Abstract

This work experimentally investigates the optical feedback sensitivity of InAs/GaAs quantum dot (Qdot) lasers epitaxially grown on Ge substrate. In comparison with a Qdot laser on GaAs substrate with identical epilayer and cavity structures, the Ge-based laser is found to exhibit lower sensitivity to the optical feedback, although it has a higher epitaxial defect density. Theoretical analysis proves that the high defect density strongly increases the damping factor while slightly reduces the linewidth broadening factor, which lead to high tolerance to the optical feedback. This work suggests the high potential of Qdot lasers on Ge for isolator-free operation in photonic integrated circuits.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon

Heming Huang, Jianan Duan, Daehwan Jung, Alan Y. Liu, Zeyu Zhang, Justin Norman, John E. Bowers, and Frédéric Grillot
J. Opt. Soc. Am. B 35(11) 2780-2787 (2018)

Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge

Yue-Guang Zhou, Cheng Zhou, Chun-Fang Cao, Jiang-Bing Du, Qian Gong, and Cheng Wang
Opt. Express 25(23) 28817-28824 (2017)

Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon

Alan Y. Liu, Tin Komljenovic, Michael L. Davenport, Arthur C. Gossard, and John E. Bowers
Opt. Express 25(9) 9535-9543 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C,” J. Light. Technol. 33(6), 1223–1229 (2015).
    [Crossref]
  2. K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 µm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(6), 082703 (2013).
    [Crossref]
  3. M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
    [Crossref]
  4. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
    [Crossref]
  5. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
    [Crossref]
  6. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  7. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 µm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
    [Crossref] [PubMed]
  8. D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
    [Crossref]
  9. D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3 µm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26(6), 7022–7033 (2018).
    [Crossref] [PubMed]
  10. J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
    [Crossref]
  11. Y. G. Zhou, C. Zhou, C. F. Cao, J. B. Du, Q. Gong, and C. Wang, “Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge,” Opt. Express 25(23), 28817–28824 (2017).
    [Crossref]
  12. C. Wang, Y. G. Zhou, Q. Gong, C. F. Cao, J. B. Du, and C. Zhou, “Defect impacts on the intensity and phase noises of InAs/GaAs quantum dot lasers epitaxially grown on germanium,” presented at International Symposium on Physics and Applications of Laser Dynamics, France, 15-17 Nov. 2017.
  13. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), Chap. 4-5.
  14. L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
    [Crossref]
  15. D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29(10), 1072–1074 (2004).
    [Crossref]
  16. A. Y. Liu, T. Komljenovic, M. L. Davenport, A. C. Gossard, and J. E. Bowers, “Reflection sensitivity of 1.3 µm quantum dot lasers epitaxially grown on silicon,” Opt. Express 25(9), 9535–9543 (2017).
    [Crossref] [PubMed]
  17. S. Wang, Q. Gong, P. Wang, C. Cao, and Y. Li, “High quality InAs quantum dot lasers on germanium substrates,” in International Conference on Transparent Optical Networks, (2015), p. Tu.A4.3.
  18. M. A. Tischler, T. Katsuyama, N. A. El-Masry, and S. M. Bedair, “Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice,” Appl. Phys. Lett. 46(3), 294–296 (1985).
    [Crossref]
  19. R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 µm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
    [Crossref]
  20. A. M. Sanchez, R. Beanland, N. F. Hasbullah, M. Hopkinson, and J. P. R. David, “Correlation between defect density and current leakage in InAs/GaAs quantum dot-in-well structures,” J. Appl. Phys. 106(2), 024502 (2009).
    [Crossref]
  21. G. Huyet, D. O’Brien, S. P. Hegarty, J. G. Mcinerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, and S. S. Mikhrin, “Quantum dot semiconductor lasers with optical feedback,” Phys. Status Solidi (b) 201(2), 345–352 (2004).
    [Crossref]
  22. S. Azouigui, B. Kelleher, S. P. Hegarty, G. Huyet, B. Dagens, F. Lelarge, A. Accard, D. Make, G. O. Le, and K. Merghem, “Coherence collapse and low-frequency fluctuations in quantum-dash based lasers emitting at 1.57 µm,” Opt. Express 15(21), 14155–14162 (2007).
    [Crossref] [PubMed]
  23. S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. L. Gouezigou, A. Accard, A. Martinez, K. Merghem, and F. Grillot, “Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 764–773 (2009).
    [Crossref]
  24. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [Crossref]
  25. G. Brammertz, Y. Mols, S. Degroote, V. Motsnyi, M. Leys, G. Borghs, and M. Caymax, “Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates,” J. Appl. Phys. 99(9), 093514 (2006).
    [Crossref]
  26. J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, and H. Liu, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
    [Crossref] [PubMed]
  27. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999), Chap. 1.
  28. D. Lacombe, A. Ponchet, J. M. Gerard, and O. Cabrol, “Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate,” Appl. Phys. Lett. 70(18), 2398–2400 (1997).
    [Crossref]
  29. J. Ohtsubo, Semiconductor Lasers : Stability, Instability and Chaos, (Springer, 2012), Chap. 5.
  30. F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
    [Crossref]
  31. H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 µm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
    [Crossref]
  32. N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
    [Crossref]
  33. A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, and D. Bimberg, “Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser,” Opt. Express 15(9), 5388–5393 (2007).
    [Crossref] [PubMed]
  34. F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Variation of the feedback sensitivity in a 1.55 µm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
    [Crossref]
  35. C. Wang, J. Even, and F. Grillot, “Phase-amplitude coupling characteristics in directly modulated quantum dot lasers,” Appl. Phys. Lett. 105(22), 221114 (2014).
    [Crossref]
  36. C. Wang, J. P. Zhuang, F. Grillot, and S. C. Chan, “Contribution of off-resonant states to the phase noise of quantum dot lasers,” Opt. Express 24(26), 29872–29881 (2016).
    [Crossref]
  37. K. Sears, M. Buda, H. Tan, and C. Jagadish, “Modeling and characterization of InAs/GaAs quantum dot lasers grown using metal organic chemical vapor deposition,” J. Appl. Phys. 101(1), 013112 (2007).
    [Crossref]
  38. J. Helms and K. Petermann, “A simple analytic expression for the stable operation range of laser diode with optical feedback,” IEEE J. Quantum Electron. 26(5), 833–836 (1990).
    [Crossref]
  39. J. O. Binder and G. D. Cormack, “Mode selection and stability of a semiconductor laser with weak optical feedback,” IEEE J. Quantum Electron. 25(11), 2255–2259 (1989).
    [Crossref]
  40. B. Tromborg and J. Mork, “Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers,” IEEE J. Quantum Electron. 26(4), 642–654 (1990).
    [Crossref]
  41. B. Lingnau, K. Ludge, W. W. Chow, and E. Scholl, “Influencing modulation properties of quantum-dot semiconductor lasers by carrier lifetime engineering,” Appl. Phys. Lett. 101(13), 1755 (2012).
    [Crossref]
  42. C. Wang, F. Grillot, and J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” IEEE J. Quantum Electron. 48(9), 1144–1150 (2012).
    [Crossref]

