Abstract

A key requirement in the field of ultrafast vibrational spectroscopy is to efficiently generate intense tunable narrowband picosecond laser pulses synchronized to a broadband femtosecond laser source. Current nonlinear methods for picosecond pulse generation suffer from complexities in both experimental implementation and pulse frequency tunability. We present here a straightforward method for spectral bandwidth compression that produces frequency tunable picosecond pulses with efficient power conversion. Broadband femtosecond laser pulses are compressed to narrowband picosecond pulses using frequency domain sum-frequency generation of spatially chirped pulses, achieving spectral bandwidths of <20 cm−1 and power conversion efficiency of ∼18%. The experimental design of the bandwidth compressor is presented and its application to stimulated Raman spectroscopy is demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in a second-order nonlinear crystal

M. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F. M. Pigozzo, C. Manzoni, F. Baronio, A.D. Capobianco, and G. Cerullo
Opt. Express 15(14) 8884-8891 (2007)

Femtosecond stimulated Raman spectrometer in the 320-520nm range

E. Pontecorvo, S.M. Kapetanaki, M. Badioli, D. Brida, M. Marangoni, G. Cerullo, and T. Scopigno
Opt. Express 19(2) 1107-1112 (2011)

Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme

M. Mero, A. Sipos, G. Kurdi, and K. Osvay
Opt. Express 19(10) 9646-9655 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated raman: A new approach for high-performance vibrational spectroscopy,” Appl. spectroscopy 57, 1317–1323 (2003).
    [Crossref]
  2. M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Femtosecond time-resolved resonance raman gain spectroscopy in polydiacetylene,” Phys. Rev. B 49, 13259 (1994).
    [Crossref]
  3. D. R. Dietze and R. A. Mathies, “Femtosecond stimulated raman spectroscopy,” ChemPhysChem 17, 1224–1251 (2016).
    [Crossref] [PubMed]
  4. L. Zhu, W. Liu, and C. Fang, “A versatile femtosecond stimulated raman spectroscopy setup with tunable pulses in the visible to near infrared,” Appl. Phys. Lett. 105, 041106 (2014).
    [Crossref]
  5. B. G. Oscar, C. Chen, W. Liu, L. Zhu, and C. Fang, “Dynamic raman line shapes on an evolving excited-state landscape: Insights from tunable femtosecond stimulated raman spectroscopy,” The J. Phys. Chem. A 121, 5428–5441 (2017).
    [Crossref] [PubMed]
  6. S. Nihonyanagi, J. A. Mondal, S. Yamaguchi, and T. Tahara, “Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation,” Annu. review physical chemistry 64, 579–603 (2013).
    [Crossref]
  7. J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363 (2013).
    [Crossref]
  8. D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods,” Rev. scientific instruments 75, 4971–4980 (2004).
    [Crossref]
  9. L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. letters 23, 1594–1596 (1998).
    [Crossref]
  10. H.-P. Chuang and C.-B. Huang, “Wavelength-tunable spectral compression in a dispersion-increasing fiber,” Opt. letters 36, 2848–2850 (2011).
    [Crossref]
  11. Y.-S. Lin and C.-B. Huang, “Large-scale and structure-tunable laser spectral compression in an optical dispersion-increasing fiber,” Opt. Express 25, 18024–18030 (2017).
    [Crossref] [PubMed]
  12. F. Raoult, A. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. letters 23, 1117–1119 (1998).
    [Crossref]
  13. S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557–564 (2006).
    [Crossref]
  14. S. Kovalenko, A. Dobryakov, and N. Ernsting, “An efficient setup for femtosecond stimulated raman spectroscopy,” Rev. Sci. Instruments 82, 063102 (2011).
    [Crossref]
  15. M. Nejbauer, T. M. Kardaś, Y. Stepanenko, and C. Radzewicz, “Spectral compression of femtosecond pulses using chirped volume bragg gratings,” Opt. letters 41, 2394–2397 (2016).
    [Crossref]
  16. H. Luo, L. Qian, P. Yuan, and H. Zhu, “Generation of tunable narrowband pulses initiating from a femtosecond optical parametric amplifier,” Opt. Express 14, 10631–10635 (2006).
    [Crossref] [PubMed]
  17. G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. selected topics quantum electronics 10, 174–180 (2004).
    [Crossref]
  18. R. W. Boyd, Nonlinear optics (Elsevier, 2003).
  19. C. Radzewicz, Y. Band, G. Pearson, and J. Krasinski, “Short pulse nonlinear frequency conversion without group-velocity-mismatch broadening,” Opt. communications 117, 295–302 (1995).
    [Crossref]
  20. A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At. Mol. Opt. Phys. 43, 103001 (2010).
    [Crossref]
  21. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).
  22. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
    [Crossref]
  23. K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient grating photoluminescence spectroscopy: an ultrafast method of gating broadband spectra,” The journal physical chemistry letters 5, 1732–1737 (2014).
    [Crossref]
  24. M. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F. Pigozzo, C. Manzoni, F. Baronio, A. Capobianco, and G. Cerullo, “Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in a second-order nonlinear crystal,” Opt. express 15, 8884–8891 (2007).
    [Crossref] [PubMed]
  25. S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated raman spectroscopy,” The J. chemical physics 121, 3632–3642 (2004).
    [Crossref]
  26. M. Plewicki and R. Levis, “Femtosecond stimulated raman spectroscopy of methanol and acetone in a noncollinear geometry using a supercontinuum probe,” JOSA B 25, 1714–1719 (2008).
    [Crossref]

