Abstract

We demonstrate a novel design and fabrication process for fiber-tip Fabry-Perot interferometric (FTFPI) pressure sensors which eliminates fringe envelopes in the reflection spectrum. The outer facet reflectivity and thickness of the FTFPI silica diaphragm were reduced through orthogonal rough-polishing of the fiber end facet. A silica FTFPI sample with a diaphragm thickness of ~10.7 μm was produced and tested under hydraulic pressures ranging from 0 to 30 MPa. The proposed sensor achieved a pressure sensitivity of −284 pm/MPa at 1555 nm and could be a valuable new tool for high pressure measurements.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sub-micron silica diaphragm-based fiber-tip Fabry–Perot interferometer for pressure measurement

Changrui Liao, Shen Liu, Lei Xu, Chao Wang, Yiping Wang, Zhengyong Li, Qiao Wang, and D. N. Wang
Opt. Lett. 39(10) 2827-2830 (2014)

All-fiber high-sensitivity pressure sensor with SiO2 diaphragm

Denis Donlagic and Edvard Cibula
Opt. Lett. 30(16) 2071-2073 (2005)

Fiber-tip gas pressure sensor based on dual capillaries

Ben Xu, Chao Wang, D. N. Wang, Yaming Liu, and Yi Li
Opt. Express 23(18) 23484-23492 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
    [Crossref] [PubMed]
  2. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
    [Crossref] [PubMed]
  3. K. Yang, J. He, Y. Wang, S. Liu, C. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry-Perot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
    [Crossref]
  4. J. R. Zhao, X. G. Huang, W. X. He, and J. H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor based on fresnel reflection modulated by Fabry-Perot interference,” J. Lightwave Technol. 28(19), 2799–2803 (2010).
    [Crossref]
  5. M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
    [Crossref] [PubMed]
  6. Z. Zhang, C. Liao, J. Tang, Z. Bai, K. Guo, M. Hou, J. He, Y. Wang, S. Liu, F. Zhang, and Y. P. Wang, “High-sensitivity gas-pressure sensor based on fiber-tip PVC diaphragm Fabry-Perot interferometer,” J. Lightwave Technol. 35(18), 4067–4071 (2017).
    [Crossref]
  7. S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
    [Crossref] [PubMed]
  8. D. Donlagic and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett. 30(16), 2071–2073 (2005).
    [Crossref] [PubMed]
  9. Y. Z. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 17(2), 447–449 (2005).
    [Crossref]
  10. W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, “Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm,” Opt. Express 18(9), 9006–9014 (2010).
    [Crossref] [PubMed]
  11. J. C. Xu, G. Pickrell, X. W. Wang, W. Peng, K. Cooper, and A. B. Wang, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” IEEE Photonics Technol. Lett. 17(4), 870–872 (2005).
    [Crossref]
  12. Y. Z. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, “High-temperature fiber-tip pressure sensor,” J. Lightwave Technol. 24(2), 861–869 (2006).
    [Crossref]
  13. S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
    [Crossref] [PubMed]
  14. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett. 31(7), 885–887 (2006).
    [Crossref] [PubMed]
  15. B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
    [Crossref]
  16. S. C. Warren-Smith, R. M. Andre, J. Dellith, T. Eschrich, M. Becker, and H. Bartelt, “Sensing with ultra-short Fabry-Perot cavities written into optical micro-fibers,” Sens. Actuators B Chem. 244, 1016–1021 (2017).
    [Crossref]
  17. J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
    [Crossref] [PubMed]
  18. W. V. Sorin and D. M. Baney, “Multiplexed sensing using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 7(8), 917–919 (1995).
    [Crossref]
  19. Y. P. Wang, J. P. Chen, X. W. Li, X. H. Zhang, J. X. Hong, and A. L. Ye, “Simultaneous measurement of various optical parameters in a multilayer optical waveguide by a Michelson precision reflectometer,” Opt. Lett. 30(9), 979–981 (2005).
    [Crossref] [PubMed]
  20. F. Shen and A. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers,” Appl. Opt. 44(25), 5206–5214 (2005).
    [Crossref] [PubMed]
  21. T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71(3), 1275–1278 (2000).
    [Crossref]
  22. Y. Jiang, “Fourier transform white-light interferometry for the measurement of Fiber-Optic Extrinsic Fabry–Pérot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
    [Crossref]
  23. X. Z. Xu, Y. Wang, S. Liu, C. R. Liao, J. He, J. R. Lian, and Y. P. Wang, “Growth dynamics of ZnO nanowire on a fiber-tip air bubble,” Opt. Mater. Express 7(9), 3433–3440 (2017).
    [Crossref]
  24. J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
    [Crossref]
  25. C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
    [Crossref] [PubMed]
  26. S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
    [Crossref] [PubMed]
  27. M. Kihara, S. Nagasawa, and T. Tanifuji, “Return loss characteristics of optical fiber connectors,” J. Lightwave Technol. 14(9), 1986–1991 (1996).
    [Crossref]
  28. S. Nagasawa, Y. Yokoyama, F. Ashiya, and T. Satake, “A high-performance single-mode multifiber connector using oblique and direct endface contact between multiple fibers arranged in a plastic ferrule,” IEEE Photonics Technol. Lett. 3(10), 937–939 (1991).
    [Crossref]
  29. M. Kihara, S. Nagasawa, and T. Tanifuji, “Design and performance of an angled physical contact type multifiber connector,” J. Lightwave Technol. 14(4), 542–548 (1996).
    [Crossref]

