Abstract

We demonstrate the analog indoor distributed antenna system (DAS) for 5G mobile communications that supports 4 × 4 multiple-input multiple-output (MIMO) configuration. For this, we exploit a pair of intermediate frequency over fiber (IFoF)-based analog optical links, transporting 32 frequency allocation (FA) 5G mobile signals (effectively ~4 GHz bandwidth). The analog optical link manifests its high fidelity in the measured characteristics: small gain variation (< ± 1 dB for the entire transmission bandwidth), low noise (<-136 dBm/Hz), and large dynamic range (spurious free dynamic range of >106 dB∙Hz2/3), subsequently providing superior error vector magnitude (EVM) performance (~2%) for a wide range of ambient temperatures (−20 ~60°C). Consequently, the IFoF-based 4 × 4 MIMO supporting analog indoor DAS is capable of providing record high peak throughput of 5.3 Gb/s for millimeter wave based 5G mobile communication system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Performance Evaluation of Mobile Front-Haul Employing Ethernet-Based TDM-PON With IQ Data Compression [Invited]

Naotaka Shibata, Takayoshi Tashiro, Shigeru Kuwano, Naohiko Yuki, Youichi Fukada, Jun Terada, and Akihiro Otaka
J. Opt. Commun. Netw. 7(11) B16-B22 (2015)

High-fidelity and low-latency mobile fronthaul based on segment-wise TDM and MIMO-interleaved arraying

Longsheng Li, Meihua Bi, Xin Miao, Yan Fu, and Weisheng Hu
Opt. Express 26(2) 2079-2088 (2018)

Dynamic IQ Data Compression Using Wireless Resource Allocation for Mobile Front-Haul With TDM–PON [Invited]

Naotaka Shibata, Shigeru Kuwano, Jun Terada, and Hideaki Kimura
J. Opt. Commun. Netw. 7(3) A372-A378 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Waterhouse and D. Novak, “Realizing 5G,” IEEE Microw. Mag. 16(8), 84–92 (2015).
    [Crossref]
  2. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five Disruptive Technology Directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
    [Crossref]
  3. D. Pliatsios, P. Sarigiannidis, S. Goudos, and G. K. Karagiannidis, “Realizing 5G vision through Cloud RAN: technologies, challenges, and trends,” EURASIP J. Wirel. Commun. Netw. 2018(1), 136 (2018).
    [Crossref]
  4. M. Crisp, R. V. Penty, and I. H. White, “Wideband Radio over Fiber Distributed Antenna Systems for Energy Efficient In-Building Wireless Communications,” in Proceedings of the 71st IEEE Vehicular Technology Conference, 11389883 (2010).
  5. J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-Wave Frequency Radio over Fiber Systems: A Survey,” IEEE Commun. Surv. Tutorials 15(4), 1593–1619 (2013).
    [Crossref]
  6. J. Wang, S. Zhaob, X. Hu, E. Guan, Z. Ding, and Y. Yaob, “DDAS-DRoF Based a New In-Building Signal Coverage System Supporting Multiple Services,” in Proceedings of the 8th International Congress of Information and Communication Technology, 558–563 (2017).
  7. eCPRI Specification V1.1, “Commom Public Radio Interface: eCPRI Interface Specification,” Jan. 2018.
  8. S. Cho, H. Park, H. Chung, K. Doo, S. Lee, and J. Lee, “Cost-effective Next Generation Mobile Fronthaul Architecture with Multi-IF Carrier Transmission Scheme,” in Optical Fiber Communications Conference, paper Tu2B (2014).
    [Crossref]
  9. L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
    [Crossref]
  10. C. Browning, E. P. Martin, A. Farhang, and L. P. Barry, “60 GHz 5G Radio-Over-Fiber Using UF-OFDM With Optical Heterodyning,” IEEE Photonics Technol. Lett. 29(23), 2059–2062 (2017).
    [Crossref]
  11. J. Liu, Y. Ye, L. Deng, L. Liu, Z. Li, F. Liu, Y. Zhou, J. Xia, and D. Liu, “Integrated four-channel directly modulated O-band optical transceiver for radio over fiber application,” Opt. Express 26(17), 21490–21500 (2018).
    [Crossref] [PubMed]
  12. X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient Mobile Fronthaul via DSP-Based Channel Aggregation,” J. Lightwave Technol. 34(6), 1556–1564 (2016).
    [Crossref]
  13. S. Ishimura, B. G. Kim, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-Over-Fiber Transmission With Parallel IM/PM Transmitter Overcoming Dispersion-Induced RF Power Fading for High-Capacity Mobile Fronthaul Links,” IEEE Photonics J. 10(1), 7900609 (2018).
    [Crossref]
  14. S. Song, K. Chang, C. Yoon, and J. Chung, “Special Issue on 5G Communications and Experimental Trials with Heterogeneous and Agile Mobile networks,” ETRI J. 40(1), 7–9 (2018).
    [Crossref]
  15. M. Sung, S. Cho, J. Kim, J. Lee, J. Lee, and H. Chung, “Demonstration of IFoF-Based Mobile Fronthaul in 5G Prototype With 28-GHz Millimeter wave,” J. Lightwave Technol. 36(2), 601–609 (2018).
    [Crossref]
  16. J. Kim, M. Sung, E. Kim, S. Cho, and J. Lee, “Experimental demonstration of analog IFoF-based seamless fiber-wireless interface for 5G indoor DAS supporting 8 FA and 2×2 MIMO configuration,” in Optical Fiber Communications Conference (2018), paper W4B.4.
    [Crossref]
  17. X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-Gain, Low-Noise-Figure, and High-Linearity Analog Photonic Link Based on a High-Performance Photodetector,” J. Lightwave Technol. 32(21), 4187–4192 (2014).
    [Crossref]
  18. M. Sung, S. H. Cho, H. S. Chung, S. M. Kim, and J. H. Lee, “Investigation of transmission performance in multi-IFoF based mobile fronthaul with dispersion-induced intermixing noise mitigation,” Opt. Express 25(8), 9346–9357 (2017).
    [Crossref] [PubMed]
  19. C. Han, S. Cho, M. Sung, H. Chung, and J. Lee, “Clipping Distortion Suppression of Directly Modulated Multi-IF-over-Fiber Mobile Fronthaul Links Using Shunt Diode Predistorter,” ETRI J. 38(2), 227–234 (2016).
    [Crossref]
  20. 3GPP TS 36.141 v. 10.1.0, “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) conformance testing,” Technical Specification Group Radio Access Network, Rel. 10, Jan. 2011.