2017 (2)

B. G. Oscar, C. Chen, W. Liu, L. Zhu, and C. Fang, “Dynamic raman line shapes on an evolving excited-state landscape: Insights from tunable femtosecond stimulated raman spectroscopy,” The J. Phys. Chem. A 121, 5428–5441 (2017).
[Crossref] [PubMed]

Y.-S. Lin and C.-B. Huang, “Large-scale and structure-tunable laser spectral compression in an optical dispersion-increasing fiber,” Opt. Express 25, 18024–18030 (2017).
[Crossref] [PubMed]

2016 (2)

M. Nejbauer, T. M. Kardaś, Y. Stepanenko, and C. Radzewicz, “Spectral compression of femtosecond pulses using chirped volume bragg gratings,” Opt. letters 41, 2394–2397 (2016).
[Crossref]

D. R. Dietze and R. A. Mathies, “Femtosecond stimulated raman spectroscopy,” ChemPhysChem 17, 1224–1251 (2016).
[Crossref] [PubMed]

2014 (2)

L. Zhu, W. Liu, and C. Fang, “A versatile femtosecond stimulated raman spectroscopy setup with tunable pulses in the visible to near infrared,” Appl. Phys. Lett. 105, 041106 (2014).
[Crossref]

K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient grating photoluminescence spectroscopy: an ultrafast method of gating broadband spectra,” The journal physical chemistry letters 5, 1732–1737 (2014).
[Crossref]

2013 (2)

S. Nihonyanagi, J. A. Mondal, S. Yamaguchi, and T. Tahara, “Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation,” Annu. review physical chemistry 64, 579–603 (2013).
[Crossref]

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363 (2013).
[Crossref]

2011 (2)

H.-P. Chuang and C.-B. Huang, “Wavelength-tunable spectral compression in a dispersion-increasing fiber,” Opt. letters 36, 2848–2850 (2011).
[Crossref]

S. Kovalenko, A. Dobryakov, and N. Ernsting, “An efficient setup for femtosecond stimulated raman spectroscopy,” Rev. Sci. Instruments 82, 063102 (2011).
[Crossref]

2010 (1)

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At. Mol. Opt. Phys. 43, 103001 (2010).
[Crossref]

2008 (1)

M. Plewicki and R. Levis, “Femtosecond stimulated raman spectroscopy of methanol and acetone in a noncollinear geometry using a supercontinuum probe,” JOSA B 25, 1714–1719 (2008).
[Crossref]

2007 (1)

2006 (2)

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557–564 (2006).
[Crossref]

H. Luo, L. Qian, P. Yuan, and H. Zhu, “Generation of tunable narrowband pulses initiating from a femtosecond optical parametric amplifier,” Opt. Express 14, 10631–10635 (2006).
[Crossref] [PubMed]

2004 (3)

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. selected topics quantum electronics 10, 174–180 (2004).
[Crossref]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods,” Rev. scientific instruments 75, 4971–4980 (2004).
[Crossref]

S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated raman spectroscopy,” The J. chemical physics 121, 3632–3642 (2004).
[Crossref]

2003 (1)

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated raman: A new approach for high-performance vibrational spectroscopy,” Appl. spectroscopy 57, 1317–1323 (2003).
[Crossref]

1998 (2)

L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. letters 23, 1594–1596 (1998).
[Crossref]

F. Raoult, A. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. letters 23, 1117–1119 (1998).
[Crossref]

1997 (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

1995 (1)

C. Radzewicz, Y. Band, G. Pearson, and J. Krasinski, “Short pulse nonlinear frequency conversion without group-velocity-mismatch broadening,” Opt. communications 117, 295–302 (1995).
[Crossref]

1994 (1)

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Femtosecond time-resolved resonance raman gain spectroscopy in polydiacetylene,” Phys. Rev. B 49, 13259 (1994).
[Crossref]

Band, Y.