2017 (5)

Z. Zhang, C. Liao, J. Tang, Z. Bai, K. Guo, M. Hou, J. He, Y. Wang, S. Liu, F. Zhang, and Y. P. Wang, “High-sensitivity gas-pressure sensor based on fiber-tip PVC diaphragm Fabry-Perot interferometer,” J. Lightwave Technol. 35(18), 4067–4071 (2017).
[Crossref]

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

S. C. Warren-Smith, R. M. Andre, J. Dellith, T. Eschrich, M. Becker, and H. Bartelt, “Sensing with ultra-short Fabry-Perot cavities written into optical micro-fibers,” Sens. Actuators B Chem. 244, 1016–1021 (2017).
[Crossref]

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

X. Z. Xu, Y. Wang, S. Liu, C. R. Liao, J. He, J. R. Lian, and Y. P. Wang, “Growth dynamics of ZnO nanowire on a fiber-tip air bubble,” Opt. Mater. Express 7(9), 3433–3440 (2017).
[Crossref]

2015 (3)

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
[Crossref] [PubMed]

K. Yang, J. He, Y. Wang, S. Liu, C. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry-Perot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

2014 (2)

2012 (1)

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

2011 (2)

M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
[Crossref] [PubMed]

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

2010 (2)

2008 (1)

Y. Jiang, “Fourier transform white-light interferometry for the measurement of Fiber-Optic Extrinsic Fabry–Pérot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

2006 (2)

2005 (6)

2000 (1)

T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71(3), 1275–1278 (2000).
[Crossref]

1996 (2)

M. Kihara, S. Nagasawa, and T. Tanifuji, “Return loss characteristics of optical fiber connectors,” J. Lightwave Technol. 14(9), 1986–1991 (1996).
[Crossref]

M. Kihara, S. Nagasawa, and T. Tanifuji, “Design and performance of an angled physical contact type multifiber connector,” J. Lightwave Technol. 14(4), 542–548 (1996).
[Crossref]

1995 (1)

W. V. Sorin and D. M. Baney, “Multiplexed sensing using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 7(8), 917–919 (1995).
[Crossref]

1991 (1)

S. Nagasawa, Y. Yokoyama, F. Ashiya, and T. Satake, “A high-performance single-mode multifiber connector using oblique and direct endface contact between multiple fibers arranged in a plastic ferrule,” IEEE Photonics Technol. Lett. 3(10), 937–939 (1991).
[Crossref]

Andre, R. M.