2018 (5)

D. Pliatsios, P. Sarigiannidis, S. Goudos, and G. K. Karagiannidis, “Realizing 5G vision through Cloud RAN: technologies, challenges, and trends,” EURASIP J. Wirel. Commun. Netw. 2018(1), 136 (2018).
[Crossref]

S. Ishimura, B. G. Kim, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-Over-Fiber Transmission With Parallel IM/PM Transmitter Overcoming Dispersion-Induced RF Power Fading for High-Capacity Mobile Fronthaul Links,” IEEE Photonics J. 10(1), 7900609 (2018).
[Crossref]

S. Song, K. Chang, C. Yoon, and J. Chung, “Special Issue on 5G Communications and Experimental Trials with Heterogeneous and Agile Mobile networks,” ETRI J. 40(1), 7–9 (2018).
[Crossref]

M. Sung, S. Cho, J. Kim, J. Lee, J. Lee, and H. Chung, “Demonstration of IFoF-Based Mobile Fronthaul in 5G Prototype With 28-GHz Millimeter wave,” J. Lightwave Technol. 36(2), 601–609 (2018).
[Crossref]

J. Liu, Y. Ye, L. Deng, L. Liu, Z. Li, F. Liu, Y. Zhou, J. Xia, and D. Liu, “Integrated four-channel directly modulated O-band optical transceiver for radio over fiber application,” Opt. Express 26(17), 21490–21500 (2018).
[Crossref] [PubMed]

2017 (2)

C. Browning, E. P. Martin, A. Farhang, and L. P. Barry, “60 GHz 5G Radio-Over-Fiber Using UF-OFDM With Optical Heterodyning,” IEEE Photonics Technol. Lett. 29(23), 2059–2062 (2017).
[Crossref]

M. Sung, S. H. Cho, H. S. Chung, S. M. Kim, and J. H. Lee, “Investigation of transmission performance in multi-IFoF based mobile fronthaul with dispersion-induced intermixing noise mitigation,” Opt. Express 25(8), 9346–9357 (2017).
[Crossref] [PubMed]

