Abstract

Energy harvesting from ambient light can be used to power wireless sensors and other standalone electronic devices. The intensity of light used for illumination is 300-3000x lower than sunlight and the spectrum of artificial light is normally narrowly concentrated in the visible range. As a result, the optimal design of photovoltaic devices for energy harvesting from ambient light differs from conventional solar cells. We calculate the maximum efficiency for Si photovoltaic devices operating under conditions expected indoors as a function of the cell thickness, taking into account the relevant properties of Si. The optimum thickness for devices operating under 250 lux illumination produced by white LED’s is 1.8 µm and the efficiency is 29.0%, whereas for direct sunlight, the optimum thickness is much larger at 109 µm, while the maximum efficiency is almost the same (29.7%). The relative efficiency increases logarithmically with light intensity at 8.5% per decade.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells

Meiwei Kong, Jiaming Lin, Chun Hong Kang, Chao Shen, Yujian Guo, Xiaobin Sun, Mohammed Sait, Yang Weng, Huafan Zhang, Tien Khee Ng, and Boon S. Ooi
Opt. Express 27(24) 34542-34551 (2019)

High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array

Nobuhiko Hayashi, Daijiro Inoue, Mitsuhiro Matsumoto, Akio Matsushita, Hiroshi Higuchi, Youichirou Aya, and Tohru Nakagawa
Opt. Express 23(11) A594-A603 (2015)

Study on weak-light photovoltaic characteristics of solar cell with a microgroove lens array on glass substrate

Ping Li, Jin Xie, Jian Cheng, and Yu Ning Jiang
Opt. Express 23(7) A192-A203 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatnagar and P. Owende, “Energy Harvesting for Assistive and Mobile Applications,” Energy Sci. Eng. 3(3), 153–173 (2015).
    [Crossref]
  2. M. Gorlatova, A. Wallwater, and G. Zussman, “Networking Low Power Energy Harvesting Devices: Measurements and Algorithms,” IEEE Trans. Mobile Comput. 12(9), 1853–1865 (2013).
    [Crossref]
  3. A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
    [Crossref] [PubMed]
  4. Z. L. Wang and W. Wu, “Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems,” Angew. Chem. Int. Ed. Engl. 51(47), 11700–11721 (2012).
    [Crossref] [PubMed]
  5. B. Minnaert and P. Veelaert, “A Proposal for Typical Artificial Light Sources for the Characterization of Indoor Photovoltaic Applications,” Energies 7(3), 1500–1516 (2014).
    [Crossref]
  6. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).
    [Crossref]
  7. M. Freunek, M. Freunek, and L. M. Reindl, “Maximum Efficiencies of Indoor Photovoltaic Devices,” IEEE J. Photovoltaics 3(1), 59–64 (2013).
    [Crossref]
  8. Design Standards and Guidelines, City of Los Angeles, Department of Public Works, Bureau of Street Lighting, Los Angeles, CA, USA ( http://bsl.lacity.org/downloads/business/bsldesignstandardsandguidelines0507web.pdf )
  9. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
    [Crossref]
  10. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
    [Crossref]
  11. T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983).
    [Crossref]
  12. A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165202 (2012).
    [Crossref]
  13. A. Schenk, “Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation,” J. Appl. Phys. 84(7), 3684–3695 (1998).
    [Crossref]
  14. M. Rüdiger, J. Greulich, A. Richter, and M. Hermle, “Parameterization of Free Carrier Absorption in Highly Doped Silicon for Solar Cells,” IEEE Trans. Electron Dev. 60(7), 2156–2163 (2013).
    [Crossref]
  15. C. H. Su, “Energy band gap, intrinsic carrier concentration, and Fermi level of CdTe bulk crystal between 304 and 1067K,” J. Appl. Phys. 103(8), 084903 (2008).
    [Crossref]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  17. https://www.nrel.gov
  18. https://www.osram-americas.com
  19. https://www.noao.edu
  20. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
    [Crossref]
  21. A. Richter, M. Hermle, S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells”, IEEE J. Photovoltaics, 3, 4 1184-1191 (2013).
  22. J. F. Randall and J. Jacot, “The performance and modelling of 8 photovoltaic materials under variable light intensity and spectra,” World Renewable Energy Congress VII & Expo (2002).
  23. I. Mathews, P. J. King, F. Stafford, and R. Frizzell, “Performance of III–V Solar Cells as Indoor Light Energy Harvesters,” IEEE J. Photovoltaics 6(1), 2030–2035 (2015).

2017 (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).
[Crossref]

2015 (3)

V. Bhatnagar and P. Owende, “Energy Harvesting for Assistive and Mobile Applications,” Energy Sci. Eng. 3(3), 153–173 (2015).
[Crossref]

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

I. Mathews, P. J. King, F. Stafford, and R. Frizzell, “Performance of III–V Solar Cells as Indoor Light Energy Harvesters,” IEEE J. Photovoltaics 6(1), 2030–2035 (2015).