S. C. Warren-Smith, R. M. Andre, J. Dellith, T. Eschrich, M. Becker, and H. Bartelt, “Sensing with ultra-short Fabry-Perot cavities written into optical micro-fibers,” Sens. Actuators B Chem. 244, 1016–1021 (2017).
[Crossref]

Ashiya, F.

S. Nagasawa, Y. Yokoyama, F. Ashiya, and T. Satake, “A high-performance single-mode multifiber connector using oblique and direct endface contact between multiple fibers arranged in a plastic ferrule,” IEEE Photonics Technol. Lett. 3(10), 937–939 (1991).
[Crossref]

Bai, Z.

Baney, D. M.

W. V. Sorin and D. M. Baney, “Multiplexed sensing using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 7(8), 917–919 (1995).
[Crossref]

Bartelt, H.

S. C. Warren-Smith, R. M. Andre, J. Dellith, T. Eschrich, M. Becker, and H. Bartelt, “Sensing with ultra-short Fabry-Perot cavities written into optical micro-fibers,” Sens. Actuators B Chem. 244, 1016–1021 (2017).
[Crossref]

Becker, M.

S. C. Warren-Smith, R. M. Andre, J. Dellith, T. Eschrich, M. Becker, and H. Bartelt, “Sensing with ultra-short Fabry-Perot cavities written into optical micro-fibers,” Sens. Actuators B Chem. 244, 1016–1021 (2017).
[Crossref]

Chen, J. H.

Chen, J. P.

Choi, H. Y.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Cibula, E.

Coelho, L.

Cooper, K.

J. C. Xu, G. Pickrell, X. W. Wang, W. Peng, K. Cooper, and A. B. Wang, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” IEEE Photonics Technol. Lett. 17(4), 870–872 (2005).
[Crossref]

Cooper, K. L.

Dellith, J.

S. C. Warren-Smith, R. M. Andre, J. Dellith, T. Eschrich, M. Becker, and H. Bartelt, “Sensing with ultra-short Fabry-Perot cavities written into optical micro-fibers,” Sens. Actuators B Chem. 244, 1016–1021 (2017).
[Crossref]

Donlagic, D.

Eom, J. B.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Eschrich, T.

S. C. Warren-Smith, R. M. Andre, J. Dellith, T. Eschrich, M. Becker, and H. Bartelt, “Sensing with ultra-short Fabry-Perot cavities written into optical micro-fibers,” Sens. Actuators B Chem. 244, 1016–1021 (2017).
[Crossref]

Fernando, G. F.

T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71(3), 1275–1278 (2000).
[Crossref]

Ferreira, M. S.

Frazão, O.

Fu, C.

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

Guo, K.

He, J.

Z. Zhang, C. Liao, J. Tang, Z. Bai, K. Guo, M. Hou, J. He, Y. Wang, S. Liu, F. Zhang, and Y. P. Wang, “High-sensitivity gas-pressure sensor based on fiber-tip PVC diaphragm Fabry-Perot interferometer,” J. Lightwave Technol. 35(18), 4067–4071 (2017).
[Crossref]

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

X. Z. Xu, Y. Wang, S. Liu, C. R. Liao, J. He, J. R. Lian, and Y. P. Wang, “Growth dynamics of ZnO nanowire on a fiber-tip air bubble,” Opt. Mater. Express 7(9), 3433–3440 (2017).
[Crossref]

K. Yang, J. He, Y. Wang, S. Liu, C. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry-Perot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

He, W. X.

Hong, J. X.

Hou, M.

Huang, X. G.

Jiang, Y.

Y. Jiang, “Fourier transform white-light interferometry for the measurement of Fiber-Optic Extrinsic Fabry–Pérot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

Jin, L.

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Jin, P.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Jin, W.

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Ju, J.

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Kihara, M.

M. Kihara, S. Nagasawa, and T. Tanifuji, “Return loss characteristics of optical fiber connectors,” J. Lightwave Technol. 14(9), 1986–1991 (1996).
[Crossref]

M. Kihara, S. Nagasawa, and T. Tanifuji, “Design and performance of an angled physical contact type multifiber connector,” J. Lightwave Technol. 14(4), 542–548 (1996).
[Crossref]

Kim, M. J.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Kim, Y. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Kobelke, J.