2016 (2)

C. Han, S. Cho, M. Sung, H. Chung, and J. Lee, “Clipping Distortion Suppression of Directly Modulated Multi-IF-over-Fiber Mobile Fronthaul Links Using Shunt Diode Predistorter,” ETRI J. 38(2), 227–234 (2016).
[Crossref]

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient Mobile Fronthaul via DSP-Based Channel Aggregation,” J. Lightwave Technol. 34(6), 1556–1564 (2016).
[Crossref]

2015 (1)

R. Waterhouse and D. Novak, “Realizing 5G,” IEEE Microw. Mag. 16(8), 84–92 (2015).
[Crossref]

2014 (2)

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five Disruptive Technology Directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-Gain, Low-Noise-Figure, and High-Linearity Analog Photonic Link Based on a High-Performance Photodetector,” J. Lightwave Technol. 32(21), 4187–4192 (2014).
[Crossref]

2013 (1)

J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-Wave Frequency Radio over Fiber Systems: A Survey,” IEEE Commun. Surv. Tutorials 15(4), 1593–1619 (2013).
[Crossref]

2012 (1)

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Aldaya, I.

J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-Wave Frequency Radio over Fiber Systems: A Survey,” IEEE Commun. Surv. Tutorials 15(4), 1593–1619 (2013).
[Crossref]

Aragon-Zavala, A.

J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-Wave Frequency Radio over Fiber Systems: A Survey,” IEEE Commun. Surv. Tutorials 15(4), 1593–1619 (2013).
[Crossref]

Barry, L. P.

C. Browning, E. P. Martin, A. Farhang, and L. P. Barry, “60 GHz 5G Radio-Over-Fiber Using UF-OFDM With Optical Heterodyning,” IEEE Photonics Technol. Lett. 29(23), 2059–2062 (2017).
[Crossref]

Beas, J.

J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-Wave Frequency Radio over Fiber Systems: A Survey,” IEEE Commun. Surv. Tutorials 15(4), 1593–1619 (2013).
[Crossref]

Beling, A.

X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-Gain, Low-Noise-Figure, and High-Linearity Analog Photonic Link Based on a High-Performance Photodetector,” J. Lightwave Technol. 32(21), 4187–4192 (2014).
[Crossref]

Boccardi, F.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five Disruptive Technology Directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Browning, C.

C. Browning, E. P. Martin, A. Farhang, and L. P. Barry, “60 GHz 5G Radio-Over-Fiber Using UF-OFDM With Optical Heterodyning,” IEEE Photonics Technol. Lett. 29(23), 2059–2062 (2017).
[Crossref]

Campbell, J. C.

X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-Gain, Low-Noise-Figure, and High-Linearity Analog Photonic Link Based on a High-Performance Photodetector,” J. Lightwave Technol. 32(21), 4187–4192 (2014).
[Crossref]

Campuzano, G.

J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-Wave Frequency Radio over Fiber Systems: A Survey,” IEEE Commun. Surv. Tutorials 15(4), 1593–1619 (2013).
[Crossref]

Castanon, G.

J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-Wave Frequency Radio over Fiber Systems: A Survey,” IEEE Commun. Surv. Tutorials 15(4), 1593–1619 (2013).
[Crossref]

Chand, N.

Chang, K.

S. Song, K. Chang, C. Yoon, and J. Chung, “Special Issue on 5G Communications and Experimental Trials with Heterogeneous and Agile Mobile networks,” ETRI J. 40(1), 7–9 (2018).
[Crossref]

Cho, S.

M. Sung, S. Cho, J. Kim, J. Lee, J. Lee, and H. Chung, “Demonstration of IFoF-Based Mobile Fronthaul in 5G Prototype With 28-GHz Millimeter wave,” J. Lightwave Technol. 36(2), 601–609 (2018).
[Crossref]

C. Han, S. Cho, M. Sung, H. Chung, and J. Lee, “Clipping Distortion Suppression of Directly Modulated Multi-IF-over-Fiber Mobile Fronthaul Links Using Shunt Diode Predistorter,” ETRI J. 38(2), 227–234 (2016).
[Crossref]

J. Kim, M. Sung, E. Kim, S. Cho, and J. Lee, “Experimental demonstration of analog IFoF-based seamless fiber-wireless interface for 5G indoor DAS supporting 8 FA and 2×2 MIMO configuration,” in Optical Fiber Communications Conference (2018), paper W4B.4.
[Crossref]

S. Cho, H. Park, H. Chung, K. Doo, S. Lee, and J. Lee, “Cost-effective Next Generation Mobile Fronthaul Architecture with Multi-IF Carrier Transmission Scheme,” in Optical Fiber Communications Conference, paper Tu2B (2014).
[Crossref]

Cho, S. H.

