Abstract

Barriers were produced in porous glass through its local bulk density modification by direct femtosecond writing accompanied by СО2-laser surface thermal densification, to make functional microfluidic elements separated by such physical barriers with different controlled permeability. The separation of multi-component solutions into individual components with different molecule sizes (molecular separation) was performed in this first integrated microfluidic device fabricated in porous glass. Its application in the environmental gas-phase analysis was demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Anatomy of a femtosecond laser processed silica waveguide [Invited]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec
Opt. Mater. Express 1(5) 998-1008 (2011)

Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53a cells

J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp
Opt. Express 16(5) 3021-3031 (2008)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Liu, S. B. Munro, T. Nguyen, T. Siuda, D. Suciu, M. Bizak, M. Slota, H. S. Fuji, D. Danley, and A. McShea, “Integrated microfluidic Custom Array device for bacterial genotyping and identification,” J. Assoc. Lab. Autom. 11(6), 360–367 (2006).
    [Crossref]
  2. L. Rassaei, K. Mathwig, S. Kang, H. A. Heering, and S. G. Lemay, “Integrated biodetection in a nanofluidic device,” ACS Nano 8(8), 8278–8284 (2014).
    [Crossref] [PubMed]
  3. A. C. Glavan, J. Niu, Z. Chen, F. Güder, C.-M. Cheng, D. Liu, and G. M. Whitesides, “Analytical devices based on direct synthesis of DNA on paper,” Anal. Chem. 88(1), 725–731 (2016).
    [Crossref] [PubMed]
  4. A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
    [Crossref] [PubMed]
  5. J. Mairhofer, K. Roppert, and P. Ertl, “Microfluidic systems for pathogen sensing: a review,” Sensors (Basel) 9(6), 4804–4823 (2009).
    [Crossref] [PubMed]
  6. S. Ge, L. Zhang, Y. Zhang, F. Lan, M. Yan, and J. Yu, “Nanomaterials-modified cellulose paper as a platform for biosensing applications,” Nanoscale 9(13), 4366–4382 (2017).
    [Crossref] [PubMed]
  7. S. Ge, F. Lan, L. Liang, N. Ren, L. Li, H. Liu, M. Yan, and J. Yu, “Ultrasensitive photoelectrochemical biosensing of cell surface N-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction,” ACS Appl. Mater. Interfaces 9(8), 6670–6678 (2017).
    [Crossref] [PubMed]
  8. D. J. Wales, J. Grand, V. P. Ting, R. D. Burke, K. J. Edler, C. R. Bowen, S. Mintova, and A. D. Burrows, “Gas sensing using porous materials for automotive applications,” Chem. Soc. Rev. 44(13), 4290–4321 (2015).
    [Crossref] [PubMed]
  9. S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, and J. Chen, “Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing,” Chem. Soc. Rev. 46(22), 6872–6904 (2017).
    [Crossref] [PubMed]
  10. P. J. He, I. N. Katis, R. W. Eason, and C. L. Sones, “Laser-based patterning for fluidic devices in nitrocellulose,” Biomicrofluidics 9(2), 026503 (2015).
    [Crossref] [PubMed]
  11. C. L. Sones, I. N. Katis, P. J. He, B. Mills, M. F. Namiq, P. Shardlow, M. Ibsen, and R. W. Eason, “Laser-induced photo-polymerisation for creation of paper-based fluidic devices,” Lab Chip 14(23), 4567–4574 (2014).
    [Crossref] [PubMed]
  12. X. Li, J. Tian, G. Garnier, and W. Shen, “Fabrication of paper-based microfluidic sensors by printing,” Colloids Surf. B Biointerfaces 76(2), 564–570 (2010).
    [Crossref] [PubMed]
  13. P. Spicar-Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23(2), 067003 (2013).
    [Crossref]
  14. T. Antropova, V. Veiko, G. Kostyuk, M. Girsova, I. Anfimova, V. Chuiko, and E. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
    [Crossref]
  15. H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
    [Crossref] [PubMed]
  16. T. Antropova, S. Kalinina, T. Kostyreva, I. Drozdova, and I. Anfimova, “Peculiarities of the fabrication process and the structure of porous membranes based on two-phase fluorine-and phosphorus-containing sodium borosilicate glasses,” Glass Phys. Chem. 41(1), 14–25 (2015).
    [Crossref]
  17. R. Reisfeld, B. Jasinska, V. Levchenko, M. Gorgol, T. Saraidarov, I. Popov, T. Antropova, and E. Rysiakiewicz-Pasek, “Porous glasses as a host of luminescent materials, their applications and site selective determination,” J. Lumin. 169, 440–444 (2016).
    [Crossref]
  18. C. Shen, Y. J. Wang, J. H. Xu, Y. C. Lu, and G. S. Luo, “Porous glass beads as a new adsorbent to remove sulfur-containing compounds,” Green Chem. 14(4), 1009–1015 (2012).
    [Crossref]
  19. V. A. Kreisberg and T. V. Antropova, “Changing the relation between micro-and mesoporosity in porous glasses: The effect of different factors,” Microporous Mesoporous Mater. 190, 128–138 (2014).
    [Crossref]
  20. A. Ciżman, T. Marciniszyn, D. Enke, A. Barascu, and R. Poprawski, “Phase transition in NH4HSO4-porous glasses nanocomposites,” J. Nanopart. Res. 15(7), 1756 (2013).
    [Crossref] [PubMed]
  21. A. Cizman, T. Antropova, I. Anfimova, I. Drozdova, E. Rysiakiewicz-Pasek, E. B. Radojewska, and R. Poprawski, “Size-driven ferroelectric-paraelectric phase transition in TGS nanocomposites,” J. Nanopart. Res. 15(8), 1807 (2013).
    [Crossref] [PubMed]
  22. Y. Y. Maruo and J. Nakamura, “Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies,” Anal. Chim. Acta 702(2), 247–253 (2011).
    [Crossref] [PubMed]
  23. Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sensor. Actuat. Biol. Chem. 129(2), 544–550 (2008).
  24. R. G. Willaert and G. V. Baron, “The dynamic behaviour of yeast cells immobilised in porous glass studied by membrane mass spectrometry,” Appl. Microbiol. Biotechnol. 42(5), 664–670 (1995).
    [Crossref] [PubMed]
  25. V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
    [Crossref]
  26. V. P. Veiko, G. K. Kostyuk, I. K. Meshkovskii, V. A. Chuiko, and E. B. Yakovlev, “Microoptical elements based on local modification of the porous-glass structure,” Quantum Electron. 13(8), 1693–1696 (1986).
  27. V. P.Veiko, E. B. Jakovlev and A. Ju. Nikiphorov, “Laser methods of control of porous silica glass structure,” Chem. Process. Adv. Mater., 919–931 (1992).
  28. M. Girsova, I. Drozdova, and T. Antropova, “Structure and optical properties of photochromic quartz-like glass doped with silver halides,” Glass Phys. Chem. 40(2), 162–166 (2014).
    [Crossref]
  29. Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang, and H. Xu, “Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions,” Dyes Pigments 66(2), 123–128 (2005).
    [Crossref]
  30. D. W. Joiner, H. Puchtler, and F. Sweat, “Staining of immature collagen by resorcin-fuchsin in infant kidneys,” J. R. Microsc. Soc. 88(4), 461–471 (1968).
    [Crossref] [PubMed]
  31. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
    [Crossref]
  32. I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
    [Crossref]
  33. F. Hashimoto, S. Richter, S. Nolte, Y. Ozeki, and K. Itoh, “Time-resolved micro-Raman measurement of temperature dynamics during high-repetition-rate ultrafast laser microprocessing,” J. Laser Micro Nanoeng. 10(1), 29–32 (2015).
    [Crossref]
  34. H. L. Schick, “A Thermodynamic Analysis of the High-temperature Vaporization Properties of Silica,” Chem. Rev. 60(4), 331–362 (1960).
    [Crossref]
  35. T. V. Antropova, V. P. Veiko, G. K. Kostyuk, M. A. Girsova, I. N. Anfimova, V. A. Chuiko, and E. B. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
    [Crossref]
  36. V. P. Veiko, G. K. Kostyuk, P. A. Fomichev, V. A. Chuiko, V. S. Kozhukharov, and E. B. Yakovlev, “New technology of optical components based on local laser thermoconsolidation of porous glasses and coats,” P. Soc. Photo-Opt. Ins. 1328, 201–205 (1990).
  37. M. E. Davis, “Ordered porous materials for emerging applications,” Nature 417(6891), 813–821 (2002).
    [Crossref] [PubMed]
  38. D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
    [Crossref] [PubMed]
  39. H. Segawa, E. Ohnishi, Y. Arai, and K. Yoshida, “Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye,” Sensor. Actuat. Biol. Chem. 94(3), 276–281 (2003).
  40. S. Tao, L. Xu, and J. C. Fanguy, “Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sensor. Actuat. Biol. Chem. 115(1), 158–163 (2006).
  41. C. Rottman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M. L. Kagan, and D. Avnir, “Doped sol-gel glasses as pH sensors,” Mater. Lett. 13(6), 293–298 (1992).
    [Crossref]
  42. T. V. Antropova, I. A. Drozdova, T. N. Vasilevskaya, A. V. Volkova, L. E. Ermakova, and M. P. Sidorova, “Structural transformations in thermally modified porous glasses,” Glass Phys. Chem. 33(2), 109–121 (2007).
    [Crossref]

2017 (3)

S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, and J. Chen, “Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing,” Chem. Soc. Rev. 46(22), 6872–6904 (2017).
[Crossref] [PubMed]

S. Ge, L. Zhang, Y. Zhang, F. Lan, M. Yan, and J. Yu, “Nanomaterials-modified cellulose paper as a platform for biosensing applications,” Nanoscale 9(13), 4366–4382 (2017).
[Crossref] [PubMed]