Lee, B. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Li, X. W.

Li, Z.

Li, Z. Y.

K. Yang, J. He, Y. Wang, S. Liu, C. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry-Perot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

Lian, J. R.

Liao, C.

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

Z. Zhang, C. Liao, J. Tang, Z. Bai, K. Guo, M. Hou, J. He, Y. Wang, S. Liu, F. Zhang, and Y. P. Wang, “High-sensitivity gas-pressure sensor based on fiber-tip PVC diaphragm Fabry-Perot interferometer,” J. Lightwave Technol. 35(18), 4067–4071 (2017).
[Crossref]

K. Yang, J. He, Y. Wang, S. Liu, C. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry-Perot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Liao, C. R.

Lin, J.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Liu, B.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Liu, H.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Liu, S.

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

X. Z. Xu, Y. Wang, S. Liu, C. R. Liao, J. He, J. R. Lian, and Y. P. Wang, “Growth dynamics of ZnO nanowire on a fiber-tip air bubble,” Opt. Mater. Express 7(9), 3433–3440 (2017).
[Crossref]

Z. Zhang, C. Liao, J. Tang, Z. Bai, K. Guo, M. Hou, J. He, Y. Wang, S. Liu, F. Zhang, and Y. P. Wang, “High-sensitivity gas-pressure sensor based on fiber-tip PVC diaphragm Fabry-Perot interferometer,” J. Lightwave Technol. 35(18), 4067–4071 (2017).
[Crossref]

K. Yang, J. He, Y. Wang, S. Liu, C. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry-Perot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

Liu, T.

T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71(3), 1275–1278 (2000).
[Crossref]

Ma, J.

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Ma, Y.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Nagasawa, S.

M. Kihara, S. Nagasawa, and T. Tanifuji, “Return loss characteristics of optical fiber connectors,” J. Lightwave Technol. 14(9), 1986–1991 (1996).
[Crossref]

M. Kihara, S. Nagasawa, and T. Tanifuji, “Design and performance of an angled physical contact type multifiber connector,” J. Lightwave Technol. 14(4), 542–548 (1996).
[Crossref]

S. Nagasawa, Y. Yokoyama, F. Ashiya, and T. Satake, “A high-performance single-mode multifiber connector using oblique and direct endface contact between multiple fibers arranged in a plastic ferrule,” IEEE Photonics Technol. Lett. 3(10), 937–939 (1991).
[Crossref]

Niezrecki, C.

Park, K. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Peng, W.

J. C. Xu, G. Pickrell, X. W. Wang, W. Peng, K. Cooper, and A. B. Wang, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” IEEE Photonics Technol. Lett. 17(4), 870–872 (2005).
[Crossref]

Pickrell, G.

J. C. Xu, G. Pickrell, X. W. Wang, W. Peng, K. Cooper, and A. B. Wang, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” IEEE Photonics Technol. Lett. 17(4), 870–872 (2005).
[Crossref]

Pickrell, G. R.

Qu, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Quan, M.

Rho, B. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Santos, J. L.

Satake, T.

S. Nagasawa, Y. Yokoyama, F. Ashiya, and T. Satake, “A high-performance single-mode multifiber connector using oblique and direct endface contact between multiple fibers arranged in a plastic ferrule,” IEEE Photonics Technol. Lett. 3(10), 937–939 (1991).
[Crossref]

Schuster, K.

Shen, F.

Sorin, W. V.

W. V. Sorin and D. M. Baney, “Multiplexed sensing using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 7(8), 917–919 (1995).
[Crossref]

Sun, B.

K. Yang, J. He, Y. Wang, S. Liu, C. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry-Perot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Tang, J.

Tanifuji, T.