Chung, H.

M. Sung, S. Cho, J. Kim, J. Lee, J. Lee, and H. Chung, “Demonstration of IFoF-Based Mobile Fronthaul in 5G Prototype With 28-GHz Millimeter wave,” J. Lightwave Technol. 36(2), 601–609 (2018).
[Crossref]

C. Han, S. Cho, M. Sung, H. Chung, and J. Lee, “Clipping Distortion Suppression of Directly Modulated Multi-IF-over-Fiber Mobile Fronthaul Links Using Shunt Diode Predistorter,” ETRI J. 38(2), 227–234 (2016).
[Crossref]

S. Cho, H. Park, H. Chung, K. Doo, S. Lee, and J. Lee, “Cost-effective Next Generation Mobile Fronthaul Architecture with Multi-IF Carrier Transmission Scheme,” in Optical Fiber Communications Conference, paper Tu2B (2014).
[Crossref]

Chung, H. S.

Chung, J.

S. Song, K. Chang, C. Yoon, and J. Chung, “Special Issue on 5G Communications and Experimental Trials with Heterogeneous and Agile Mobile networks,” ETRI J. 40(1), 7–9 (2018).
[Crossref]

Chung, Y. C.

S. Ishimura, B. G. Kim, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-Over-Fiber Transmission With Parallel IM/PM Transmitter Overcoming Dispersion-Induced RF Power Fading for High-Capacity Mobile Fronthaul Links,” IEEE Photonics J. 10(1), 7900609 (2018).
[Crossref]

Deng, L.

Ding, Z.

J. Wang, S. Zhaob, X. Hu, E. Guan, Z. Ding, and Y. Yaob, “DDAS-DRoF Based a New In-Building Signal Coverage System Supporting Multiple Services,” in Proceedings of the 8th International Congress of Information and Communication Technology, 558–563 (2017).

Doo, K.

S. Cho, H. Park, H. Chung, K. Doo, S. Lee, and J. Lee, “Cost-effective Next Generation Mobile Fronthaul Architecture with Multi-IF Carrier Transmission Scheme,” in Optical Fiber Communications Conference, paper Tu2B (2014).
[Crossref]

Effenberger, F.

Farhang, A.

C. Browning, E. P. Martin, A. Farhang, and L. P. Barry, “60 GHz 5G Radio-Over-Fiber Using UF-OFDM With Optical Heterodyning,” IEEE Photonics Technol. Lett. 29(23), 2059–2062 (2017).
[Crossref]

Goudos, S.

D. Pliatsios, P. Sarigiannidis, S. Goudos, and G. K. Karagiannidis, “Realizing 5G vision through Cloud RAN: technologies, challenges, and trends,” EURASIP J. Wirel. Commun. Netw. 2018(1), 136 (2018).
[Crossref]

Guan, E.

J. Wang, S. Zhaob, X. Hu, E. Guan, Z. Ding, and Y. Yaob, “DDAS-DRoF Based a New In-Building Signal Coverage System Supporting Multiple Services,” in Proceedings of the 8th International Congress of Information and Communication Technology, 558–563 (2017).

Han, C.

C. Han, S. Cho, M. Sung, H. Chung, and J. Lee, “Clipping Distortion Suppression of Directly Modulated Multi-IF-over-Fiber Mobile Fronthaul Links Using Shunt Diode Predistorter,” ETRI J. 38(2), 227–234 (2016).
[Crossref]

Heath, R. W.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five Disruptive Technology Directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Hu, X.

J. Wang, S. Zhaob, X. Hu, E. Guan, Z. Ding, and Y. Yaob, “DDAS-DRoF Based a New In-Building Signal Coverage System Supporting Multiple Services,” in Proceedings of the 8th International Congress of Information and Communication Technology, 558–563 (2017).

Ishimura, S.