2014 (1)

B. Minnaert and P. Veelaert, “A Proposal for Typical Artificial Light Sources for the Characterization of Indoor Photovoltaic Applications,” Energies 7(3), 1500–1516 (2014).
[Crossref]

2013 (3)

M. Rüdiger, J. Greulich, A. Richter, and M. Hermle, “Parameterization of Free Carrier Absorption in Highly Doped Silicon for Solar Cells,” IEEE Trans. Electron Dev. 60(7), 2156–2163 (2013).
[Crossref]

M. Gorlatova, A. Wallwater, and G. Zussman, “Networking Low Power Energy Harvesting Devices: Measurements and Algorithms,” IEEE Trans. Mobile Comput. 12(9), 1853–1865 (2013).
[Crossref]

M. Freunek, M. Freunek, and L. M. Reindl, “Maximum Efficiencies of Indoor Photovoltaic Devices,” IEEE J. Photovoltaics 3(1), 59–64 (2013).
[Crossref]

2012 (3)

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

Z. L. Wang and W. Wu, “Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems,” Angew. Chem. Int. Ed. Engl. 51(47), 11700–11721 (2012).
[Crossref] [PubMed]

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165202 (2012).
[Crossref]

2008 (2)

C. H. Su, “Energy band gap, intrinsic carrier concentration, and Fermi level of CdTe bulk crystal between 304 and 1067K,” J. Appl. Phys. 103(8), 084903 (2008).
[Crossref]

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

1998 (1)

A. Schenk, “Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation,” J. Appl. Phys. 84(7), 3684–3695 (1998).
[Crossref]

1984 (1)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

1983 (1)

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983).
[Crossref]

Abeles, B.

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983).
[Crossref]

Bhatnagar, V.

V. Bhatnagar and P. Owende, “Energy Harvesting for Assistive and Mobile Applications,” Energy Sci. Eng. 3(3), 153–173 (2015).
[Crossref]

Boley, J.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Brooks, B. G.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Calhoun, B. H.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Cebulka, J. M.

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983).
[Crossref]

Chen, X.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Cody, G. D.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Craig, K.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Cuevas, A.

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165202 (2012).
[Crossref]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).
[Crossref]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).
[Crossref]

Faisal, M.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Freunek, M.

M. Freunek, M. Freunek, and L. M. Reindl, “Maximum Efficiencies of Indoor Photovoltaic Devices,” IEEE J. Photovoltaics 3(1), 59–64 (2013).
[Crossref]

M. Freunek, M. Freunek, and L. M. Reindl, “Maximum Efficiencies of Indoor Photovoltaic Devices,” IEEE J. Photovoltaics 3(1), 59–64 (2013).
[Crossref]

Frizzell, R.

I. Mathews, P. J. King, F. Stafford, and R. Frizzell, “Performance of III–V Solar Cells as Indoor Light Energy Harvesters,” IEEE J. Photovoltaics 6(1), 2030–2035 (2015).

Glunz, S. W.

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165202 (2012).
[Crossref]

Gonzalez-Guerrero, L. P.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Gorlatova, M.

M. Gorlatova, A. Wallwater, and G. Zussman, “Networking Low Power Energy Harvesting Devices: Measurements and Algorithms,” IEEE Trans. Mobile Comput. 12(9), 1853–1865 (2013).
[Crossref]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).
[Crossref]

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Greulich, J.

M. Rüdiger, J. Greulich, A. Richter, and M. Hermle, “Parameterization of Free Carrier Absorption in Highly Doped Silicon for Solar Cells,” IEEE Trans. Electron Dev. 60(7), 2156–2163 (2013).
[Crossref]

Hermle, M.

M. Rüdiger, J. Greulich, A. Richter, and M. Hermle, “Parameterization of Free Carrier Absorption in Highly Doped Silicon for Solar Cells,” IEEE Trans. Electron Dev. 60(7), 2156–2163 (2013).
[Crossref]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).
[Crossref]

Ho-Baillie, A. W. Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).
[Crossref]

Kamakshi, D. A.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

King, P. J.

I. Mathews, P. J. King, F. Stafford, and R. Frizzell, “Performance of III–V Solar Cells as Indoor Light Energy Harvesters,” IEEE J. Photovoltaics 6(1), 2030–2035 (2015).

Klinefelter, A.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Kurtz, S. R.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

Levi, D. H.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).
[Crossref]

Lukas, C. J.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Mathews, I.

I. Mathews, P. J. King, F. Stafford, and R. Frizzell, “Performance of III–V Solar Cells as Indoor Light Energy Harvesters,” IEEE J. Photovoltaics 6(1), 2030–2035 (2015).

Miller, O. D.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

Minnaert, B.