S. Ge, F. Lan, L. Liang, N. Ren, L. Li, H. Liu, M. Yan, and J. Yu, “Ultrasensitive photoelectrochemical biosensing of cell surface N-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction,” ACS Appl. Mater. Interfaces 9(8), 6670–6678 (2017).
[Crossref] [PubMed]

2016 (3)

A. C. Glavan, J. Niu, Z. Chen, F. Güder, C.-M. Cheng, D. Liu, and G. M. Whitesides, “Analytical devices based on direct synthesis of DNA on paper,” Anal. Chem. 88(1), 725–731 (2016).
[Crossref] [PubMed]

R. Reisfeld, B. Jasinska, V. Levchenko, M. Gorgol, T. Saraidarov, I. Popov, T. Antropova, and E. Rysiakiewicz-Pasek, “Porous glasses as a host of luminescent materials, their applications and site selective determination,” J. Lumin. 169, 440–444 (2016).
[Crossref]

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

2015 (4)

T. Antropova, S. Kalinina, T. Kostyreva, I. Drozdova, and I. Anfimova, “Peculiarities of the fabrication process and the structure of porous membranes based on two-phase fluorine-and phosphorus-containing sodium borosilicate glasses,” Glass Phys. Chem. 41(1), 14–25 (2015).
[Crossref]

F. Hashimoto, S. Richter, S. Nolte, Y. Ozeki, and K. Itoh, “Time-resolved micro-Raman measurement of temperature dynamics during high-repetition-rate ultrafast laser microprocessing,” J. Laser Micro Nanoeng. 10(1), 29–32 (2015).
[Crossref]

P. J. He, I. N. Katis, R. W. Eason, and C. L. Sones, “Laser-based patterning for fluidic devices in nitrocellulose,” Biomicrofluidics 9(2), 026503 (2015).
[Crossref] [PubMed]

D. J. Wales, J. Grand, V. P. Ting, R. D. Burke, K. J. Edler, C. R. Bowen, S. Mintova, and A. D. Burrows, “Gas sensing using porous materials for automotive applications,” Chem. Soc. Rev. 44(13), 4290–4321 (2015).
[Crossref] [PubMed]

2014 (5)

V. A. Kreisberg and T. V. Antropova, “Changing the relation between micro-and mesoporosity in porous glasses: The effect of different factors,” Microporous Mesoporous Mater. 190, 128–138 (2014).
[Crossref]

C. L. Sones, I. N. Katis, P. J. He, B. Mills, M. F. Namiq, P. Shardlow, M. Ibsen, and R. W. Eason, “Laser-induced photo-polymerisation for creation of paper-based fluidic devices,” Lab Chip 14(23), 4567–4574 (2014).
[Crossref] [PubMed]

L. Rassaei, K. Mathwig, S. Kang, H. A. Heering, and S. G. Lemay, “Integrated biodetection in a nanofluidic device,” ACS Nano 8(8), 8278–8284 (2014).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

M. Girsova, I. Drozdova, and T. Antropova, “Structure and optical properties of photochromic quartz-like glass doped with silver halides,” Glass Phys. Chem. 40(2), 162–166 (2014).
[Crossref]

2013 (3)

A. Ciżman, T. Marciniszyn, D. Enke, A. Barascu, and R. Poprawski, “Phase transition in NH4HSO4-porous glasses nanocomposites,” J. Nanopart. Res. 15(7), 1756 (2013).
[Crossref] [PubMed]

A. Cizman, T. Antropova, I. Anfimova, I. Drozdova, E. Rysiakiewicz-Pasek, E. B. Radojewska, and R. Poprawski, “Size-driven ferroelectric-paraelectric phase transition in TGS nanocomposites,” J. Nanopart. Res. 15(8), 1807 (2013).
[Crossref] [PubMed]

P. Spicar-Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23(2), 067003 (2013).
[Crossref]

2012 (3)

T. Antropova, V. Veiko, G. Kostyuk, M. Girsova, I. Anfimova, V. Chuiko, and E. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

C. Shen, Y. J. Wang, J. H. Xu, Y. C. Lu, and G. S. Luo, “Porous glass beads as a new adsorbent to remove sulfur-containing compounds,” Green Chem. 14(4), 1009–1015 (2012).
[Crossref]

T. V. Antropova, V. P. Veiko, G. K. Kostyuk, M. A. Girsova, I. N. Anfimova, V. A. Chuiko, and E. B. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

2011 (1)

Y. Y. Maruo and J. Nakamura, “Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies,” Anal. Chim. Acta 702(2), 247–253 (2011).
[Crossref] [PubMed]

2010 (2)

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

X. Li, J. Tian, G. Garnier, and W. Shen, “Fabrication of paper-based microfluidic sensors by printing,” Colloids Surf. B Biointerfaces 76(2), 564–570 (2010).
[Crossref] [PubMed]

2009 (1)

J. Mairhofer, K. Roppert, and P. Ertl, “Microfluidic systems for pathogen sensing: a review,” Sensors (Basel) 9(6), 4804–4823 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sensor. Actuat. Biol. Chem. 129(2), 544–550 (2008).

2007 (2)

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
[Crossref]

T. V. Antropova, I. A. Drozdova, T. N. Vasilevskaya, A. V. Volkova, L. E. Ermakova, and M. P. Sidorova, “Structural transformations in thermally modified porous glasses,” Glass Phys. Chem. 33(2), 109–121 (2007).
[Crossref]

2006 (3)

S. Tao, L. Xu, and J. C. Fanguy, “Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sensor. Actuat. Biol. Chem. 115(1), 158–163 (2006).

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[Crossref] [PubMed]

R. H. Liu, S. B. Munro, T. Nguyen, T. Siuda, D. Suciu, M. Bizak, M. Slota, H. S. Fuji, D. Danley, and A. McShea, “Integrated microfluidic Custom Array device for bacterial genotyping and identification,” J. Assoc. Lab. Autom. 11(6), 360–367 (2006).
[Crossref]

2005 (2)

Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang, and H. Xu, “Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions,” Dyes Pigments 66(2), 123–128 (2005).
[Crossref]

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
[Crossref] [PubMed]

2003 (1)

H. Segawa, E. Ohnishi, Y. Arai, and K. Yoshida, “Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye,” Sensor. Actuat. Biol. Chem. 94(3), 276–281 (2003).

2002 (1)

M. E. Davis, “Ordered porous materials for emerging applications,” Nature 417(6891), 813–821 (2002).
[Crossref] [PubMed]

1995 (1)

R. G. Willaert and G. V. Baron, “The dynamic behaviour of yeast cells immobilised in porous glass studied by membrane mass spectrometry,” Appl. Microbiol. Biotechnol. 42(5), 664–670 (1995).
[Crossref] [PubMed]

1992 (1)

C. Rottman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M. L. Kagan, and D. Avnir, “Doped sol-gel glasses as pH sensors,” Mater. Lett. 13(6), 293–298 (1992).
[Crossref]

1990 (1)

V. P. Veiko, G. K. Kostyuk, P. A. Fomichev, V. A. Chuiko, V. S. Kozhukharov, and E. B. Yakovlev, “New technology of optical components based on local laser thermoconsolidation of porous glasses and coats,” P. Soc. Photo-Opt. Ins. 1328, 201–205 (1990).

1986 (1)

V. P. Veiko, G. K. Kostyuk, I. K. Meshkovskii, V. A. Chuiko, and E. B. Yakovlev, “Microoptical elements based on local modification of the porous-glass structure,” Quantum Electron. 13(8), 1693–1696 (1986).

1968 (1)

D. W. Joiner, H. Puchtler, and F. Sweat, “Staining of immature collagen by resorcin-fuchsin in infant kidneys,” J. R. Microsc. Soc. 88(4), 461–471 (1968).
[Crossref] [PubMed]

1960 (1)

H. L. Schick, “A Thermodynamic Analysis of the High-temperature Vaporization Properties of Silica,” Chem. Rev. 60(4), 331–362 (1960).
[Crossref]

Anfimova, I.

T. Antropova, S. Kalinina, T. Kostyreva, I. Drozdova, and I. Anfimova, “Peculiarities of the fabrication process and the structure of porous membranes based on two-phase fluorine-and phosphorus-containing sodium borosilicate glasses,” Glass Phys. Chem. 41(1), 14–25 (2015).
[Crossref]

A. Cizman, T. Antropova, I. Anfimova, I. Drozdova, E. Rysiakiewicz-Pasek, E. B. Radojewska, and R. Poprawski, “Size-driven ferroelectric-paraelectric phase transition in TGS nanocomposites,” J. Nanopart. Res. 15(8), 1807 (2013).
[Crossref] [PubMed]

T. Antropova, V. Veiko, G. Kostyuk, M. Girsova, I. Anfimova, V. Chuiko, and E. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

Anfimova, I. N.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

T. V. Antropova, V. P. Veiko, G. K. Kostyuk, M. A. Girsova, I. N. Anfimova, V. A. Chuiko, and E. B. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

Antropova, T.