C. Radzewicz, Y. Band, G. Pearson, and J. Krasinski, “Short pulse nonlinear frequency conversion without group-velocity-mismatch broadening,” Opt. communications 117, 295–302 (1995).
[Crossref]

Barker, A. J.

K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient grating photoluminescence spectroscopy: an ultrafast method of gating broadband spectra,” The journal physical chemistry letters 5, 1732–1737 (2014).
[Crossref]

Baronio, F.

Born, M.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Boscheron, A.

F. Raoult, A. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. letters 23, 1117–1119 (1998).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear optics (Elsevier, 2003).

Brida, D.

Capobianco, A.

Cerullo, G.

Chatel, B.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At. Mol. Opt. Phys. 43, 103001 (2010).
[Crossref]

Chen, C.

B. G. Oscar, C. Chen, W. Liu, L. Zhu, and C. Fang, “Dynamic raman line shapes on an evolving excited-state landscape: Insights from tunable femtosecond stimulated raman spectroscopy,” The J. Phys. Chem. A 121, 5428–5441 (2017).
[Crossref] [PubMed]

Chen, K.

K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient grating photoluminescence spectroscopy: an ultrafast method of gating broadband spectra,” The journal physical chemistry letters 5, 1732–1737 (2014).
[Crossref]

Chuang, H.-P.

H.-P. Chuang and C.-B. Huang, “Wavelength-tunable spectral compression in a dispersion-increasing fiber,” Opt. letters 36, 2848–2850 (2011).
[Crossref]

Cirmi, G.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Dietze, D. R.

D. R. Dietze and R. A. Mathies, “Femtosecond stimulated raman spectroscopy,” ChemPhysChem 17, 1224–1251 (2016).
[Crossref] [PubMed]

Dobryakov, A.

S. Kovalenko, A. Dobryakov, and N. Ernsting, “An efficient setup for femtosecond stimulated raman spectroscopy,” Rev. Sci. Instruments 82, 063102 (2011).
[Crossref]

Donohue, J. M.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363 (2013).
[Crossref]

Dorchies, F.

F. Raoult, A. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. letters 23, 1117–1119 (1998).
[Crossref]

Ernsting, N.

S. Kovalenko, A. Dobryakov, and N. Ernsting, “An efficient setup for femtosecond stimulated raman spectroscopy,” Rev. Sci. Instruments 82, 063102 (2011).
[Crossref]

Fan, D.

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. selected topics quantum electronics 10, 174–180 (2004).
[Crossref]

Fang, C.

B. G. Oscar, C. Chen, W. Liu, L. Zhu, and C. Fang, “Dynamic raman line shapes on an evolving excited-state landscape: Insights from tunable femtosecond stimulated raman spectroscopy,” The J. Phys. Chem. A 121, 5428–5441 (2017).
[Crossref] [PubMed]

L. Zhu, W. Liu, and C. Fang, “A versatile femtosecond stimulated raman spectroscopy setup with tunable pulses in the visible to near infrared,” Appl. Phys. Lett. 105, 041106 (2014).
[Crossref]

Fedrizzi, A.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363 (2013).
[Crossref]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Gallaher, J. K.

K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient grating photoluminescence spectroscopy: an ultrafast method of gating broadband spectra,” The journal physical chemistry letters 5, 1732–1737 (2014).
[Crossref]

Gilch, P.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557–564 (2006).
[Crossref]

Hattori, Y.

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Femtosecond time-resolved resonance raman gain spectroscopy in polydiacetylene,” Phys. Rev. B 49, 13259 (1994).
[Crossref]

Hodgkiss, J. M.

K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient grating photoluminescence spectroscopy: an ultrafast method of gating broadband spectra,” The journal physical chemistry letters 5, 1732–1737 (2014).
[Crossref]

Huang, C.-B.