B. Minnaert and P. Veelaert, “A Proposal for Typical Artificial Light Sources for the Characterization of Indoor Photovoltaic Applications,” Energies 7(3), 1500–1516 (2014).
[Crossref]

Oh, S.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Owende, P.

V. Bhatnagar and P. Owende, “Energy Harvesting for Assistive and Mobile Applications,” Energy Sci. Eng. 3(3), 153–173 (2015).
[Crossref]

Pelz, J.

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983).
[Crossref]

Reindl, L. M.

M. Freunek, M. Freunek, and L. M. Reindl, “Maximum Efficiencies of Indoor Photovoltaic Devices,” IEEE J. Photovoltaics 3(1), 59–64 (2013).
[Crossref]

Richter, A.

M. Rüdiger, J. Greulich, A. Richter, and M. Hermle, “Parameterization of Free Carrier Absorption in Highly Doped Silicon for Solar Cells,” IEEE Trans. Electron Dev. 60(7), 2156–2163 (2013).
[Crossref]

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165202 (2012).
[Crossref]

Roberts, N. E.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Roy, A.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Rüdiger, M.

M. Rüdiger, J. Greulich, A. Richter, and M. Hermle, “Parameterization of Free Carrier Absorption in Highly Doped Silicon for Solar Cells,” IEEE Trans. Electron Dev. 60(7), 2156–2163 (2013).
[Crossref]

Schenk, A.

A. Schenk, “Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation,” J. Appl. Phys. 84(7), 3684–3695 (1998).
[Crossref]

Schmidt, J.

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165202 (2012).
[Crossref]

Shakhsheer, Y.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Shrivastava, A.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Stafford, F.

I. Mathews, P. J. King, F. Stafford, and R. Frizzell, “Performance of III–V Solar Cells as Indoor Light Energy Harvesters,” IEEE J. Photovoltaics 6(1), 2030–2035 (2015).

Su, C. H.

C. H. Su, “Energy band gap, intrinsic carrier concentration, and Fermi level of CdTe bulk crystal between 304 and 1067K,” J. Appl. Phys. 103(8), 084903 (2008).
[Crossref]

Tiedje, T.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983).
[Crossref]

Vasudevan, D. P.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Veelaert, P.

B. Minnaert and P. Veelaert, “A Proposal for Typical Artificial Light Sources for the Characterization of Indoor Photovoltaic Applications,” Energies 7(3), 1500–1516 (2014).
[Crossref]

Wallwater, A.

M. Gorlatova, A. Wallwater, and G. Zussman, “Networking Low Power Energy Harvesting Devices: Measurements and Algorithms,” IEEE Trans. Mobile Comput. 12(9), 1853–1865 (2013).
[Crossref]

Wang, Z. L.

Z. L. Wang and W. Wu, “Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems,” Angew. Chem. Int. Ed. Engl. 51(47), 11700–11721 (2012).
[Crossref] [PubMed]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).
[Crossref]

Wentzloff, D. D.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Werner, F.

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165202 (2012).
[Crossref]

Wu, W.

Z. L. Wang and W. Wu, “Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems,” Angew. Chem. Int. Ed. Engl. 51(47), 11700–11721 (2012).
[Crossref] [PubMed]

Yablonovitch, E.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Yahya, F. B.

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

Zussman, G.

M. Gorlatova, A. Wallwater, and G. Zussman, “Networking Low Power Energy Harvesting Devices: Measurements and Algorithms,” IEEE Trans. Mobile Comput. 12(9), 1853–1865 (2013).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

Z. L. Wang and W. Wu, “Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems,” Angew. Chem. Int. Ed. Engl. 51(47), 11700–11721 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712–714 (1983).
[Crossref]

Energies (1)

B. Minnaert and P. Veelaert, “A Proposal for Typical Artificial Light Sources for the Characterization of Indoor Photovoltaic Applications,” Energies 7(3), 1500–1516 (2014).
[Crossref]

Energy Sci. Eng. (1)

V. Bhatnagar and P. Owende, “Energy Harvesting for Assistive and Mobile Applications,” Energy Sci. Eng. 3(3), 153–173 (2015).
[Crossref]

IEEE J. Photovoltaics (3)

M. Freunek, M. Freunek, and L. M. Reindl, “Maximum Efficiencies of Indoor Photovoltaic Devices,” IEEE J. Photovoltaics 3(1), 59–64 (2013).
[Crossref]

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

I. Mathews, P. J. King, F. Stafford, and R. Frizzell, “Performance of III–V Solar Cells as Indoor Light Energy Harvesters,” IEEE J. Photovoltaics 6(1), 2030–2035 (2015).