R. Reisfeld, B. Jasinska, V. Levchenko, M. Gorgol, T. Saraidarov, I. Popov, T. Antropova, and E. Rysiakiewicz-Pasek, “Porous glasses as a host of luminescent materials, their applications and site selective determination,” J. Lumin. 169, 440–444 (2016).
[Crossref]

T. Antropova, S. Kalinina, T. Kostyreva, I. Drozdova, and I. Anfimova, “Peculiarities of the fabrication process and the structure of porous membranes based on two-phase fluorine-and phosphorus-containing sodium borosilicate glasses,” Glass Phys. Chem. 41(1), 14–25 (2015).
[Crossref]

M. Girsova, I. Drozdova, and T. Antropova, “Structure and optical properties of photochromic quartz-like glass doped with silver halides,” Glass Phys. Chem. 40(2), 162–166 (2014).
[Crossref]

A. Cizman, T. Antropova, I. Anfimova, I. Drozdova, E. Rysiakiewicz-Pasek, E. B. Radojewska, and R. Poprawski, “Size-driven ferroelectric-paraelectric phase transition in TGS nanocomposites,” J. Nanopart. Res. 15(8), 1807 (2013).
[Crossref] [PubMed]

T. Antropova, V. Veiko, G. Kostyuk, M. Girsova, I. Anfimova, V. Chuiko, and E. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

Antropova, T. V.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

V. A. Kreisberg and T. V. Antropova, “Changing the relation between micro-and mesoporosity in porous glasses: The effect of different factors,” Microporous Mesoporous Mater. 190, 128–138 (2014).
[Crossref]

T. V. Antropova, V. P. Veiko, G. K. Kostyuk, M. A. Girsova, I. N. Anfimova, V. A. Chuiko, and E. B. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

T. V. Antropova, I. A. Drozdova, T. N. Vasilevskaya, A. V. Volkova, L. E. Ermakova, and M. P. Sidorova, “Structural transformations in thermally modified porous glasses,” Glass Phys. Chem. 33(2), 109–121 (2007).
[Crossref]

Arai, Y.

H. Segawa, E. Ohnishi, Y. Arai, and K. Yoshida, “Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye,” Sensor. Actuat. Biol. Chem. 94(3), 276–281 (2003).

Avnir, D.

C. Rottman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M. L. Kagan, and D. Avnir, “Doped sol-gel glasses as pH sensors,” Mater. Lett. 13(6), 293–298 (1992).
[Crossref]

Barascu, A.

A. Ciżman, T. Marciniszyn, D. Enke, A. Barascu, and R. Poprawski, “Phase transition in NH4HSO4-porous glasses nanocomposites,” J. Nanopart. Res. 15(7), 1756 (2013).
[Crossref] [PubMed]

Baron, G. V.

R. G. Willaert and G. V. Baron, “The dynamic behaviour of yeast cells immobilised in porous glass studied by membrane mass spectrometry,” Appl. Microbiol. Biotechnol. 42(5), 664–670 (1995).
[Crossref] [PubMed]

Bizak, M.

R. H. Liu, S. B. Munro, T. Nguyen, T. Siuda, D. Suciu, M. Bizak, M. Slota, H. S. Fuji, D. Danley, and A. McShea, “Integrated microfluidic Custom Array device for bacterial genotyping and identification,” J. Assoc. Lab. Autom. 11(6), 360–367 (2006).
[Crossref]

Bowen, C. R.

D. J. Wales, J. Grand, V. P. Ting, R. D. Burke, K. J. Edler, C. R. Bowen, S. Mintova, and A. D. Burrows, “Gas sensing using porous materials for automotive applications,” Chem. Soc. Rev. 44(13), 4290–4321 (2015).
[Crossref] [PubMed]

Bradshaw, D.

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
[Crossref] [PubMed]

Brooks, C.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Burke, R. D.

D. J. Wales, J. Grand, V. P. Ting, R. D. Burke, K. J. Edler, C. R. Bowen, S. Mintova, and A. D. Burrows, “Gas sensing using porous materials for automotive applications,” Chem. Soc. Rev. 44(13), 4290–4321 (2015).
[Crossref] [PubMed]

Burrows, A. D.

D. J. Wales, J. Grand, V. P. Ting, R. D. Burke, K. J. Edler, C. R. Bowen, S. Mintova, and A. D. Burrows, “Gas sensing using porous materials for automotive applications,” Chem. Soc. Rev. 44(13), 4290–4321 (2015).
[Crossref] [PubMed]

Cai, Z.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Chang, J.

S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, and J. Chen, “Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing,” Chem. Soc. Rev. 46(22), 6872–6904 (2017).
[Crossref] [PubMed]

Chen, J.

S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, and J. Chen, “Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing,” Chem. Soc. Rev. 46(22), 6872–6904 (2017).
[Crossref] [PubMed]

Chen, X.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Chen, Z.

A. C. Glavan, J. Niu, Z. Chen, F. Güder, C.-M. Cheng, D. Liu, and G. M. Whitesides, “Analytical devices based on direct synthesis of DNA on paper,” Anal. Chem. 88(1), 725–731 (2016).
[Crossref] [PubMed]

Cheng, C.-M.

A. C. Glavan, J. Niu, Z. Chen, F. Güder, C.-M. Cheng, D. Liu, and G. M. Whitesides, “Analytical devices based on direct synthesis of DNA on paper,” Anal. Chem. 88(1), 725–731 (2016).
[Crossref] [PubMed]

Chuiko, V.

T. Antropova, V. Veiko, G. Kostyuk, M. Girsova, I. Anfimova, V. Chuiko, and E. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

Chuiko, V. A.

T. V. Antropova, V. P. Veiko, G. K. Kostyuk, M. A. Girsova, I. N. Anfimova, V. A. Chuiko, and E. B. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

V. P. Veiko, G. K. Kostyuk, P. A. Fomichev, V. A. Chuiko, V. S. Kozhukharov, and E. B. Yakovlev, “New technology of optical components based on local laser thermoconsolidation of porous glasses and coats,” P. Soc. Photo-Opt. Ins. 1328, 201–205 (1990).

V. P. Veiko, G. K. Kostyuk, I. K. Meshkovskii, V. A. Chuiko, and E. B. Yakovlev, “Microoptical elements based on local modification of the porous-glass structure,” Quantum Electron. 13(8), 1693–1696 (1986).

Cizman, A.

A. Cizman, T. Antropova, I. Anfimova, I. Drozdova, E. Rysiakiewicz-Pasek, E. B. Radojewska, and R. Poprawski, “Size-driven ferroelectric-paraelectric phase transition in TGS nanocomposites,” J. Nanopart. Res. 15(8), 1807 (2013).
[Crossref] [PubMed]

A. Ciżman, T. Marciniszyn, D. Enke, A. Barascu, and R. Poprawski, “Phase transition in NH4HSO4-porous glasses nanocomposites,” J. Nanopart. Res. 15(7), 1756 (2013).
[Crossref] [PubMed]

Claridge, J. B.

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
[Crossref] [PubMed]

Craighead, H.

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[Crossref] [PubMed]

Cussen, E. J.

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
[Crossref] [PubMed]

Cvecek, K.

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

Danilov, P. A.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Danley, D.

R. H. Liu, S. B. Munro, T. Nguyen, T. Siuda, D. Suciu, M. Bizak, M. Slota, H. S. Fuji, D. Danley, and A. McShea, “Integrated microfluidic Custom Array device for bacterial genotyping and identification,” J. Assoc. Lab. Autom. 11(6), 360–367 (2006).
[Crossref]

Davis, M. E.

M. E. Davis, “Ordered porous materials for emerging applications,” Nature 417(6891), 813–821 (2002).
[Crossref] [PubMed]

Drozdova, I.

T. Antropova, S. Kalinina, T. Kostyreva, I. Drozdova, and I. Anfimova, “Peculiarities of the fabrication process and the structure of porous membranes based on two-phase fluorine-and phosphorus-containing sodium borosilicate glasses,” Glass Phys. Chem. 41(1), 14–25 (2015).
[Crossref]

M. Girsova, I. Drozdova, and T. Antropova, “Structure and optical properties of photochromic quartz-like glass doped with silver halides,” Glass Phys. Chem. 40(2), 162–166 (2014).
[Crossref]

A. Cizman, T. Antropova, I. Anfimova, I. Drozdova, E. Rysiakiewicz-Pasek, E. B. Radojewska, and R. Poprawski, “Size-driven ferroelectric-paraelectric phase transition in TGS nanocomposites,” J. Nanopart. Res. 15(8), 1807 (2013).
[Crossref] [PubMed]

Drozdova, I. A.

T. V. Antropova, I. A. Drozdova, T. N. Vasilevskaya, A. V. Volkova, L. E. Ermakova, and M. P. Sidorova, “Structural transformations in thermally modified porous glasses,” Glass Phys. Chem. 33(2), 109–121 (2007).
[Crossref]

Eason, R. W.

P. J. He, I. N. Katis, R. W. Eason, and C. L. Sones, “Laser-based patterning for fluidic devices in nitrocellulose,” Biomicrofluidics 9(2), 026503 (2015).
[Crossref] [PubMed]

C. L. Sones, I. N. Katis, P. J. He, B. Mills, M. F. Namiq, P. Shardlow, M. Ibsen, and R. W. Eason, “Laser-induced photo-polymerisation for creation of paper-based fluidic devices,” Lab Chip 14(23), 4567–4574 (2014).
[Crossref] [PubMed]

Edler, K. J.

D. J. Wales, J. Grand, V. P. Ting, R. D. Burke, K. J. Edler, C. R. Bowen, S. Mintova, and A. D. Burrows, “Gas sensing using porous materials for automotive applications,” Chem. Soc. Rev. 44(13), 4290–4321 (2015).
[Crossref] [PubMed]

Elliott, K.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Enke, D.

A. Ciżman, T. Marciniszyn, D. Enke, A. Barascu, and R. Poprawski, “Phase transition in NH4HSO4-porous glasses nanocomposites,” J. Nanopart. Res. 15(7), 1756 (2013).
[Crossref] [PubMed]

Ermakova, L. E.

T. V. Antropova, I. A. Drozdova, T. N. Vasilevskaya, A. V. Volkova, L. E. Ermakova, and M. P. Sidorova, “Structural transformations in thermally modified porous glasses,” Glass Phys. Chem. 33(2), 109–121 (2007).
[Crossref]

Ertl, P.

J. Mairhofer, K. Roppert, and P. Ertl, “Microfluidic systems for pathogen sensing: a review,” Sensors (Basel) 9(6), 4804–4823 (2009).
[Crossref] [PubMed]

Estes, M. D.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Fanguy, J. C.