S. Ishimura, B. G. Kim, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-Over-Fiber Transmission With Parallel IM/PM Transmitter Overcoming Dispersion-Induced RF Power Fading for High-Capacity Mobile Fronthaul Links,” IEEE Photonics J. 10(1), 7900609 (2018).
[Crossref]

Karagiannidis, G. K.

D. Pliatsios, P. Sarigiannidis, S. Goudos, and G. K. Karagiannidis, “Realizing 5G vision through Cloud RAN: technologies, challenges, and trends,” EURASIP J. Wirel. Commun. Netw. 2018(1), 136 (2018).
[Crossref]

Kim, B. G.

S. Ishimura, B. G. Kim, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-Over-Fiber Transmission With Parallel IM/PM Transmitter Overcoming Dispersion-Induced RF Power Fading for High-Capacity Mobile Fronthaul Links,” IEEE Photonics J. 10(1), 7900609 (2018).
[Crossref]

Kim, E.

J. Kim, M. Sung, E. Kim, S. Cho, and J. Lee, “Experimental demonstration of analog IFoF-based seamless fiber-wireless interface for 5G indoor DAS supporting 8 FA and 2×2 MIMO configuration,” in Optical Fiber Communications Conference (2018), paper W4B.4.
[Crossref]

Kim, H.

S. Ishimura, B. G. Kim, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-Over-Fiber Transmission With Parallel IM/PM Transmitter Overcoming Dispersion-Induced RF Power Fading for High-Capacity Mobile Fronthaul Links,” IEEE Photonics J. 10(1), 7900609 (2018).
[Crossref]

Kim, J.

M. Sung, S. Cho, J. Kim, J. Lee, J. Lee, and H. Chung, “Demonstration of IFoF-Based Mobile Fronthaul in 5G Prototype With 28-GHz Millimeter wave,” J. Lightwave Technol. 36(2), 601–609 (2018).
[Crossref]

J. Kim, M. Sung, E. Kim, S. Cho, and J. Lee, “Experimental demonstration of analog IFoF-based seamless fiber-wireless interface for 5G indoor DAS supporting 8 FA and 2×2 MIMO configuration,” in Optical Fiber Communications Conference (2018), paper W4B.4.
[Crossref]

Kim, S. M.

Lee, J.

M. Sung, S. Cho, J. Kim, J. Lee, J. Lee, and H. Chung, “Demonstration of IFoF-Based Mobile Fronthaul in 5G Prototype With 28-GHz Millimeter wave,” J. Lightwave Technol. 36(2), 601–609 (2018).
[Crossref]

M. Sung, S. Cho, J. Kim, J. Lee, J. Lee, and H. Chung, “Demonstration of IFoF-Based Mobile Fronthaul in 5G Prototype With 28-GHz Millimeter wave,” J. Lightwave Technol. 36(2), 601–609 (2018).
[Crossref]

C. Han, S. Cho, M. Sung, H. Chung, and J. Lee, “Clipping Distortion Suppression of Directly Modulated Multi-IF-over-Fiber Mobile Fronthaul Links Using Shunt Diode Predistorter,” ETRI J. 38(2), 227–234 (2016).
[Crossref]

J. Kim, M. Sung, E. Kim, S. Cho, and J. Lee, “Experimental demonstration of analog IFoF-based seamless fiber-wireless interface for 5G indoor DAS supporting 8 FA and 2×2 MIMO configuration,” in Optical Fiber Communications Conference (2018), paper W4B.4.
[Crossref]

S. Cho, H. Park, H. Chung, K. Doo, S. Lee, and J. Lee, “Cost-effective Next Generation Mobile Fronthaul Architecture with Multi-IF Carrier Transmission Scheme,” in Optical Fiber Communications Conference, paper Tu2B (2014).
[Crossref]

Lee, J. H.

Lee, S.

S. Cho, H. Park, H. Chung, K. Doo, S. Lee, and J. Lee, “Cost-effective Next Generation Mobile Fronthaul Architecture with Multi-IF Carrier Transmission Scheme,” in Optical Fiber Communications Conference, paper Tu2B (2014).
[Crossref]

Li, K.

X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-Gain, Low-Noise-Figure, and High-Linearity Analog Photonic Link Based on a High-Performance Photodetector,” J. Lightwave Technol. 32(21), 4187–4192 (2014).
[Crossref]

Li, Z.