M. Kihara, S. Nagasawa, and T. Tanifuji, “Design and performance of an angled physical contact type multifiber connector,” J. Lightwave Technol. 14(4), 542–548 (1996).
[Crossref]

M. Kihara, S. Nagasawa, and T. Tanifuji, “Return loss characteristics of optical fiber connectors,” J. Lightwave Technol. 14(9), 1986–1991 (1996).
[Crossref]

Tian, J.

Tian, Y.

Wang, A.

Wang, A. B.

Y. Z. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 17(2), 447–449 (2005).
[Crossref]

J. C. Xu, G. Pickrell, X. W. Wang, W. Peng, K. Cooper, and A. B. Wang, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” IEEE Photonics Technol. Lett. 17(4), 870–872 (2005).
[Crossref]

Wang, C.

Wang, D. N.

Wang, G.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Wang, Q.

Wang, W.

Wang, X.

Wang, X. W.

J. C. Xu, G. Pickrell, X. W. Wang, W. Peng, K. Cooper, and A. B. Wang, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” IEEE Photonics Technol. Lett. 17(4), 870–872 (2005).
[Crossref]

Wang, Y.

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

X. Z. Xu, Y. Wang, S. Liu, C. R. Liao, J. He, J. R. Lian, and Y. P. Wang, “Growth dynamics of ZnO nanowire on a fiber-tip air bubble,” Opt. Mater. Express 7(9), 3433–3440 (2017).
[Crossref]

Z. Zhang, C. Liao, J. Tang, Z. Bai, K. Guo, M. Hou, J. He, Y. Wang, S. Liu, F. Zhang, and Y. P. Wang, “High-sensitivity gas-pressure sensor based on fiber-tip PVC diaphragm Fabry-Perot interferometer,” J. Lightwave Technol. 35(18), 4067–4071 (2017).
[Crossref]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

K. Yang, J. He, Y. Wang, S. Liu, C. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry-Perot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Wang, Y. P.

Warren-Smith, S. C.

S. C. Warren-Smith, R. M. Andre, J. Dellith, T. Eschrich, M. Becker, and H. Bartelt, “Sensing with ultra-short Fabry-Perot cavities written into optical micro-fibers,” Sens. Actuators B Chem. 244, 1016–1021 (2017).
[Crossref]

Wu, N.

Xu, J.

Xu, J. C.

J. C. Xu, G. Pickrell, X. W. Wang, W. Peng, K. Cooper, and A. B. Wang, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” IEEE Photonics Technol. Lett. 17(4), 870–872 (2005).
[Crossref]

Xu, L.

Xu, X. Z.

Yan, L.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Yang, K.

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

K. Yang, J. He, Y. Wang, S. Liu, C. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry-Perot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Yao, Y.

Ye, A. L.

Yin, G.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Yin, G. L.

K. Yang, J. He, Y. Wang, S. Liu, C. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry-Perot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

Yokoyama, Y.

S. Nagasawa, Y. Yokoyama, F. Ashiya, and T. Satake, “A high-performance single-mode multifiber connector using oblique and direct endface contact between multiple fibers arranged in a plastic ferrule,” IEEE Photonics Technol. Lett. 3(10), 937–939 (1991).
[Crossref]

Zhang, F.

Zhang, X. H.

Zhang, Z.

Zhao, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Zhao, J. R.

Zhong, X.

Zhou, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Zhu, Y.

Zhu, Y. Z.

Y. Z. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, “High-temperature fiber-tip pressure sensor,” J. Lightwave Technol. 24(2), 861–869 (2006).
[Crossref]

Y. Z. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 17(2), 447–449 (2005).
[Crossref]

Appl. Opt. (1)

IEEE Photonics J. (1)

K. Yang, J. He, Y. Wang, S. Liu, C. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry-Perot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (6)

Y. Z. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 17(2), 447–449 (2005).
[Crossref]

J. C. Xu, G. Pickrell, X. W. Wang, W. Peng, K. Cooper, and A. B. Wang, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” IEEE Photonics Technol. Lett. 17(4), 870–872 (2005).
[Crossref]