S. Tao, L. Xu, and J. C. Fanguy, “Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sensor. Actuat. Biol. Chem. 115(1), 158–163 (2006).

Fomichev, P. A.

V. P. Veiko, G. K. Kostyuk, P. A. Fomichev, V. A. Chuiko, V. S. Kozhukharov, and E. B. Yakovlev, “New technology of optical components based on local laser thermoconsolidation of porous glasses and coats,” P. Soc. Photo-Opt. Ins. 1328, 201–205 (1990).

Fu, E.

P. Spicar-Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23(2), 067003 (2013).
[Crossref]

Fuji, H. S.

R. H. Liu, S. B. Munro, T. Nguyen, T. Siuda, D. Suciu, M. Bizak, M. Slota, H. S. Fuji, D. Danley, and A. McShea, “Integrated microfluidic Custom Array device for bacterial genotyping and identification,” J. Assoc. Lab. Autom. 11(6), 360–367 (2006).
[Crossref]

Garnier, G.

X. Li, J. Tian, G. Garnier, and W. Shen, “Fabrication of paper-based microfluidic sensors by printing,” Colloids Surf. B Biointerfaces 76(2), 564–570 (2010).
[Crossref] [PubMed]

Ge, S.

S. Ge, L. Zhang, Y. Zhang, F. Lan, M. Yan, and J. Yu, “Nanomaterials-modified cellulose paper as a platform for biosensing applications,” Nanoscale 9(13), 4366–4382 (2017).
[Crossref] [PubMed]

S. Ge, F. Lan, L. Liang, N. Ren, L. Li, H. Liu, M. Yan, and J. Yu, “Ultrasensitive photoelectrochemical biosensing of cell surface N-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction,” ACS Appl. Mater. Interfaces 9(8), 6670–6678 (2017).
[Crossref] [PubMed]

Girsova, M.

M. Girsova, I. Drozdova, and T. Antropova, “Structure and optical properties of photochromic quartz-like glass doped with silver halides,” Glass Phys. Chem. 40(2), 162–166 (2014).
[Crossref]

T. Antropova, V. Veiko, G. Kostyuk, M. Girsova, I. Anfimova, V. Chuiko, and E. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

Girsova, M. A.

T. V. Antropova, V. P. Veiko, G. K. Kostyuk, M. A. Girsova, I. N. Anfimova, V. A. Chuiko, and E. B. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

Glavan, A. C.

A. C. Glavan, J. Niu, Z. Chen, F. Güder, C.-M. Cheng, D. Liu, and G. M. Whitesides, “Analytical devices based on direct synthesis of DNA on paper,” Anal. Chem. 88(1), 725–731 (2016).
[Crossref] [PubMed]

Gong, G.

C. Rottman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M. L. Kagan, and D. Avnir, “Doped sol-gel glasses as pH sensors,” Mater. Lett. 13(6), 293–298 (1992).
[Crossref]

Gorgol, M.

R. Reisfeld, B. Jasinska, V. Levchenko, M. Gorgol, T. Saraidarov, I. Popov, T. Antropova, and E. Rysiakiewicz-Pasek, “Porous glasses as a host of luminescent materials, their applications and site selective determination,” J. Lumin. 169, 440–444 (2016).
[Crossref]

Gottmann, J.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Grand, J.

D. J. Wales, J. Grand, V. P. Ting, R. D. Burke, K. J. Edler, C. R. Bowen, S. Mintova, and A. D. Burrows, “Gas sensing using porous materials for automotive applications,” Chem. Soc. Rev. 44(13), 4290–4321 (2015).
[Crossref] [PubMed]

Güder, F.

A. C. Glavan, J. Niu, Z. Chen, F. Güder, C.-M. Cheng, D. Liu, and G. M. Whitesides, “Analytical devices based on direct synthesis of DNA on paper,” Anal. Chem. 88(1), 725–731 (2016).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang, and H. Xu, “Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions,” Dyes Pigments 66(2), 123–128 (2005).
[Crossref]

Haley, J. P.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Hashimoto, F.

F. Hashimoto, S. Richter, S. Nolte, Y. Ozeki, and K. Itoh, “Time-resolved micro-Raman measurement of temperature dynamics during high-repetition-rate ultrafast laser microprocessing,” J. Laser Micro Nanoeng. 10(1), 29–32 (2015).
[Crossref]

He, P. J.

P. J. He, I. N. Katis, R. W. Eason, and C. L. Sones, “Laser-based patterning for fluidic devices in nitrocellulose,” Biomicrofluidics 9(2), 026503 (2015).
[Crossref] [PubMed]

C. L. Sones, I. N. Katis, P. J. He, B. Mills, M. F. Namiq, P. Shardlow, M. Ibsen, and R. W. Eason, “Laser-induced photo-polymerisation for creation of paper-based fluidic devices,” Lab Chip 14(23), 4567–4574 (2014).
[Crossref] [PubMed]

He, Q.

S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, and J. Chen, “Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing,” Chem. Soc. Rev. 46(22), 6872–6904 (2017).
[Crossref] [PubMed]

Heering, H. A.

L. Rassaei, K. Mathwig, S. Kang, H. A. Heering, and S. G. Lemay, “Integrated biodetection in a nanofluidic device,” ACS Nano 8(8), 8278–8284 (2014).
[Crossref] [PubMed]

Higuchi, M.

Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sensor. Actuat. Biol. Chem. 129(2), 544–550 (2008).

Hopwood, A. J.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Horn, A.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Houghtaling, J.

P. Spicar-Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23(2), 067003 (2013).
[Crossref]

Hurth, C.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Ibsen, M.

C. L. Sones, I. N. Katis, P. J. He, B. Mills, M. F. Namiq, P. Shardlow, M. Ibsen, and R. W. Eason, “Laser-induced photo-polymerisation for creation of paper-based fluidic devices,” Lab Chip 14(23), 4567–4574 (2014).
[Crossref] [PubMed]

Ionin, A. A.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Itoh, K.

F. Hashimoto, S. Richter, S. Nolte, Y. Ozeki, and K. Itoh, “Time-resolved micro-Raman measurement of temperature dynamics during high-repetition-rate ultrafast laser microprocessing,” J. Laser Micro Nanoeng. 10(1), 29–32 (2015).
[Crossref]

Izumi, K.

Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sensor. Actuat. Biol. Chem. 129(2), 544–550 (2008).

Jasinska, B.

R. Reisfeld, B. Jasinska, V. Levchenko, M. Gorgol, T. Saraidarov, I. Popov, T. Antropova, and E. Rysiakiewicz-Pasek, “Porous glasses as a host of luminescent materials, their applications and site selective determination,” J. Lumin. 169, 440–444 (2016).
[Crossref]

Joiner, D. W.

D. W. Joiner, H. Puchtler, and F. Sweat, “Staining of immature collagen by resorcin-fuchsin in infant kidneys,” J. R. Microsc. Soc. 88(4), 461–471 (1968).
[Crossref] [PubMed]

Kagan, M. L.

C. Rottman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M. L. Kagan, and D. Avnir, “Doped sol-gel glasses as pH sensors,” Mater. Lett. 13(6), 293–298 (1992).
[Crossref]

Kalinina, S.

T. Antropova, S. Kalinina, T. Kostyreva, I. Drozdova, and I. Anfimova, “Peculiarities of the fabrication process and the structure of porous membranes based on two-phase fluorine-and phosphorus-containing sodium borosilicate glasses,” Glass Phys. Chem. 41(1), 14–25 (2015).
[Crossref]

Kang, S.

L. Rassaei, K. Mathwig, S. Kang, H. A. Heering, and S. G. Lemay, “Integrated biodetection in a nanofluidic device,” ACS Nano 8(8), 8278–8284 (2014).
[Crossref] [PubMed]

Katis, I. N.

P. J. He, I. N. Katis, R. W. Eason, and C. L. Sones, “Laser-based patterning for fluidic devices in nitrocellulose,” Biomicrofluidics 9(2), 026503 (2015).
[Crossref] [PubMed]

C. L. Sones, I. N. Katis, P. J. He, B. Mills, M. F. Namiq, P. Shardlow, M. Ibsen, and R. W. Eason, “Laser-induced photo-polymerisation for creation of paper-based fluidic devices,” Lab Chip 14(23), 4567–4574 (2014).
[Crossref] [PubMed]

Kostyreva, T.

T. Antropova, S. Kalinina, T. Kostyreva, I. Drozdova, and I. Anfimova, “Peculiarities of the fabrication process and the structure of porous membranes based on two-phase fluorine-and phosphorus-containing sodium borosilicate glasses,” Glass Phys. Chem. 41(1), 14–25 (2015).
[Crossref]

Kostyuk, G.

T. Antropova, V. Veiko, G. Kostyuk, M. Girsova, I. Anfimova, V. Chuiko, and E. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

Kostyuk, G. K.

T. V. Antropova, V. P. Veiko, G. K. Kostyuk, M. A. Girsova, I. N. Anfimova, V. A. Chuiko, and E. B. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

V. P. Veiko, G. K. Kostyuk, P. A. Fomichev, V. A. Chuiko, V. S. Kozhukharov, and E. B. Yakovlev, “New technology of optical components based on local laser thermoconsolidation of porous glasses and coats,” P. Soc. Photo-Opt. Ins. 1328, 201–205 (1990).

V. P. Veiko, G. K. Kostyuk, I. K. Meshkovskii, V. A. Chuiko, and E. B. Yakovlev, “Microoptical elements based on local modification of the porous-glass structure,” Quantum Electron. 13(8), 1693–1696 (1986).

Koumi, P.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Kozhukharov, V. S.