Y.-S. Lin and C.-B. Huang, “Large-scale and structure-tunable laser spectral compression in an optical dispersion-increasing fiber,” Opt. Express 25, 18024–18030 (2017).
[Crossref] [PubMed]

H.-P. Chuang and C.-B. Huang, “Wavelength-tunable spectral compression in a dispersion-increasing fiber,” Opt. letters 36, 2848–2850 (2011).
[Crossref]

Husson, D.

F. Raoult, A. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. letters 23, 1117–1119 (1998).
[Crossref]

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Kardas, T. M.

M. Nejbauer, T. M. Kardaś, Y. Stepanenko, and C. Radzewicz, “Spectral compression of femtosecond pulses using chirped volume bragg gratings,” Opt. letters 41, 2394–2397 (2016).
[Crossref]

Kobayashi, T.

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Femtosecond time-resolved resonance raman gain spectroscopy in polydiacetylene,” Phys. Rev. B 49, 13259 (1994).
[Crossref]

Kovalenko, S.

S. Kovalenko, A. Dobryakov, and N. Ernsting, “An efficient setup for femtosecond stimulated raman spectroscopy,” Rev. Sci. Instruments 82, 063102 (2011).
[Crossref]

Krasinski, J.

C. Radzewicz, Y. Band, G. Pearson, and J. Krasinski, “Short pulse nonlinear frequency conversion without group-velocity-mismatch broadening,” Opt. communications 117, 295–302 (1995).
[Crossref]

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Kukura, P.

S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated raman spectroscopy,” The J. chemical physics 121, 3632–3642 (2004).
[Crossref]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods,” Rev. scientific instruments 75, 4971–4980 (2004).
[Crossref]

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated raman: A new approach for high-performance vibrational spectroscopy,” Appl. spectroscopy 57, 1317–1323 (2003).
[Crossref]

Laimgruber, S.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557–564 (2006).
[Crossref]

Lavoie, J.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363 (2013).
[Crossref]

Lee, S.-Y.

S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated raman spectroscopy,” The J. chemical physics 121, 3632–3642 (2004).
[Crossref]

Levis, R.

M. Plewicki and R. Levis, “Femtosecond stimulated raman spectroscopy of methanol and acetone in a noncollinear geometry using a supercontinuum probe,” JOSA B 25, 1714–1719 (2008).
[Crossref]

Lin, Y.-S.

Liu, W.

B. G. Oscar, C. Chen, W. Liu, L. Zhu, and C. Fang, “Dynamic raman line shapes on an evolving excited-state landscape: Insights from tunable femtosecond stimulated raman spectroscopy,” The J. Phys. Chem. A 121, 5428–5441 (2017).
[Crossref] [PubMed]

L. Zhu, W. Liu, and C. Fang, “A versatile femtosecond stimulated raman spectroscopy setup with tunable pulses in the visible to near infrared,” Appl. Phys. Lett. 105, 041106 (2014).
[Crossref]

Luo, H.

Malka, V.

F. Raoult, A. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. letters 23, 1117–1119 (1998).
[Crossref]

Manzoni, C.

Marangoni, M.

Mathies, R. A.

D. R. Dietze and R. A. Mathies, “Femtosecond stimulated raman spectroscopy,” ChemPhysChem 17, 1224–1251 (2016).
[Crossref] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods,” Rev. scientific instruments 75, 4971–4980 (2004).
[Crossref]

S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated raman spectroscopy,” The J. chemical physics 121, 3632–3642 (2004).
[Crossref]

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated raman: A new approach for high-performance vibrational spectroscopy,” Appl. spectroscopy 57, 1317–1323 (2003).
[Crossref]

McCamant, D. W.

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods,” Rev. scientific instruments 75, 4971–4980 (2004).
[Crossref]

S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated raman spectroscopy,” The J. chemical physics 121, 3632–3642 (2004).
[Crossref]

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated raman: A new approach for high-performance vibrational spectroscopy,” Appl. spectroscopy 57, 1317–1323 (2003).
[Crossref]

Migus, A.

F. Raoult, A. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. letters 23, 1117–1119 (1998).
[Crossref]

Modena, A.

F. Raoult, A. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. letters 23, 1117–1119 (1998).
[Crossref]

Mondal, J. A.