Liu, D.

Liu, F.

Liu, J.

Liu, L.

Liu, X.

Liu, Y.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Lozano, A.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five Disruptive Technology Directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Man, J. W.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Martin, E. P.

C. Browning, E. P. Martin, A. Farhang, and L. P. Barry, “60 GHz 5G Radio-Over-Fiber Using UF-OFDM With Optical Heterodyning,” IEEE Photonics Technol. Lett. 29(23), 2059–2062 (2017).
[Crossref]

Marzetta, T. L.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five Disruptive Technology Directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Nishimura, K.

S. Ishimura, B. G. Kim, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-Over-Fiber Transmission With Parallel IM/PM Transmitter Overcoming Dispersion-Induced RF Power Fading for High-Capacity Mobile Fronthaul Links,” IEEE Photonics J. 10(1), 7900609 (2018).
[Crossref]

Novak, D.

R. Waterhouse and D. Novak, “Realizing 5G,” IEEE Microw. Mag. 16(8), 84–92 (2015).
[Crossref]

Park, H.

S. Cho, H. Park, H. Chung, K. Doo, S. Lee, and J. Lee, “Cost-effective Next Generation Mobile Fronthaul Architecture with Multi-IF Carrier Transmission Scheme,” in Optical Fiber Communications Conference, paper Tu2B (2014).
[Crossref]

Pliatsios, D.

D. Pliatsios, P. Sarigiannidis, S. Goudos, and G. K. Karagiannidis, “Realizing 5G vision through Cloud RAN: technologies, challenges, and trends,” EURASIP J. Wirel. Commun. Netw. 2018(1), 136 (2018).
[Crossref]

Popovski, P.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five Disruptive Technology Directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Sarigiannidis, P.

D. Pliatsios, P. Sarigiannidis, S. Goudos, and G. K. Karagiannidis, “Realizing 5G vision through Cloud RAN: technologies, challenges, and trends,” EURASIP J. Wirel. Commun. Netw. 2018(1), 136 (2018).
[Crossref]

Song, S.

S. Song, K. Chang, C. Yoon, and J. Chung, “Special Issue on 5G Communications and Experimental Trials with Heterogeneous and Agile Mobile networks,” ETRI J. 40(1), 7–9 (2018).
[Crossref]

Sung, M.

M. Sung, S. Cho, J. Kim, J. Lee, J. Lee, and H. Chung, “Demonstration of IFoF-Based Mobile Fronthaul in 5G Prototype With 28-GHz Millimeter wave,” J. Lightwave Technol. 36(2), 601–609 (2018).
[Crossref]

M. Sung, S. H. Cho, H. S. Chung, S. M. Kim, and J. H. Lee, “Investigation of transmission performance in multi-IFoF based mobile fronthaul with dispersion-induced intermixing noise mitigation,” Opt. Express 25(8), 9346–9357 (2017).
[Crossref] [PubMed]

C. Han, S. Cho, M. Sung, H. Chung, and J. Lee, “Clipping Distortion Suppression of Directly Modulated Multi-IF-over-Fiber Mobile Fronthaul Links Using Shunt Diode Predistorter,” ETRI J. 38(2), 227–234 (2016).
[Crossref]

J. Kim, M. Sung, E. Kim, S. Cho, and J. Lee, “Experimental demonstration of analog IFoF-based seamless fiber-wireless interface for 5G indoor DAS supporting 8 FA and 2×2 MIMO configuration,” in Optical Fiber Communications Conference (2018), paper W4B.4.
[Crossref]

Suzuki, M.

S. Ishimura, B. G. Kim, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-Over-Fiber Transmission With Parallel IM/PM Transmitter Overcoming Dispersion-Induced RF Power Fading for High-Capacity Mobile Fronthaul Links,” IEEE Photonics J. 10(1), 7900609 (2018).
[Crossref]

Tanaka, K.

S. Ishimura, B. G. Kim, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-Over-Fiber Transmission With Parallel IM/PM Transmitter Overcoming Dispersion-Induced RF Power Fading for High-Capacity Mobile Fronthaul Links,” IEEE Photonics J. 10(1), 7900609 (2018).
[Crossref]

Wang, B. J.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Wang, J.