V. P. Veiko, G. K. Kostyuk, P. A. Fomichev, V. A. Chuiko, V. S. Kozhukharov, and E. B. Yakovlev, “New technology of optical components based on local laser thermoconsolidation of porous glasses and coats,” P. Soc. Photo-Opt. Ins. 1328, 201–205 (1990).

Kreisberg, V. A.

V. A. Kreisberg and T. V. Antropova, “Changing the relation between micro-and mesoporosity in porous glasses: The effect of different factors,” Microporous Mesoporous Mater. 190, 128–138 (2014).
[Crossref]

Kudryashov, S. I.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Lan, F.

S. Ge, L. Zhang, Y. Zhang, F. Lan, M. Yan, and J. Yu, “Nanomaterials-modified cellulose paper as a platform for biosensing applications,” Nanoscale 9(13), 4366–4382 (2017).
[Crossref] [PubMed]

S. Ge, F. Lan, L. Liang, N. Ren, L. Li, H. Liu, M. Yan, and J. Yu, “Ultrasensitive photoelectrochemical biosensing of cell surface N-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction,” ACS Appl. Mater. Interfaces 9(8), 6670–6678 (2017).
[Crossref] [PubMed]

Lee-Edghill, J. G.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Lemay, S. G.

L. Rassaei, K. Mathwig, S. Kang, H. A. Heering, and S. G. Lemay, “Integrated biodetection in a nanofluidic device,” ACS Nano 8(8), 8278–8284 (2014).
[Crossref] [PubMed]

Lenigk, R.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Lev, O.

C. Rottman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M. L. Kagan, and D. Avnir, “Doped sol-gel glasses as pH sensors,” Mater. Lett. 13(6), 293–298 (1992).
[Crossref]

Levchenko, V.

R. Reisfeld, B. Jasinska, V. Levchenko, M. Gorgol, T. Saraidarov, I. Popov, T. Antropova, and E. Rysiakiewicz-Pasek, “Porous glasses as a host of luminescent materials, their applications and site selective determination,” J. Lumin. 169, 440–444 (2016).
[Crossref]

Li, L.

S. Ge, F. Lan, L. Liang, N. Ren, L. Li, H. Liu, M. Yan, and J. Yu, “Ultrasensitive photoelectrochemical biosensing of cell surface N-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction,” ACS Appl. Mater. Interfaces 9(8), 6670–6678 (2017).
[Crossref] [PubMed]

Li, X.

X. Li, J. Tian, G. Garnier, and W. Shen, “Fabrication of paper-based microfluidic sensors by printing,” Colloids Surf. B Biointerfaces 76(2), 564–570 (2010).
[Crossref] [PubMed]

Liang, L.

S. Ge, F. Lan, L. Liang, N. Ren, L. Li, H. Liu, M. Yan, and J. Yu, “Ultrasensitive photoelectrochemical biosensing of cell surface N-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction,” ACS Appl. Mater. Interfaces 9(8), 6670–6678 (2017).
[Crossref] [PubMed]

Liang, T.

P. Spicar-Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23(2), 067003 (2013).
[Crossref]

Liu, D.

A. C. Glavan, J. Niu, Z. Chen, F. Güder, C.-M. Cheng, D. Liu, and G. M. Whitesides, “Analytical devices based on direct synthesis of DNA on paper,” Anal. Chem. 88(1), 725–731 (2016).
[Crossref] [PubMed]

Liu, H.

S. Ge, F. Lan, L. Liang, N. Ren, L. Li, H. Liu, M. Yan, and J. Yu, “Ultrasensitive photoelectrochemical biosensing of cell surface N-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction,” ACS Appl. Mater. Interfaces 9(8), 6670–6678 (2017).
[Crossref] [PubMed]

Liu, R. H.

R. H. Liu, S. B. Munro, T. Nguyen, T. Siuda, D. Suciu, M. Bizak, M. Slota, H. S. Fuji, D. Danley, and A. McShea, “Integrated microfluidic Custom Array device for bacterial genotyping and identification,” J. Assoc. Lab. Autom. 11(6), 360–367 (2006).
[Crossref]

Lu, G.

S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, and J. Chen, “Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing,” Chem. Soc. Rev. 46(22), 6872–6904 (2017).
[Crossref] [PubMed]

Lu, Y. C.

C. Shen, Y. J. Wang, J. H. Xu, Y. C. Lu, and G. S. Luo, “Porous glass beads as a new adsorbent to remove sulfur-containing compounds,” Green Chem. 14(4), 1009–1015 (2012).
[Crossref]

Luo, G. S.

C. Shen, Y. J. Wang, J. H. Xu, Y. C. Lu, and G. S. Luo, “Porous glass beads as a new adsorbent to remove sulfur-containing compounds,” Green Chem. 14(4), 1009–1015 (2012).
[Crossref]

Mairhofer, J.

J. Mairhofer, K. Roppert, and P. Ertl, “Microfluidic systems for pathogen sensing: a review,” Sensors (Basel) 9(6), 4804–4823 (2009).
[Crossref] [PubMed]

Mao, S.

S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, and J. Chen, “Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing,” Chem. Soc. Rev. 46(22), 6872–6904 (2017).
[Crossref] [PubMed]

Marciniszyn, T.

A. Ciżman, T. Marciniszyn, D. Enke, A. Barascu, and R. Poprawski, “Phase transition in NH4HSO4-porous glasses nanocomposites,” J. Nanopart. Res. 15(7), 1756 (2013).
[Crossref] [PubMed]

Maruo, Y. Y.

Y. Y. Maruo and J. Nakamura, “Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies,” Anal. Chim. Acta 702(2), 247–253 (2011).
[Crossref] [PubMed]

Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sensor. Actuat. Biol. Chem. 129(2), 544–550 (2008).

Mathwig, K.

L. Rassaei, K. Mathwig, S. Kang, H. A. Heering, and S. G. Lemay, “Integrated biodetection in a nanofluidic device,” ACS Nano 8(8), 8278–8284 (2014).
[Crossref] [PubMed]

McAlister, C. R.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

McShea, A.

R. H. Liu, S. B. Munro, T. Nguyen, T. Siuda, D. Suciu, M. Bizak, M. Slota, H. S. Fuji, D. Danley, and A. McShea, “Integrated microfluidic Custom Array device for bacterial genotyping and identification,” J. Assoc. Lab. Autom. 11(6), 360–367 (2006).
[Crossref]

Meshkovskii, I. K.

V. P. Veiko, G. K. Kostyuk, I. K. Meshkovskii, V. A. Chuiko, and E. B. Yakovlev, “Microoptical elements based on local modification of the porous-glass structure,” Quantum Electron. 13(8), 1693–1696 (1986).

Mills, B.

C. L. Sones, I. N. Katis, P. J. He, B. Mills, M. F. Namiq, P. Shardlow, M. Ibsen, and R. W. Eason, “Laser-induced photo-polymerisation for creation of paper-based fluidic devices,” Lab Chip 14(23), 4567–4574 (2014).
[Crossref] [PubMed]

Mintova, S.

D. J. Wales, J. Grand, V. P. Ting, R. D. Burke, K. J. Edler, C. R. Bowen, S. Mintova, and A. D. Burrows, “Gas sensing using porous materials for automotive applications,” Chem. Soc. Rev. 44(13), 4290–4321 (2015).
[Crossref] [PubMed]

Miyamoto, I.

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Moran, N.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Munro, S. B.

R. H. Liu, S. B. Munro, T. Nguyen, T. Siuda, D. Suciu, M. Bizak, M. Slota, H. S. Fuji, D. Danley, and A. McShea, “Integrated microfluidic Custom Array device for bacterial genotyping and identification,” J. Assoc. Lab. Autom. 11(6), 360–367 (2006).
[Crossref]

Nakamura, J.

Y. Y. Maruo and J. Nakamura, “Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies,” Anal. Chim. Acta 702(2), 247–253 (2011).
[Crossref] [PubMed]

Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sensor. Actuat. Biol. Chem. 129(2), 544–550 (2008).

Namiq, M. F.

C. L. Sones, I. N. Katis, P. J. He, B. Mills, M. F. Namiq, P. Shardlow, M. Ibsen, and R. W. Eason, “Laser-induced photo-polymerisation for creation of paper-based fluidic devices,” Lab Chip 14(23), 4567–4574 (2014).
[Crossref] [PubMed]

Nguyen, T.

R. H. Liu, S. B. Munro, T. Nguyen, T. Siuda, D. Suciu, M. Bizak, M. Slota, H. S. Fuji, D. Danley, and A. McShea, “Integrated microfluidic Custom Array device for bacterial genotyping and identification,” J. Assoc. Lab. Autom. 11(6), 360–367 (2006).
[Crossref]

Niu, J.

A. C. Glavan, J. Niu, Z. Chen, F. Güder, C.-M. Cheng, D. Liu, and G. M. Whitesides, “Analytical devices based on direct synthesis of DNA on paper,” Anal. Chem. 88(1), 725–731 (2016).
[Crossref] [PubMed]

Nolte, S.

F. Hashimoto, S. Richter, S. Nolte, Y. Ozeki, and K. Itoh, “Time-resolved micro-Raman measurement of temperature dynamics during high-repetition-rate ultrafast laser microprocessing,” J. Laser Micro Nanoeng. 10(1), 29–32 (2015).
[Crossref]

Nordquist, A.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Ohnishi, E.

H. Segawa, E. Ohnishi, Y. Arai, and K. Yoshida, “Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye,” Sensor. Actuat. Biol. Chem. 94(3), 276–281 (2003).

Okamoto, Y.

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

Ottolenghi, M.

C. Rottman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M. L. Kagan, and D. Avnir, “Doped sol-gel glasses as pH sensors,” Mater. Lett. 13(6), 293–298 (1992).
[Crossref]

Ozeki, Y.