S. Nihonyanagi, J. A. Mondal, S. Yamaguchi, and T. Tahara, “Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation,” Annu. review physical chemistry 64, 579–603 (2013).
[Crossref]

Monmayrant, A.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At. Mol. Opt. Phys. 43, 103001 (2010).
[Crossref]

Nejbauer, M.

M. Nejbauer, T. M. Kardaś, Y. Stepanenko, and C. Radzewicz, “Spectral compression of femtosecond pulses using chirped volume bragg gratings,” Opt. letters 41, 2394–2397 (2016).
[Crossref]

Nihonyanagi, S.

S. Nihonyanagi, J. A. Mondal, S. Yamaguchi, and T. Tahara, “Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation,” Annu. review physical chemistry 64, 579–603 (2013).
[Crossref]

Oscar, B. G.

B. G. Oscar, C. Chen, W. Liu, L. Zhu, and C. Fang, “Dynamic raman line shapes on an evolving excited-state landscape: Insights from tunable femtosecond stimulated raman spectroscopy,” The J. Phys. Chem. A 121, 5428–5441 (2017).
[Crossref] [PubMed]

Pearson, G.

C. Radzewicz, Y. Band, G. Pearson, and J. Krasinski, “Short pulse nonlinear frequency conversion without group-velocity-mismatch broadening,” Opt. communications 117, 295–302 (1995).
[Crossref]

Petralli-Mallow, T. P.

L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. letters 23, 1594–1596 (1998).
[Crossref]

Pigozzo, F.

Plewicki, M.

M. Plewicki and R. Levis, “Femtosecond stimulated raman spectroscopy of methanol and acetone in a noncollinear geometry using a supercontinuum probe,” JOSA B 25, 1714–1719 (2008).
[Crossref]

Qian, L.

H. Luo, L. Qian, P. Yuan, and H. Zhu, “Generation of tunable narrowband pulses initiating from a femtosecond optical parametric amplifier,” Opt. Express 14, 10631–10635 (2006).
[Crossref] [PubMed]

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. selected topics quantum electronics 10, 174–180 (2004).
[Crossref]

Quintavalle, M.

Radzewicz, C.

M. Nejbauer, T. M. Kardaś, Y. Stepanenko, and C. Radzewicz, “Spectral compression of femtosecond pulses using chirped volume bragg gratings,” Opt. letters 41, 2394–2397 (2016).
[Crossref]

C. Radzewicz, Y. Band, G. Pearson, and J. Krasinski, “Short pulse nonlinear frequency conversion without group-velocity-mismatch broadening,” Opt. communications 117, 295–302 (1995).
[Crossref]

Raoult, F.

F. Raoult, A. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. letters 23, 1117–1119 (1998).
[Crossref]

Resch, K. J.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363 (2013).
[Crossref]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Richter, L. J.

L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. letters 23, 1594–1596 (1998).
[Crossref]

Sauteret, C.

F. Raoult, A. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. letters 23, 1117–1119 (1998).
[Crossref]

Schachenmayr, H.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557–564 (2006).
[Crossref]

Schmidt, B.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557–564 (2006).
[Crossref]

Stepanenko, Y.

M. Nejbauer, T. M. Kardaś, Y. Stepanenko, and C. Radzewicz, “Spectral compression of femtosecond pulses using chirped volume bragg gratings,” Opt. letters 41, 2394–2397 (2016).
[Crossref]

Stephenson, J. C.

L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. letters 23, 1594–1596 (1998).
[Crossref]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Tahara, T.

S. Nihonyanagi, J. A. Mondal, S. Yamaguchi, and T. Tahara, “Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation,” Annu. review physical chemistry 64, 579–603 (2013).
[Crossref]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Wang, T.

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. selected topics quantum electronics 10, 174–180 (2004).
[Crossref]

Weber, S.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At. Mol. Opt. Phys. 43, 103001 (2010).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Wright, L. G.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363 (2013).
[Crossref]

Xu, G.

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. selected topics quantum electronics 10, 174–180 (2004).
[Crossref]

Yamaguchi, S.

S. Nihonyanagi, J. A. Mondal, S. Yamaguchi, and T. Tahara, “Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation,” Annu. review physical chemistry 64, 579–603 (2013).
[Crossref]

Yoon, S.

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods,” Rev. scientific instruments 75, 4971–4980 (2004).
[Crossref]

Yoshizawa, M.