J. Wang, S. Zhaob, X. Hu, E. Guan, Z. Ding, and Y. Yaob, “DDAS-DRoF Based a New In-Building Signal Coverage System Supporting Multiple Services,” in Proceedings of the 8th International Congress of Information and Communication Technology, 558–563 (2017).

Wang, W.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Wang, X.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Waterhouse, R.

R. Waterhouse and D. Novak, “Realizing 5G,” IEEE Microw. Mag. 16(8), 84–92 (2015).
[Crossref]

Xia, J.

Xie, L.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Xie, X.

X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-Gain, Low-Noise-Figure, and High-Linearity Analog Photonic Link Based on a High-Performance Photodetector,” J. Lightwave Technol. 32(21), 4187–4192 (2014).
[Crossref]

Yaob, Y.

J. Wang, S. Zhaob, X. Hu, E. Guan, Z. Ding, and Y. Yaob, “DDAS-DRoF Based a New In-Building Signal Coverage System Supporting Multiple Services,” in Proceedings of the 8th International Congress of Information and Communication Technology, 558–563 (2017).

Ye, Y.

Yoon, C.

S. Song, K. Chang, C. Yoon, and J. Chung, “Special Issue on 5G Communications and Experimental Trials with Heterogeneous and Agile Mobile networks,” ETRI J. 40(1), 7–9 (2018).
[Crossref]

Yuan, H. Q.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Zeng, H.

Zhao, L. J.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Zhaob, S.

J. Wang, S. Zhaob, X. Hu, E. Guan, Z. Ding, and Y. Yaob, “DDAS-DRoF Based a New In-Building Signal Coverage System Supporting Multiple Services,” in Proceedings of the 8th International Congress of Information and Communication Technology, 558–563 (2017).

Zhou, Q.

X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-Gain, Low-Noise-Figure, and High-Linearity Analog Photonic Link Based on a High-Performance Photodetector,” J. Lightwave Technol. 32(21), 4187–4192 (2014).
[Crossref]

Zhou, Y.

Zhu, H. L.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

Zhu, N. H.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

ETRI J. (2)

S. Song, K. Chang, C. Yoon, and J. Chung, “Special Issue on 5G Communications and Experimental Trials with Heterogeneous and Agile Mobile networks,” ETRI J. 40(1), 7–9 (2018).
[Crossref]

C. Han, S. Cho, M. Sung, H. Chung, and J. Lee, “Clipping Distortion Suppression of Directly Modulated Multi-IF-over-Fiber Mobile Fronthaul Links Using Shunt Diode Predistorter,” ETRI J. 38(2), 227–234 (2016).
[Crossref]

EURASIP J. Wirel. Commun. Netw. (1)

D. Pliatsios, P. Sarigiannidis, S. Goudos, and G. K. Karagiannidis, “Realizing 5G vision through Cloud RAN: technologies, challenges, and trends,” EURASIP J. Wirel. Commun. Netw. 2018(1), 136 (2018).
[Crossref]

IEEE Commun. Mag. (1)

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five Disruptive Technology Directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

IEEE Commun. Surv. Tutorials (1)

J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-Wave Frequency Radio over Fiber Systems: A Survey,” IEEE Commun. Surv. Tutorials 15(4), 1593–1619 (2013).
[Crossref]

IEEE Microw. Mag. (1)

R. Waterhouse and D. Novak, “Realizing 5G,” IEEE Microw. Mag. 16(8), 84–92 (2015).
[Crossref]

IEEE Photonics J. (1)

S. Ishimura, B. G. Kim, K. Tanaka, K. Nishimura, H. Kim, Y. C. Chung, and M. Suzuki, “Broadband IF-Over-Fiber Transmission With Parallel IM/PM Transmitter Overcoming Dispersion-Induced RF Power Fading for High-Capacity Mobile Fronthaul Links,” IEEE Photonics J. 10(1), 7900609 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photonics Technol. Lett. 24(5), 407–409 (2012).
[Crossref]

C. Browning, E. P. Martin, A. Farhang, and L. P. Barry, “60 GHz 5G Radio-Over-Fiber Using UF-OFDM With Optical Heterodyning,” IEEE Photonics Technol. Lett. 29(23), 2059–2062 (2017).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (2)

Other (6)

J. Kim, M. Sung, E. Kim, S. Cho, and J. Lee, “Experimental demonstration of analog IFoF-based seamless fiber-wireless interface for 5G indoor DAS supporting 8 FA and 2×2 MIMO configuration,” in Optical Fiber Communications Conference (2018), paper W4B.4.
[Crossref]

M. Crisp, R. V. Penty, and I. H. White, “Wideband Radio over Fiber Distributed Antenna Systems for Energy Efficient In-Building Wireless Communications,” in Proceedings of the 71st IEEE Vehicular Technology Conference, 11389883 (2010).