F. Hashimoto, S. Richter, S. Nolte, Y. Ozeki, and K. Itoh, “Time-resolved micro-Raman measurement of temperature dynamics during high-repetition-rate ultrafast laser microprocessing,” J. Laser Micro Nanoeng. 10(1), 29–32 (2015).
[Crossref]

Popov, I.

R. Reisfeld, B. Jasinska, V. Levchenko, M. Gorgol, T. Saraidarov, I. Popov, T. Antropova, and E. Rysiakiewicz-Pasek, “Porous glasses as a host of luminescent materials, their applications and site selective determination,” J. Lumin. 169, 440–444 (2016).
[Crossref]

Poprawski, R.

A. Ciżman, T. Marciniszyn, D. Enke, A. Barascu, and R. Poprawski, “Phase transition in NH4HSO4-porous glasses nanocomposites,” J. Nanopart. Res. 15(7), 1756 (2013).
[Crossref] [PubMed]

A. Cizman, T. Antropova, I. Anfimova, I. Drozdova, E. Rysiakiewicz-Pasek, E. B. Radojewska, and R. Poprawski, “Size-driven ferroelectric-paraelectric phase transition in TGS nanocomposites,” J. Nanopart. Res. 15(8), 1807 (2013).
[Crossref] [PubMed]

Prior, T. J.

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
[Crossref] [PubMed]

Pu, H.

S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, and J. Chen, “Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing,” Chem. Soc. Rev. 46(22), 6872–6904 (2017).
[Crossref] [PubMed]

Puchtler, H.

D. W. Joiner, H. Puchtler, and F. Sweat, “Staining of immature collagen by resorcin-fuchsin in infant kidneys,” J. R. Microsc. Soc. 88(4), 461–471 (1968).
[Crossref] [PubMed]

Qi, J.

Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang, and H. Xu, “Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions,” Dyes Pigments 66(2), 123–128 (2005).
[Crossref]

Radojewska, E. B.

A. Cizman, T. Antropova, I. Anfimova, I. Drozdova, E. Rysiakiewicz-Pasek, E. B. Radojewska, and R. Poprawski, “Size-driven ferroelectric-paraelectric phase transition in TGS nanocomposites,” J. Nanopart. Res. 15(8), 1807 (2013).
[Crossref] [PubMed]

Rassaei, L.

L. Rassaei, K. Mathwig, S. Kang, H. A. Heering, and S. G. Lemay, “Integrated biodetection in a nanofluidic device,” ACS Nano 8(8), 8278–8284 (2014).
[Crossref] [PubMed]

Reisfeld, R.

R. Reisfeld, B. Jasinska, V. Levchenko, M. Gorgol, T. Saraidarov, I. Popov, T. Antropova, and E. Rysiakiewicz-Pasek, “Porous glasses as a host of luminescent materials, their applications and site selective determination,” J. Lumin. 169, 440–444 (2016).
[Crossref]

Ren, N.

S. Ge, F. Lan, L. Liang, N. Ren, L. Li, H. Liu, M. Yan, and J. Yu, “Ultrasensitive photoelectrochemical biosensing of cell surface N-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction,” ACS Appl. Mater. Interfaces 9(8), 6670–6678 (2017).
[Crossref] [PubMed]

Richter, S.

F. Hashimoto, S. Richter, S. Nolte, Y. Ozeki, and K. Itoh, “Time-resolved micro-Raman measurement of temperature dynamics during high-repetition-rate ultrafast laser microprocessing,” J. Laser Micro Nanoeng. 10(1), 29–32 (2015).
[Crossref]

Roppert, K.

J. Mairhofer, K. Roppert, and P. Ertl, “Microfluidic systems for pathogen sensing: a review,” Sensors (Basel) 9(6), 4804–4823 (2009).
[Crossref] [PubMed]

Rosseinsky, M. J.

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
[Crossref] [PubMed]

Rottman, C.

C. Rottman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M. L. Kagan, and D. Avnir, “Doped sol-gel glasses as pH sensors,” Mater. Lett. 13(6), 293–298 (1992).
[Crossref]

Rysiakiewicz-Pasek, E.

R. Reisfeld, B. Jasinska, V. Levchenko, M. Gorgol, T. Saraidarov, I. Popov, T. Antropova, and E. Rysiakiewicz-Pasek, “Porous glasses as a host of luminescent materials, their applications and site selective determination,” J. Lumin. 169, 440–444 (2016).
[Crossref]

A. Cizman, T. Antropova, I. Anfimova, I. Drozdova, E. Rysiakiewicz-Pasek, E. B. Radojewska, and R. Poprawski, “Size-driven ferroelectric-paraelectric phase transition in TGS nanocomposites,” J. Nanopart. Res. 15(8), 1807 (2013).
[Crossref] [PubMed]

Saraidarov, T.

R. Reisfeld, B. Jasinska, V. Levchenko, M. Gorgol, T. Saraidarov, I. Popov, T. Antropova, and E. Rysiakiewicz-Pasek, “Porous glasses as a host of luminescent materials, their applications and site selective determination,” J. Lumin. 169, 440–444 (2016).
[Crossref]

Schick, H. L.

H. L. Schick, “A Thermodynamic Analysis of the High-temperature Vaporization Properties of Silica,” Chem. Rev. 60(4), 331–362 (1960).
[Crossref]

Schmidt, M.

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

Segawa, H.

H. Segawa, E. Ohnishi, Y. Arai, and K. Yoshida, “Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye,” Sensor. Actuat. Biol. Chem. 94(3), 276–281 (2003).

Sergeev, M. M.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Shardlow, P.

C. L. Sones, I. N. Katis, P. J. He, B. Mills, M. F. Namiq, P. Shardlow, M. Ibsen, and R. W. Eason, “Laser-induced photo-polymerisation for creation of paper-based fluidic devices,” Lab Chip 14(23), 4567–4574 (2014).
[Crossref] [PubMed]

Shen, C.

C. Shen, Y. J. Wang, J. H. Xu, Y. C. Lu, and G. S. Luo, “Porous glass beads as a new adsorbent to remove sulfur-containing compounds,” Green Chem. 14(4), 1009–1015 (2012).
[Crossref]

Shen, W.

X. Li, J. Tian, G. Garnier, and W. Shen, “Fabrication of paper-based microfluidic sensors by printing,” Colloids Surf. B Biointerfaces 76(2), 564–570 (2010).
[Crossref] [PubMed]

Sidorova, M. P.

T. V. Antropova, I. A. Drozdova, T. N. Vasilevskaya, A. V. Volkova, L. E. Ermakova, and M. P. Sidorova, “Structural transformations in thermally modified porous glasses,” Glass Phys. Chem. 33(2), 109–121 (2007).
[Crossref]

Siuda, T.

R. H. Liu, S. B. Munro, T. Nguyen, T. Siuda, D. Suciu, M. Bizak, M. Slota, H. S. Fuji, D. Danley, and A. McShea, “Integrated microfluidic Custom Array device for bacterial genotyping and identification,” J. Assoc. Lab. Autom. 11(6), 360–367 (2006).
[Crossref]

Slota, M.

R. H. Liu, S. B. Munro, T. Nguyen, T. Siuda, D. Suciu, M. Bizak, M. Slota, H. S. Fuji, D. Danley, and A. McShea, “Integrated microfluidic Custom Array device for bacterial genotyping and identification,” J. Assoc. Lab. Autom. 11(6), 360–367 (2006).
[Crossref]

Smith, M.

C. Rottman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M. L. Kagan, and D. Avnir, “Doped sol-gel glasses as pH sensors,” Mater. Lett. 13(6), 293–298 (1992).
[Crossref]

Smith, S.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Sones, C. L.

P. J. He, I. N. Katis, R. W. Eason, and C. L. Sones, “Laser-based patterning for fluidic devices in nitrocellulose,” Biomicrofluidics 9(2), 026503 (2015).
[Crossref] [PubMed]

C. L. Sones, I. N. Katis, P. J. He, B. Mills, M. F. Namiq, P. Shardlow, M. Ibsen, and R. W. Eason, “Laser-induced photo-polymerisation for creation of paper-based fluidic devices,” Lab Chip 14(23), 4567–4574 (2014).
[Crossref] [PubMed]

Spicar-Mihalic, P.

P. Spicar-Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23(2), 067003 (2013).
[Crossref]

Suciu, D.

R. H. Liu, S. B. Munro, T. Nguyen, T. Siuda, D. Suciu, M. Bizak, M. Slota, H. S. Fuji, D. Danley, and A. McShea, “Integrated microfluidic Custom Array device for bacterial genotyping and identification,” J. Assoc. Lab. Autom. 11(6), 360–367 (2006).
[Crossref]

Sweat, F.

D. W. Joiner, H. Puchtler, and F. Sweat, “Staining of immature collagen by resorcin-fuchsin in infant kidneys,” J. R. Microsc. Soc. 88(4), 461–471 (1968).
[Crossref] [PubMed]

Tao, S.

S. Tao, L. Xu, and J. C. Fanguy, “Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sensor. Actuat. Biol. Chem. 115(1), 158–163 (2006).

Tian, J.

X. Li, J. Tian, G. Garnier, and W. Shen, “Fabrication of paper-based microfluidic sensors by printing,” Colloids Surf. B Biointerfaces 76(2), 564–570 (2010).
[Crossref] [PubMed]

Ting, V. P.

D. J. Wales, J. Grand, V. P. Ting, R. D. Burke, K. J. Edler, C. R. Bowen, S. Mintova, and A. D. Burrows, “Gas sensing using porous materials for automotive applications,” Chem. Soc. Rev. 44(13), 4290–4321 (2015).
[Crossref] [PubMed]

Toley, B.

P. Spicar-Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23(2), 067003 (2013).
[Crossref]

Tully, G.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Uchiyama, M.

Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sensor. Actuat. Biol. Chem. 129(2), 544–550 (2008).

Vasilevskaya, T. N.