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Femtosecond time-resolved resonance raman gain spectroscopy in polydiacetylene,” Phys. Rev. B 49, 13259 (1994).
[Crossref]

Yuan, P.

Zhang, D.

S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated raman spectroscopy,” The J. chemical physics 121, 3632–3642 (2004).
[Crossref]

Zhu, C.

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. selected topics quantum electronics 10, 174–180 (2004).
[Crossref]

Zhu, H.

H. Luo, L. Qian, P. Yuan, and H. Zhu, “Generation of tunable narrowband pulses initiating from a femtosecond optical parametric amplifier,” Opt. Express 14, 10631–10635 (2006).
[Crossref] [PubMed]

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. selected topics quantum electronics 10, 174–180 (2004).
[Crossref]

Zhu, L.

B. G. Oscar, C. Chen, W. Liu, L. Zhu, and C. Fang, “Dynamic raman line shapes on an evolving excited-state landscape: Insights from tunable femtosecond stimulated raman spectroscopy,” The J. Phys. Chem. A 121, 5428–5441 (2017).
[Crossref] [PubMed]

L. Zhu, W. Liu, and C. Fang, “A versatile femtosecond stimulated raman spectroscopy setup with tunable pulses in the visible to near infrared,” Appl. Phys. Lett. 105, 041106 (2014).
[Crossref]

Zinth, W.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557–564 (2006).
[Crossref]

Annu. review physical chemistry (1)

S. Nihonyanagi, J. A. Mondal, S. Yamaguchi, and T. Tahara, “Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation,” Annu. review physical chemistry 64, 579–603 (2013).
[Crossref]

Appl. Phys. B (1)

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557–564 (2006).
[Crossref]

Appl. Phys. Lett. (1)

L. Zhu, W. Liu, and C. Fang, “A versatile femtosecond stimulated raman spectroscopy setup with tunable pulses in the visible to near infrared,” Appl. Phys. Lett. 105, 041106 (2014).
[Crossref]

Appl. spectroscopy (1)

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated raman: A new approach for high-performance vibrational spectroscopy,” Appl. spectroscopy 57, 1317–1323 (2003).
[Crossref]

ChemPhysChem (1)

D. R. Dietze and R. A. Mathies, “Femtosecond stimulated raman spectroscopy,” ChemPhysChem 17, 1224–1251 (2016).
[Crossref] [PubMed]

IEEE J. selected topics quantum electronics (1)

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. selected topics quantum electronics 10, 174–180 (2004).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At. Mol. Opt. Phys. 43, 103001 (2010).
[Crossref]

JOSA B (1)

M. Plewicki and R. Levis, “Femtosecond stimulated raman spectroscopy of methanol and acetone in a noncollinear geometry using a supercontinuum probe,” JOSA B 25, 1714–1719 (2008).
[Crossref]

Nat. Photonics (1)

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7, 363 (2013).
[Crossref]

Opt. communications (1)

C. Radzewicz, Y. Band, G. Pearson, and J. Krasinski, “Short pulse nonlinear frequency conversion without group-velocity-mismatch broadening,” Opt. communications 117, 295–302 (1995).
[Crossref]

Opt. Express (2)

Opt. letters (4)

F. Raoult, A. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. letters 23, 1117–1119 (1998).
[Crossref]

M. Nejbauer, T. M. Kardaś, Y. Stepanenko, and C. Radzewicz, “Spectral compression of femtosecond pulses using chirped volume bragg gratings,” Opt. letters 41, 2394–2397 (2016).
[Crossref]

L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. letters 23, 1594–1596 (1998).
[Crossref]

H.-P. Chuang and C.-B. Huang, “Wavelength-tunable spectral compression in a dispersion-increasing fiber,” Opt. letters 36, 2848–2850 (2011).
[Crossref]

Phys. Rev. B (1)

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Femtosecond time-resolved resonance raman gain spectroscopy in polydiacetylene,” Phys. Rev. B 49, 13259 (1994).
[Crossref]

Rev. Sci. Instruments (2)

S. Kovalenko, A. Dobryakov, and N. Ernsting, “An efficient setup for femtosecond stimulated raman spectroscopy,” Rev. Sci. Instruments 82, 063102 (2011).
[Crossref]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Rev. scientific instruments (1)

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods,” Rev. scientific instruments 75, 4971–4980 (2004).
[Crossref]

The J. chemical physics (1)

