama, R.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Kohl, P.

G. Bub, M. Tecza, M. Helmes, P. Lee, and P. Kohl, “Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging,” Nat. Methods 7(3), 209–211 (2010).
[Crossref] [PubMed]

Korn, G.

Kristensson, E.

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light Sci. Appl. 6(9), e17045 (2017).
[Crossref] [PubMed]

Krushelnick, K.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Lacour, J. L.

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B At. Spectrosc. 61(3), 301–313 (2006).
[Crossref]

Lancaster, K.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Lawson, E.

A. Velten, R. Raskar, D. Wu, B. Masia, A. Jarabo, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, and D. Gutierrez, “Imaging the propagation of light through scenes at picosecond resolution,” Commun. ACM 59(9), 79–86 (2016).
[Crossref]

Le, T. Y.

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

Lee, P.

G. Bub, M. Tecza, M. Helmes, P. Lee, and P. Kohl, “Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging,” Nat. Methods 7(3), 209–211 (2010).
[Crossref] [PubMed]

Li, C.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Li, Z.

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light Sci. Appl. 6(9), e17045 (2017).
[Crossref] [PubMed]

Liang, J.

J. Liang, L. Zhu, and L. V. Wang, “Single-shot real-time femtosecond imaging of temporal focusing,” Light Sci. Appl. 7(1), 42 (2018).
[Crossref]

J. Liang and L. V. Wang, “Single-shot ultrafast optical imaging,” Optica 5(9), 1113–1127 (2018).
[Crossref]

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Linne, M.

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[Crossref]

Liu, X.

Mance, J. G.

Manhès, G.

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B At. Spectrosc. 61(3), 301–313 (2006).
[Crossref]

Masia, B.

A. Velten, R. Raskar, D. Wu, B. Masia, A. Jarabo, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, and D. Gutierrez, “Imaging the propagation of light through scenes at picosecond resolution,” Commun. ACM 59(9), 79–86 (2016).
[Crossref]

Mauchien, P.

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B At. Spectrosc. 61(3), 301–313 (2006).
[Crossref]

Maurice, S.

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B At. Spectrosc. 61(3), 301–313 (2006).
[Crossref]

Michael, J. B.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[Crossref] [PubMed]

Miles, R. B.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[Crossref] [PubMed]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett 98, 265005 (2007).

Z. Zhang, M. N. Shneider, and R. B. Miles, “Microwave diagnostics of laser-induced avalanche ionization in air,” J. Appl. Phys. 100(7), 074912 (2006).
[Crossref]

Miller, D. J.

Mori, N.

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

Mourou, G.

Moustaizis, S.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Mur, V. D.

V. D. Mur, S. V. Popruzhenko, and V. S. Popov, “Energy and momentum spectra of photoelectrons under conditions of ionization by strong laser radiation (The case of elliptic polarization),” J. Exp. Theor. Phys. 92(5), 777–788 (2001).
[Crossref]

Neely, D.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Nelson, K. A.

Nguyen, A. Q.

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

Norreys, P.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Paciaroni, M.

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[Crossref]

Parigger, C.

Parker, T.

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[Crossref]

Parker, T. E.

Patnaik, A. K.

Perelomov, A.

A. Perelomov and V. Popov, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).

Popov, V.

A. Perelomov and V. Popov, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).

Popov, V. S.

V. D. Mur, S. V. Popruzhenko, and V. S. Popov, “Energy and momentum spectra of photoelectrons under conditions of ionization by strong laser radiation (The case of elliptic polarization),” J. Exp. Theor. Phys. 92(5), 777–788 (2001).
[Crossref]

Popruzhenko, S. V.

V. D. Mur, S. V. Popruzhenko, and V. S. Popov, “Energy and momentum spectra of photoelectrons under conditions of ionization by strong laser radiation (The case of elliptic polarization),” J. Exp. Theor. Phys. 92(5), 777–788 (2001).
[Crossref]

Porter, J. M.

Rambo, P.

Raskar, R.

A. Velten, R. Raskar, D. Wu, B. Masia, A. Jarabo, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, and D. Gutierrez, “Imaging the propagation of light through scenes at picosecond resolution,” Commun. ACM 59(9), 79–86 (2016).
[Crossref]

Roy, S.

Sallé, B.

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B At. Spectrosc. 61(3), 301–313 (2006).
[Crossref]

Sawyer, J.

Sawyer, J. C.

Y. Wu, J. C. Sawyer, L. Su, and Z. Zhang, “Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown,” J. Appl. Phys. 119(17), 173303 (2016).
[Crossref]

Schwarz, J.

Scully, M. O.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[Crossref] [PubMed]

Shattan, M. B.

Shimonomura, K.

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

Shneider, M. N.

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett 98, 265005 (2007).