T. V. Antropova, I. A. Drozdova, T. N. Vasilevskaya, A. V. Volkova, L. E. Ermakova, and M. P. Sidorova, “Structural transformations in thermally modified porous glasses,” Glass Phys. Chem. 33(2), 109–121 (2007).
[Crossref]

Veiko, V.

T. Antropova, V. Veiko, G. Kostyuk, M. Girsova, I. Anfimova, V. Chuiko, and E. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

Veiko, V. P.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

T. V. Antropova, V. P. Veiko, G. K. Kostyuk, M. A. Girsova, I. N. Anfimova, V. A. Chuiko, and E. B. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

V. P. Veiko, G. K. Kostyuk, P. A. Fomichev, V. A. Chuiko, V. S. Kozhukharov, and E. B. Yakovlev, “New technology of optical components based on local laser thermoconsolidation of porous glasses and coats,” P. Soc. Photo-Opt. Ins. 1328, 201–205 (1990).

V. P. Veiko, G. K. Kostyuk, I. K. Meshkovskii, V. A. Chuiko, and E. B. Yakovlev, “Microoptical elements based on local modification of the porous-glass structure,” Quantum Electron. 13(8), 1693–1696 (1986).

Volkova, A. V.

T. V. Antropova, I. A. Drozdova, T. N. Vasilevskaya, A. V. Volkova, L. E. Ermakova, and M. P. Sidorova, “Structural transformations in thermally modified porous glasses,” Glass Phys. Chem. 33(2), 109–121 (2007).
[Crossref]

Wales, D. J.

D. J. Wales, J. Grand, V. P. Ting, R. D. Burke, K. J. Edler, C. R. Bowen, S. Mintova, and A. D. Burrows, “Gas sensing using porous materials for automotive applications,” Chem. Soc. Rev. 44(13), 4290–4321 (2015).
[Crossref] [PubMed]

Wang, Y. J.

C. Shen, Y. J. Wang, J. H. Xu, Y. C. Lu, and G. S. Luo, “Porous glass beads as a new adsorbent to remove sulfur-containing compounds,” Green Chem. 14(4), 1009–1015 (2012).
[Crossref]

Wang, Z.

Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang, and H. Xu, “Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions,” Dyes Pigments 66(2), 123–128 (2005).
[Crossref]

Whitesides, G. M.

A. C. Glavan, J. Niu, Z. Chen, F. Güder, C.-M. Cheng, D. Liu, and G. M. Whitesides, “Analytical devices based on direct synthesis of DNA on paper,” Anal. Chem. 88(1), 725–731 (2016).
[Crossref] [PubMed]

Willaert, R. G.

R. G. Willaert and G. V. Baron, “The dynamic behaviour of yeast cells immobilised in porous glass studied by membrane mass spectrometry,” Appl. Microbiol. Biotechnol. 42(5), 664–670 (1995).
[Crossref] [PubMed]

Wortmann, D.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Xu, H.

Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang, and H. Xu, “Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions,” Dyes Pigments 66(2), 123–128 (2005).
[Crossref]

Xu, J. H.

C. Shen, Y. J. Wang, J. H. Xu, Y. C. Lu, and G. S. Luo, “Porous glass beads as a new adsorbent to remove sulfur-containing compounds,” Green Chem. 14(4), 1009–1015 (2012).
[Crossref]

Xu, L.

S. Tao, L. Xu, and J. C. Fanguy, “Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sensor. Actuat. Biol. Chem. 115(1), 158–163 (2006).

Yager, P.

P. Spicar-Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23(2), 067003 (2013).
[Crossref]

Yakovlev, E.

T. Antropova, V. Veiko, G. Kostyuk, M. Girsova, I. Anfimova, V. Chuiko, and E. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

Yakovlev, E. B.

T. V. Antropova, V. P. Veiko, G. K. Kostyuk, M. A. Girsova, I. N. Anfimova, V. A. Chuiko, and E. B. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

V. P. Veiko, G. K. Kostyuk, P. A. Fomichev, V. A. Chuiko, V. S. Kozhukharov, and E. B. Yakovlev, “New technology of optical components based on local laser thermoconsolidation of porous glasses and coats,” P. Soc. Photo-Opt. Ins. 1328, 201–205 (1990).

V. P. Veiko, G. K. Kostyuk, I. K. Meshkovskii, V. A. Chuiko, and E. B. Yakovlev, “Microoptical elements based on local modification of the porous-glass structure,” Quantum Electron. 13(8), 1693–1696 (1986).

Yan, M.

S. Ge, L. Zhang, Y. Zhang, F. Lan, M. Yan, and J. Yu, “Nanomaterials-modified cellulose paper as a platform for biosensing applications,” Nanoscale 9(13), 4366–4382 (2017).
[Crossref] [PubMed]

S. Ge, F. Lan, L. Liang, N. Ren, L. Li, H. Liu, M. Yan, and J. Yu, “Ultrasensitive photoelectrochemical biosensing of cell surface N-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction,” ACS Appl. Mater. Interfaces 9(8), 6670–6678 (2017).
[Crossref] [PubMed]

Yang, J.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Yang, S.

Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang, and H. Xu, “Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions,” Dyes Pigments 66(2), 123–128 (2005).
[Crossref]

Yoshida, K.

H. Segawa, E. Ohnishi, Y. Arai, and K. Yoshida, “Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye,” Sensor. Actuat. Biol. Chem. 94(3), 276–281 (2003).

Yoshino, F.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Yu, J.

S. Ge, F. Lan, L. Liang, N. Ren, L. Li, H. Liu, M. Yan, and J. Yu, “Ultrasensitive photoelectrochemical biosensing of cell surface N-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction,” ACS Appl. Mater. Interfaces 9(8), 6670–6678 (2017).
[Crossref] [PubMed]

S. Ge, L. Zhang, Y. Zhang, F. Lan, M. Yan, and J. Yu, “Nanomaterials-modified cellulose paper as a platform for biosensing applications,” Nanoscale 9(13), 4366–4382 (2017).
[Crossref] [PubMed]

Zakoldaev, R. A.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Zenhausern, F.

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Zhang, H.

S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, and J. Chen, “Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing,” Chem. Soc. Rev. 46(22), 6872–6904 (2017).
[Crossref] [PubMed]

Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang, and H. Xu, “Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions,” Dyes Pigments 66(2), 123–128 (2005).
[Crossref]

Zhang, L.

S. Ge, L. Zhang, Y. Zhang, F. Lan, M. Yan, and J. Yu, “Nanomaterials-modified cellulose paper as a platform for biosensing applications,” Nanoscale 9(13), 4366–4382 (2017).
[Crossref] [PubMed]

Zhang, Y.

S. Ge, L. Zhang, Y. Zhang, F. Lan, M. Yan, and J. Yu, “Nanomaterials-modified cellulose paper as a platform for biosensing applications,” Nanoscale 9(13), 4366–4382 (2017).
[Crossref] [PubMed]

Zhao, J.

Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang, and H. Xu, “Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions,” Dyes Pigments 66(2), 123–128 (2005).
[Crossref]

Zusman, R.

C. Rottman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M. L. Kagan, and D. Avnir, “Doped sol-gel glasses as pH sensors,” Mater. Lett. 13(6), 293–298 (1992).
[Crossref]

Acc. Chem. Res. (1)

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

S. Ge, F. Lan, L. Liang, N. Ren, L. Li, H. Liu, M. Yan, and J. Yu, “Ultrasensitive photoelectrochemical biosensing of cell surface N-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction,” ACS Appl. Mater. Interfaces 9(8), 6670–6678 (2017).
[Crossref] [PubMed]

ACS Nano (1)

L. Rassaei, K. Mathwig, S. Kang, H. A. Heering, and S. G. Lemay, “Integrated biodetection in a nanofluidic device,” ACS Nano 8(8), 8278–8284 (2014).
[Crossref] [PubMed]

Anal. Chem. (2)

A. C. Glavan, J. Niu, Z. Chen, F. Güder, C.-M. Cheng, D. Liu, and G. M. Whitesides, “Analytical devices based on direct synthesis of DNA on paper,” Anal. Chem. 88(1), 725–731 (2016).
[Crossref] [PubMed]

A. J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J. G. Lee-Edghill, A. Nordquist, R. Lenigk, M. D. Estes, J. P. Haley, C. R. McAlister, X. Chen, C. Brooks, S. Smith, K. Elliott, P. Koumi, F. Zenhausern, and G. Tully, “Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile,” Anal. Chem. 82(16), 6991–6999 (2010).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

Y. Y. Maruo and J. Nakamura, “Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies,” Anal. Chim. Acta 702(2), 247–253 (2011).
[Crossref] [PubMed]

Appl. Microbiol. Biotechnol. (1)

R. G. Willaert and G. V. Baron, “The dynamic behaviour of yeast cells immobilised in porous glass studied by membrane mass spectrometry,” Appl. Microbiol. Biotechnol. 42(5), 664–670 (1995).
[Crossref] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 114(1), 187–208 (2014).
[Crossref]

Biomicrofluidics (1)

P. J. He, I. N. Katis, R. W. Eason, and C. L. Sones, “Laser-based patterning for fluidic devices in nitrocellulose,” Biomicrofluidics 9(2), 026503 (2015).
[Crossref] [PubMed]

Chem. Rev. (1)

H. L. Schick, “A Thermodynamic Analysis of the High-temperature Vaporization Properties of Silica,” Chem. Rev. 60(4), 331–362 (1960).
[Crossref]

Chem. Soc. Rev. (2)

D. J. Wales, J. Grand, V. P. Ting, R. D. Burke, K. J. Edler, C. R. Bowen, S. Mintova, and A. D. Burrows, “Gas sensing using porous materials for automotive applications,” Chem. Soc. Rev. 44(13), 4290–4321 (2015).
[Crossref] [PubMed]