J. Wang, S. Zhaob, X. Hu, E. Guan, Z. Ding, and Y. Yaob, “DDAS-DRoF Based a New In-Building Signal Coverage System Supporting Multiple Services,” in Proceedings of the 8th International Congress of Information and Communication Technology, 558–563 (2017).

eCPRI Specification V1.1, “Commom Public Radio Interface: eCPRI Interface Specification,” Jan. 2018.

S. Cho, H. Park, H. Chung, K. Doo, S. Lee, and J. Lee, “Cost-effective Next Generation Mobile Fronthaul Architecture with Multi-IF Carrier Transmission Scheme,” in Optical Fiber Communications Conference, paper Tu2B (2014).
[Crossref]

3GPP TS 36.141 v. 10.1.0, “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) conformance testing,” Technical Specification Group Radio Access Network, Rel. 10, Jan. 2011.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 IFoF-based analog indoor distributed antenna system (DAS) supporting 4 × 4 MIMO configuration. (Inset-i: temporal waveforms of TDD-synchronization signal, downlink signal, and uplink signal, Inset-ii: 5G BBU prototype, Inset-iii: MHU, Inset-iv: ROU, Inset-v: Antennas and 5G terminal)
Fig. 2
Fig. 2 Analog optical transceiver (TRx) modules for the IFoF-based indoor distributed antenna system (DAS) application: (a) MHU Analog TRx (MAT), (b) ROU Analog TRx (RAT).
Fig. 3
Fig. 3 (a) Measured optical spectra of analog and digital signals of the IFoF-based analog indoor DAS and (b) measured electrical signal spectrum and error vector magnitude (EVM) of each FA of the input 5G mobile signal.
Fig. 4
Fig. 4 Measured (a) frequency response (S21) and (b) power deviation of transmitted 8 frequency allocation (FA) of IF-based mobile signals in optical back-to-back configuration.
Fig. 5
Fig. 5 Measured (a) input (S11) and (b) output (S22) return losses of the analog optical link for IFoF based indoor DAS in optical back-to-back configuration.
Fig. 6
Fig. 6 Measured noise and nonlinear characteristics of (a) uplink#1 (UL#1) and (b) downlink#1 (DL#1). (IMD: Intermodulation Distortion, IIP3: 3rd-order Input Intercept Point)
Fig. 7
Fig. 7 Measured error vector magnitude (EVM) as a function of optical modulation index (OMI) for various temperatures (−20~60 °C) of the analog optical transceivers (TRx): (a) uplink#1 (UL#1), (b) uplink#2 (UL#2), (c) downlink#1 (DL#1), and (d) downlink#2 (DL#2).
Fig. 8
Fig. 8 Measured crosstalk (a) between the uplink#1 (UL#1) and the uplink#2 (UL#2), and (b) between the downlink#1 (DL#1) and the downlink #2 (DL#2).
Fig. 9
Fig. 9 Measured error vector magnitude (EVM) as a function of the received optical power for optical back-to-back and 5-km single mode fiber (SMF) transmission: (a) uplink#1 (UL#1), (b) uplink#2 (UL#2), (c) downlink#1 (DL#1), and (d) downlink#2 (DL#2).
Fig. 10
Fig. 10 Measured phase noise of the 100 MHz clock signal at the 5G baseband unit (BBU, black curve) and at the remote mm-wave unit (RmmU, blue curve).
Fig. 11
Fig. 11 Real-time demonstration of 5G mobile service with the analog IFoF-based indoor distributed antenna system (DAS): (a) measured real-time and peak data rate, (b) measured latency, and (c) snapshot of 4K UHD video streaming

Tables (2)

Tables Icon

Table 1 Error vector magnitude (EVM) and constellations at the 4 antennas of the 5G terminal of the IFoF-based analog indoor DAS supporting 4 × 4 MIMO configuration.

Tables Icon

Table 2 Comparison of various analog RFoF/IFoF technologies

Metrics