W. V. Sorin and D. M. Baney, “Multiplexed sensing using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 7(8), 917–919 (1995).
[Crossref]

Y. Jiang, “Fourier transform white-light interferometry for the measurement of Fiber-Optic Extrinsic Fabry–Pérot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

S. Nagasawa, Y. Yokoyama, F. Ashiya, and T. Satake, “A high-performance single-mode multifiber connector using oblique and direct endface contact between multiple fibers arranged in a plastic ferrule,” IEEE Photonics Technol. Lett. 3(10), 937–939 (1991).
[Crossref]

J. Lightwave Technol. (5)

Opt. Commun. (1)

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (8)

M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
[Crossref] [PubMed]

M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
[Crossref] [PubMed]

Y. P. Wang, J. P. Chen, X. W. Li, X. H. Zhang, J. X. Hong, and A. L. Ye, “Simultaneous measurement of various optical parameters in a multilayer optical waveguide by a Michelson precision reflectometer,” Opt. Lett. 30(9), 979–981 (2005).
[Crossref] [PubMed]

D. Donlagic and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett. 30(16), 2071–2073 (2005).
[Crossref] [PubMed]

X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett. 31(7), 885–887 (2006).
[Crossref] [PubMed]

J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
[Crossref] [PubMed]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Rev. Sci. Instrum. (1)

T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71(3), 1275–1278 (2000).
[Crossref]

Sci. Rep. (2)

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

S. C. Warren-Smith, R. M. Andre, J. Dellith, T. Eschrich, M. Becker, and H. Bartelt, “Sensing with ultra-short Fabry-Perot cavities written into optical micro-fibers,” Sens. Actuators B Chem. 244, 1016–1021 (2017).
[Crossref]

Sensors (Basel) (1)

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A schematic diagram of the FPI with a silica diaphragm. (b) The measured multi-beam interference spectrum for the FTFPI sample fabricated without rough-polishing. Inset: a microscope image of the FTFPI sample.
Fig. 2
Fig. 2 (a1–a5) Schematic diagrams of the fabrication process for fiber-tip FPIs without multi-beam interference. (b) A photograph of the fiber micro-cutting system. (c) A microscope image of the in-fiber FPI. (d) A microscope image of the fabricated FTFPI. (e) The experimental setup used for FTFPI polishing.
Fig. 3
Fig. 3 SEM images of the SMF end facet polished by 1-μm (a1), 3-μm (b1), and 9-μm (c1) grit polishing paper, including their respective enlarged partial views (a2–c2). Also shown are the reflection spectra for the SMF polished by 1-μm (a3), 3-μm (b3), and 9-μm (c3) grit polishing paper.
Fig. 4
Fig. 4 (a) The interference spectrum for a general in-fiber FPI. (b), (c), and (d) The multi-beam interference spectra of fiber-tip FPIs polished by1-μm, 3-μm, and 9-μm grit polishing paper, respectively.
Fig. 5
Fig. 5 (a) A microscope image of the FTFPI polished by 9-μm-grit polishing paper. (b) An SEM image of the silica diaphragm at the top end of the FTFPI. (c) An enlarged SEM image of a fractured end of the FTFPI with a silica diaphragm thickness of ~10.7 μm.
Fig. 6
Fig. 6 (a) Reflection spectral evolution for the FTFPI as hydraulic pressure increased from 0 to 30 MPa. (b) The wavelength shift of the interference dip wavelength as a function of the applied hydraulic pressure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E = E 1 E 2 exp [ j ( 4 π λ n a L ) ] + E 3 exp [ j ( 4 π λ ( n s d + n a L ) ) ] , I = E E * = E 1 2 + E 2 2 + E 3 2 2 E 1 E 2 cos ( 4 π λ n a L ) 2 E 2 E 3 cos ( 4 π λ n s d ) + 2 E 1 E 3 cos [ 4 π λ ( n s d + n a L ) ] Parasitic Interference ,
I = E 1 2 + E 2 2 2 E 1 E 2 cos ( 4 π λ n a L ) ( if E 3 0 )

Metrics