S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, and J. Chen, “Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing,” Chem. Soc. Rev. 46(22), 6872–6904 (2017).
[Crossref] [PubMed]

Colloids Surf. B Biointerfaces (1)

X. Li, J. Tian, G. Garnier, and W. Shen, “Fabrication of paper-based microfluidic sensors by printing,” Colloids Surf. B Biointerfaces 76(2), 564–570 (2010).
[Crossref] [PubMed]

Dyes Pigments (1)

Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang, and H. Xu, “Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions,” Dyes Pigments 66(2), 123–128 (2005).
[Crossref]

Glass Phys. Chem. (5)

M. Girsova, I. Drozdova, and T. Antropova, “Structure and optical properties of photochromic quartz-like glass doped with silver halides,” Glass Phys. Chem. 40(2), 162–166 (2014).
[Crossref]

T. Antropova, V. Veiko, G. Kostyuk, M. Girsova, I. Anfimova, V. Chuiko, and E. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

T. Antropova, S. Kalinina, T. Kostyreva, I. Drozdova, and I. Anfimova, “Peculiarities of the fabrication process and the structure of porous membranes based on two-phase fluorine-and phosphorus-containing sodium borosilicate glasses,” Glass Phys. Chem. 41(1), 14–25 (2015).
[Crossref]

T. V. Antropova, V. P. Veiko, G. K. Kostyuk, M. A. Girsova, I. N. Anfimova, V. A. Chuiko, and E. B. Yakovlev, “Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering,” Glass Phys. Chem. 38(6), 478–490 (2012).
[Crossref]

T. V. Antropova, I. A. Drozdova, T. N. Vasilevskaya, A. V. Volkova, L. E. Ermakova, and M. P. Sidorova, “Structural transformations in thermally modified porous glasses,” Glass Phys. Chem. 33(2), 109–121 (2007).
[Crossref]

Green Chem. (1)

C. Shen, Y. J. Wang, J. H. Xu, Y. C. Lu, and G. S. Luo, “Porous glass beads as a new adsorbent to remove sulfur-containing compounds,” Green Chem. 14(4), 1009–1015 (2012).
[Crossref]

J. Assoc. Lab. Autom. (1)

R. H. Liu, S. B. Munro, T. Nguyen, T. Siuda, D. Suciu, M. Bizak, M. Slota, H. S. Fuji, D. Danley, and A. McShea, “Integrated microfluidic Custom Array device for bacterial genotyping and identification,” J. Assoc. Lab. Autom. 11(6), 360–367 (2006).
[Crossref]

J. Laser Micro Nanoeng. (2)

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
[Crossref]

F. Hashimoto, S. Richter, S. Nolte, Y. Ozeki, and K. Itoh, “Time-resolved micro-Raman measurement of temperature dynamics during high-repetition-rate ultrafast laser microprocessing,” J. Laser Micro Nanoeng. 10(1), 29–32 (2015).
[Crossref]

J. Lumin. (1)

R. Reisfeld, B. Jasinska, V. Levchenko, M. Gorgol, T. Saraidarov, I. Popov, T. Antropova, and E. Rysiakiewicz-Pasek, “Porous glasses as a host of luminescent materials, their applications and site selective determination,” J. Lumin. 169, 440–444 (2016).
[Crossref]

J. Micromech. Microeng. (1)

P. Spicar-Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23(2), 067003 (2013).
[Crossref]

J. Nanopart. Res. (2)

A. Ciżman, T. Marciniszyn, D. Enke, A. Barascu, and R. Poprawski, “Phase transition in NH4HSO4-porous glasses nanocomposites,” J. Nanopart. Res. 15(7), 1756 (2013).
[Crossref] [PubMed]

A. Cizman, T. Antropova, I. Anfimova, I. Drozdova, E. Rysiakiewicz-Pasek, E. B. Radojewska, and R. Poprawski, “Size-driven ferroelectric-paraelectric phase transition in TGS nanocomposites,” J. Nanopart. Res. 15(8), 1807 (2013).
[Crossref] [PubMed]

J. R. Microsc. Soc. (1)

D. W. Joiner, H. Puchtler, and F. Sweat, “Staining of immature collagen by resorcin-fuchsin in infant kidneys,” J. R. Microsc. Soc. 88(4), 461–471 (1968).
[Crossref] [PubMed]

Lab Chip (1)

C. L. Sones, I. N. Katis, P. J. He, B. Mills, M. F. Namiq, P. Shardlow, M. Ibsen, and R. W. Eason, “Laser-induced photo-polymerisation for creation of paper-based fluidic devices,” Lab Chip 14(23), 4567–4574 (2014).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Mater. Lett. (1)

C. Rottman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M. L. Kagan, and D. Avnir, “Doped sol-gel glasses as pH sensors,” Mater. Lett. 13(6), 293–298 (1992).
[Crossref]

Microporous Mesoporous Mater. (1)

V. A. Kreisberg and T. V. Antropova, “Changing the relation between micro-and mesoporosity in porous glasses: The effect of different factors,” Microporous Mesoporous Mater. 190, 128–138 (2014).
[Crossref]

Nanoscale (1)

S. Ge, L. Zhang, Y. Zhang, F. Lan, M. Yan, and J. Yu, “Nanomaterials-modified cellulose paper as a platform for biosensing applications,” Nanoscale 9(13), 4366–4382 (2017).
[Crossref] [PubMed]

Nature (2)

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[Crossref] [PubMed]

M. E. Davis, “Ordered porous materials for emerging applications,” Nature 417(6891), 813–821 (2002).
[Crossref] [PubMed]

P. Soc. Photo-Opt. Ins. (1)

V. P. Veiko, G. K. Kostyuk, P. A. Fomichev, V. A. Chuiko, V. S. Kozhukharov, and E. B. Yakovlev, “New technology of optical components based on local laser thermoconsolidation of porous glasses and coats,” P. Soc. Photo-Opt. Ins. 1328, 201–205 (1990).

Quantum Electron. (1)

V. P. Veiko, G. K. Kostyuk, I. K. Meshkovskii, V. A. Chuiko, and E. B. Yakovlev, “Microoptical elements based on local modification of the porous-glass structure,” Quantum Electron. 13(8), 1693–1696 (1986).

Sensor. Actuat. Biol. Chem. (3)

Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sensor. Actuat. Biol. Chem. 129(2), 544–550 (2008).

H. Segawa, E. Ohnishi, Y. Arai, and K. Yoshida, “Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye,” Sensor. Actuat. Biol. Chem. 94(3), 276–281 (2003).

S. Tao, L. Xu, and J. C. Fanguy, “Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sensor. Actuat. Biol. Chem. 115(1), 158–163 (2006).

Sensors (Basel) (1)

J. Mairhofer, K. Roppert, and P. Ertl, “Microfluidic systems for pathogen sensing: a review,” Sensors (Basel) 9(6), 4804–4823 (2009).
[Crossref] [PubMed]

Other (1)

V. P.Veiko, E. B. Jakovlev and A. Ju. Nikiphorov, “Laser methods of control of porous silica glass structure,” Chem. Process. Adv. Mater., 919–931 (1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic view of integrated fluidic device with following impregnation with several dyes (a), where the barrier supports isolation of individual components in cell. Laser-based methods for porous glass density modification: inner elements of a barrier by femtosecond laser densification (b); surface densification by CO2-laser action (adapted from [14]).
Fig. 2
Fig. 2 Two-step approach to form a through barrier inside the PG plate: (a) femtosecond laser inner densification (λ = 515 nm, τ = 200 fs, Ep = 1.8 μJ) according to the template ((b) - side view of the barrier); (c) PG surface sintering by CO2–laser (λ = 10.6 μm, τ = 190 μs, q = 2·104 W/cm2) to complete the barrier. (d) Final view of 4 independent cells formed in the PG plate. SEM insertion image of the nanoporous glass structure.
Fig. 3
Fig. 3 Tests of the barrier permeability: (a) schematic view. Impregnation process: (b) 1 s, (c) 450 s.
Fig. 4
Fig. 4 Regimes of structural modification inside the PG plate by femtosecond laser pulses presented in the form of energy in the pulse vs the number of laser pulses per spot. Optical images of the densification track formed at Еp = 1.8 μJ and N = 1000 (а, b) and decompaction track formed at Еp = 2.0 μJ, N = 5000 (c, d). These images of densification and decompaction areas were made in linearly polarized light (b, d).
Fig. 5
Fig. 5 Top-view SEM image of the CO2-laser surface-sintered barrier in the PG plate (a). Cross-sectional SEM image of the sintered surface region (b) with its magnified view in (c).
Fig. 6
Fig. 6 Testing of the barriers with full (a) and partial (b) impermeability during PG impregnation by water solutions of rhodamine 6G and fuchsine. The scale bar is 100 μm.
Fig. 7
Fig. 7 Transmission spectra of 5-μm wide regions in the PG before (coloured by the impregnating rhodamine 6G water solution) and beyond (transparent water only) the barrier, with the dry PG region as the reference. The scale bar is 20 μm.
Fig. 8
Fig. 8 Experimental diagram of the barrier permeability in the coordinates «molecular mass – track period». The exponential curve represents the relationship between the molecular masses and the track period, dividing the diagram into the coloured “permeability” and “impermeability” regions with the numbered circles representing the utilized dye molecules and water. The overlapping of the tracks for p < 3 µm results in the heavily damaged barrier (“barrier destruction”).
Fig. 9
Fig. 9 Gas sensing by fluidic cells: two fluidic cells in the PG plate separated by the barrier (a). Impregnation of these cells with thymol blue and bromocresol purple (b). Photometric gas sensing of carbon dioxide in the cell with thymol blue and ammonia gas in the cell with bromocresol purple (с), illustrated by transmission spectra measured in each cell before and after gas interaction (d, e).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M(p)= M max exp( D cp ),

Metrics