Z. Zhang, M. N. Shneider, and R. B. Miles, “Microwave diagnostics of laser-induced avalanche ionization in air,” J. Appl. Phys. 100(7), 074912 (2006).
[Crossref]

Slipchenko, M. N.

Smith, C. D.

Son, D. V.

T. G. Etoh, D. V. Son, T. Yamada, and E. Charbon, “Toward One Giga Frames per Second-Evolution of in Situ Storage Image Sensors,” Sensors (Basel) 13(4), 4640–4658 (2013).
[Crossref] [PubMed]

Squier, J.

Stoeckl, C.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Stowe, A. C.

Su, L.

Y. Wu, J. C. Sawyer, L. Su, and Z. Zhang, “Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown,” J. Appl. Phys. 119(17), 173303 (2016).
[Crossref]

Tampo, M.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Tatarakis, M.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Tecza, M.

G. Bub, M. Tecza, M. Helmes, P. Lee, and P. Kohl, “Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging,” Nat. Methods 7(3), 209–211 (2010).
[Crossref] [PubMed]

Vakakis, N.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Velten, A.

A. Velten, R. Raskar, D. Wu, B. Masia, A. Jarabo, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, and D. Gutierrez, “Imaging the propagation of light through scenes at picosecond resolution,” Commun. ACM 59(9), 79–86 (2016).
[Crossref]

Wakeham, G. P.

Wang, L. V.

J. Liang and L. V. Wang, “Single-shot ultrafast optical imaging,” Optica 5(9), 1113–1127 (2018).
[Crossref]

J. Liang, L. Zhu, and L. V. Wang, “Single-shot real-time femtosecond imaging of temporal focusing,” Light Sci. Appl. 7(1), 42 (2018).
[Crossref]

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Wei, M.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Wu, D.

A. Velten, R. Raskar, D. Wu, B. Masia, A. Jarabo, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, and D. Gutierrez, “Imaging the propagation of light through scenes at picosecond resolution,” Commun. ACM 59(9), 79–86 (2016).
[Crossref]

Wu, Y.

Yamada, T.

T. G. Etoh, D. V. Son, T. Yamada, and E. Charbon, “Toward One Giga Frames per Second-Evolution of in Situ Storage Image Sensors,” Sensors (Basel) 13(4), 4640–4658 (2013).
[Crossref] [PubMed]

Zepf, M.

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Zhang, Z.

M. Gragston, C. D. Smith, and Z. Zhang, “High-speed flame chemiluminescence imaging using time-multiplexed structured detection,” Appl. Opt. 57(11), 2923–2929 (2018).
[Crossref] [PubMed]

P. S. Hsu, M. Gragston, Y. Wu, Z. Zhang, A. K. Patnaik, J. Kiefer, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar,” Appl. Opt. 55(28), 8042–8048 (2016).
[Crossref] [PubMed]

Y. Wu, J. C. Sawyer, L. Su, and Z. Zhang, “Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown,” J. Appl. Phys. 119(17), 173303 (2016).
[Crossref]

P. S. Hsu, S. Roy, Z. Zhang, J. Sawyer, M. N. Slipchenko, J. G. Mance, and J. R. Gord, “High-repetition-rate laser ignition of fuel-air mixtures,” Opt. Lett. 41(7), 1570–1573 (2016).
[Crossref] [PubMed]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett 98, 265005 (2007).

Z. Zhang, M. N. Shneider, and R. B. Miles, “Microwave diagnostics of laser-induced avalanche ionization in air,” J. Appl. Phys. 100(7), 074912 (2006).
[Crossref]

Zhu, L.

J. Liang, L. Zhu, and L. V. Wang, “Single-shot real-time femtosecond imaging of temporal focusing,” Light Sci. Appl. 7(1), 42 (2018).
[Crossref]

Appl. Opt. (4)

Commun. ACM (1)

A. Velten, R. Raskar, D. Wu, B. Masia, A. Jarabo, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, and D. Gutierrez, “Imaging the propagation of light through scenes at picosecond resolution,” Commun. ACM 59(9), 79–86 (2016).
[Crossref]

Exp. Fluids (1)

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[Crossref]

IEEE Trans. Inf. Theory (1)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

J. Appl. Phys. (2)

Y. Wu, J. C. Sawyer, L. Su, and Z. Zhang, “Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown,” J. Appl. Phys. 119(17), 173303 (2016).
[Crossref]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Microwave diagnostics of laser-induced avalanche ionization in air,” J. Appl. Phys. 100(7), 074912 (2006).
[Crossref]

J. Exp. Theor. Phys. (1)

V. D. Mur, S. V. Popruzhenko, and V. S. Popov, “Energy and momentum spectra of photoelectrons under conditions of ionization by strong laser radiation (The case of elliptic polarization),” J. Exp. Theor. Phys. 92(5), 777–788 (2001).
[Crossref]

Light Sci. Appl. (2)

A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light Sci. Appl. 6(9), e17045 (2017).
[Crossref] [PubMed]

J. Liang, L. Zhu, and L. V. Wang, “Single-shot real-time femtosecond imaging of temporal focusing,” Light Sci. Appl. 7(1), 42 (2018).
[Crossref]

Nat. Methods (1)

G. Bub, M. Tecza, M. Helmes, P. Lee, and P. Kohl, “Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging,” Nat. Methods 7(3), 209–211 (2010).
[Crossref] [PubMed]

Nat. Phys. (1)

B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006).
[Crossref]

Nature (1)

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Optica (1)

Phys. Rev. Lett (1)

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett 98, 265005 (2007).