S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, “Theory of femtosecond stimulated raman spectroscopy,” The J. chemical physics 121, 3632–3642 (2004).
[Crossref]

The J. Phys. Chem. A (1)

B. G. Oscar, C. Chen, W. Liu, L. Zhu, and C. Fang, “Dynamic raman line shapes on an evolving excited-state landscape: Insights from tunable femtosecond stimulated raman spectroscopy,” The J. Phys. Chem. A 121, 5428–5441 (2017).
[Crossref] [PubMed]

The journal physical chemistry letters (1)

K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient grating photoluminescence spectroscopy: an ultrafast method of gating broadband spectra,” The journal physical chemistry letters 5, 1732–1737 (2014).
[Crossref]

Other (2)

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

R. W. Boyd, Nonlinear optics (Elsevier, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) SFG of photons with equal and opposite energies ±Δω about a central frequency ωFF combine to produce the second harmonic ωSH = 2ωFF. Dashed lines represent virtual energy levels. (b) Two pulses of equal and opposite spatial chirp mix together so that all photon combinations produce a narrowband signal pulse at the second harmonic.
Fig. 2
Fig. 2 (a) Experimental configuration (top view) of the frequency-domain bandwidth compressor where the dispersive element is shown as a prism which can be interchanged with a diffraction grating depending on efficiency and compression requirements; AL, achromatic doublet lens; BBO, type-1 nonlinear crystal of thickness 0.5 mm; CL, cylindrical lens; all other non-marked components are plano silver mirrors. (b) Side view of the bandwidth compressor configured in a 2f geometry; the input beam of diameter D is incident on the prism and focused to a strip at the Fourier plane by the achromatic lens. (c) Non-collinear geometry of the 2 input pulses of strip length X to the BBO crystal of length L with a crossing angle α. The iris placed after the crystal blocks the fundamental pulses and the compressed signal pulse propagates along the optical axis of the system.
Fig. 3
Fig. 3 (a) Comparison of the second harmonic generation bandwidth of a 400 nm pulse (black line), sum-frequency generation of chirped pulses using a prism (green line) a grating (blue) showing a spectral bandwidth ΔλSH of 2.73 nm, 0.32 nm and < 0.22 nm respectively. (b) Temporal profile of the bandwidth compressed 400 nm signal generated with a prism (green line) and grating (blue line) showing a Gaussian temporal pulse width a ΔτSH of 0.77 ps and 10.34 ps respectively.
Fig. 4
Fig. 4 The intensity profile of the collimated signal beam, using a cylindrical lens of focal length f = 50 mm. The red curves are intensity plots taken from the experimental data in the x and y axes, which each fit well to a Gaussian (black dashed curves) with a 1/e2 width of 1.68 mm± 0.02 mm.
Fig. 5
Fig. 5 (a) Normalized fine tuning capability shown for a range of ∼2.5 nm about central wavelength λSH = 400 nm. (b) Demonstration of signal tuning over a broad frequency range, showing compressed spectra generated using a grating dispersive element, for system input wavelengths λFF = 800 nm (λSH = 400 nm), λFF = 1200 nm (λSH = 600 nm)and λFF = 1400 nm (λSH = 700 nm).
Fig. 6
Fig. 6 Experimental layout of the (steady state) femtosecond stimulated Raman spectroscopy system; a mode locked Ti:Sapphire amplifier delivers 3 W 100 fs pulses at the central wavelength of 800 nm with a 3 kHz repetition rate, a beam splitter (BS) sends a small portion of the pulse for supercontinuum (SC) generation to generate the broadband probe, while the remaining power is attenuated and sent to the bandwidth compressor for generation of the narrowband Raman pump. Both pulses are overlapped at the sample, and the probe pulse is dispersed and collected on a home built Czerny Turner spectrometer. All non-marked components are plano silver mirrors.
Fig. 7
Fig. 7 Normalized stimulated Raman spectra (blue curves) for (a) methanol and (b) acetone liquids generated using FSRS with the intense narrowband Raman pump generated by the frequency domain bandwidth compressor. The expected Raman peak positions (orange vertical lines) were generated using a spontaneous Raman spectroscopy system (LabRAM HR800) on the same samples.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ λ SH 1 4 δ λ FF = 1 4 ( δ λ FP + δ λ D ) ,
δ λ FP = Δ x 0 δ λ δ x ,
δ λ D = L tan ( α ) δ λ δ x .

Metrics