IEEE Trans. Biomed. Circuits Syst. (1)

A. Roy, A. Klinefelter, F. B. Yahya, X. Chen, L. P. Gonzalez-Guerrero, C. J. Lukas, D. A. Kamakshi, J. Boley, K. Craig, M. Faisal, S. Oh, N. E. Roberts, Y. Shakhsheer, A. Shrivastava, D. P. Vasudevan, D. D. Wentzloff, and B. H. Calhoun, “A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems,” IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015).
[Crossref] [PubMed]

IEEE Trans. Electron Dev. (2)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

M. Rüdiger, J. Greulich, A. Richter, and M. Hermle, “Parameterization of Free Carrier Absorption in Highly Doped Silicon for Solar Cells,” IEEE Trans. Electron Dev. 60(7), 2156–2163 (2013).
[Crossref]

IEEE Trans. Mobile Comput. (1)

M. Gorlatova, A. Wallwater, and G. Zussman, “Networking Low Power Energy Harvesting Devices: Measurements and Algorithms,” IEEE Trans. Mobile Comput. 12(9), 1853–1865 (2013).
[Crossref]

J. Appl. Phys. (2)

C. H. Su, “Energy band gap, intrinsic carrier concentration, and Fermi level of CdTe bulk crystal between 304 and 1067K,” J. Appl. Phys. 103(8), 084903 (2008).
[Crossref]

A. Schenk, “Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation,” J. Appl. Phys. 84(7), 3684–3695 (1998).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165202 (2012).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 49),” Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Other (7)

A. Richter, M. Hermle, S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells”, IEEE J. Photovoltaics, 3, 4 1184-1191 (2013).

J. F. Randall and J. Jacot, “The performance and modelling of 8 photovoltaic materials under variable light intensity and spectra,” World Renewable Energy Congress VII & Expo (2002).

Design Standards and Guidelines, City of Los Angeles, Department of Public Works, Bureau of Street Lighting, Los Angeles, CA, USA ( http://bsl.lacity.org/downloads/business/bsldesignstandardsandguidelines0507web.pdf )

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).

https://www.nrel.gov

https://www.osram-americas.com

https://www.noao.edu

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The spectra of three different light sources: sunlight (AM1.5G), white LED (2700 K) and F3, white fluorescent lamp, standard illumination equivalent to 3450 K. The spectra are normalized to their peak values. The solar spectrum is from the National Renewable Energy Lab website [17]. The white LED and F3 spectra are taken from the Osram ColorCalculator software [18].
Fig. 2
Fig. 2 The efficiency of Si solar cells as a function of thickness with randomly textured antireflection coated front surface and perfectly reflecting back surface with three different light sources: sunlight (AM1.5G), white LED (2700 K), and F3 white fluorescent lamp. The light source intensities were all normalized to 250 lux, an appropriate illumination level for an easy office environment.
Fig. 3
Fig. 3 Summary of the relative magnitudes of the various loss processes in Si solar cells under (a) AM 1.5 global solar illumination and b) white LED at an illumination of 250 lux at the maximum power point. The losses are represented as currents.
Fig. 4
Fig. 4 The calculated efficiency of silicon solar cells illuminated by the AM1.5G solar spectrum at three different intensities, as indicated. The maximum efficiency and optimum solar cell thickness increase with light intensity. The low intensity curve (10−6x one sun) is approximately the intensity of moonlight.
Fig. 5
Fig. 5 Calculated power output as a function of illumination intensity for Si photovoltaic cells illuminated by a light spectrum matching AM1.5G, triangles, and by a white LED (2700K), circles. The electrical output is a power law function of the light intensity with exponent 1.037.
Fig. 6
Fig. 6 Optimum thickness as a function of illumination intensity for photovoltaic cells illuminated by a light spectrum matching AM1.5G and by a white LED (2700K).
Fig. 7
Fig. 7 Calculated output voltage at maximum power as a function of illumination intensity for silicon photovoltaic cells illuminated by a light spectrum matching AM1.5G (triangles) and by a white LED (2700K) (circles).

Tables (2)

Tables Icon

Table 1 Material parameters for crystalline silicon, GaAs and CdTe used in this paper

Tables Icon

Table 2 Calculated maximum solar cell efficiencies for sunlight (AM1.5G) and white LED (2700 K) illumination. The Si solar cell thicknesses are optimized for the light source and illumination level while the GaAs and CdTe solar cells have a fixed thickness of 0.5 µm. Because of strong absorption at the bandgap and abrupt absorption edges the GaAs and CdTe efficiencies have a weak thickness dependence above a threshold thickness. Sun is the AM1.5G spectrum, F3 is a white fluorescent lamp, and LED is a white LED with a colour temperature of 2700K.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A= α α+1/ 4 n 2 L
( α 1 + 1 4 n 2 L ) e μ/ kT A(E) b n (E,T)dEdΩ+C(n)= I SC eL (1f)
n 2 = n i 2 e μ/ kT
C(n)=3.0× 10 29 n 2.92

Metrics