Science (1)

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[Crossref] [PubMed]

Sensors (Basel) (2)

T. G. Etoh, D. V. Son, T. Yamada, and E. Charbon, “Toward One Giga Frames per Second-Evolution of in Situ Storage Image Sensors,” Sensors (Basel) 13(4), 4640–4658 (2013).
[Crossref] [PubMed]

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

Signal Process. Image Commun. (1)

S. R. Khan, M. Feldman, and B. K. Gunturk, “Extracting sub-exposure images from a single capture through Fourier-based optical modulation,” Signal Process. Image Commun. 60, 107–115 (2018).
[Crossref]

Sov. Phys. JETP (1)

A. Perelomov and V. Popov, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).

Spectrochim. Acta B At. Spectrosc. (1)

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B At. Spectrosc. 61(3), 301–313 (2006).
[Crossref]

Other (1)

H. Mikami, L. Gao, and K. Goda, “Ultrafast optical imaging technology: principles and applications of emerging methods,” in Nanophotonics (2016), p. 497.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematics of the experiment setup for simultaneous measurements of laser-induced avalanche ionization by coherent microwave scattering and three-channel MUSIC. (b) Timing diagram for nanosecond-resolution MUSIC at three individual channels. Each path is modulated with unique patterns by Ronchi rulings (component 6 in (a)). The time of flight along each path is distinct so that time-multiplexed images from the plasma can be captured into a single snapshot, shown on the top. The time axis shows how much of the event information was captured in each channel. Note that path 3 contributes information from the earliest times only.
Fig. 2
Fig. 2 (a) Phantoms of multiplexing of plasma emission by various spatial frequency modulations are shown as individual modulated images as Masked Image 1, 2, and 3 and the resulting multiplexed composite image. Each of the three images has a mask applied to it via multiplication and is summed into a composite multiplexed image, which represents the image stored by the camera during the gate time. The Fourier transform of each image is shown underneath, specifically showing that the Fourier transform of the composite image is equivalent to summing the Fourier transforms of each individual image. Arrows indicate the first harmonic of the sinc function. (b) Computational images recovered from the composite image in (a) and a line profile comparison to the true image before applications of masks.
Fig. 3
Fig. 3 (a) Experiment image of laser-induced plasma with all three channels present and the associated Fourier transform showing the multiplexing. Camera gate delay was set at 4ns with a gate width of 3ns. (b) Fourier transformation of (a), showing multiple modulated spatial frequency components from various optical paths. (c) Recovered images of laser-induced plasma using MUSIC. Note that each row is a single shot. Path one, two, and three have effective camera gate widths of 3.0 ns, 2.1 ns, and 0.8 ns respectively. (Left) Laser power was 60 mJ/pulse with an 8 ns pulse width and repetition rate of 10 Hz. A 50 mm focusing lens was used to generate the plasma.
Fig. 4
Fig. 4 Comparison of total image intensity of recovered images to microwave scattering and plasma modeling of the laser-induced plasma. The red solid line shows a convolution of the kinetic simulation results with the response function of the microwave diagnostic.
Fig. 5
Fig. 5 The ultimate boundary is the spatial frequency associated diffraction limit of the system. However, low frequency information common to all images regardless of modulation (i.e. the fundamental harmonic) must be avoided too. Therefore, the space available to store the modulated image data is an annulus.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I G ( r ,t)= n=1 3 W(t) I n ( r ,tΔ t Dn ) M n ( r ) ε n
I n ( r ,tΔ t Dn )= { 0 t<Δ t Dn I( r ,t ) tΔ t Dn
W( t )=Π( t t 0 T G )={       0 | t |> 1 2 1 2 | t |= 1 2 1 | t |< 1 2
I ̃ G ( k ,t )=Π( t t 0 T G ) n=1 3 [ ε n I n ( k ,tΔ t Dn ) m= 2sin( m k 0 T 1 ) m δ( k xn ' m k 0 ) ]
A Filter =π k filter 2
A Annulus =π[ k diff 2 k I 2 ]
2N A Annulus A Filter = k diff 2 k I 2 k filter 2
2N k diff 2 k I 2 1 k filter 2
D α N 1/2 ( k diff 2 k I 2 ) 1/2   

Metrics