2018 (3)

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3 µm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26(6), 7022–7033 (2018).
[Crossref] [PubMed]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

2017 (3)

2016 (3)

2015 (1)

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C,” J. Light. Technol. 33(6), 1223–1229 (2015).
[Crossref]

2014 (2)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

C. Wang, J. Even, and F. Grillot, “Phase-amplitude coupling characteristics in directly modulated quantum dot lasers,” Appl. Phys. Lett. 105(22), 221114 (2014).
[Crossref]

2013 (2)

F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[Crossref]

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 µm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(6), 082703 (2013).
[Crossref]

2012 (2)

B. Lingnau, K. Ludge, W. W. Chow, and E. Scholl, “Influencing modulation properties of quantum-dot semiconductor lasers by carrier lifetime engineering,” Appl. Phys. Lett. 101(13), 1755 (2012).
[Crossref]

C. Wang, F. Grillot, and J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” IEEE J. Quantum Electron. 48(9), 1144–1150 (2012).
[Crossref]

2011 (3)

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

2010 (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

2009 (2)

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. L. Gouezigou, A. Accard, A. Martinez, K. Merghem, and F. Grillot, “Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 764–773 (2009).
[Crossref]

A. M. Sanchez, R. Beanland, N. F. Hasbullah, M. Hopkinson, and J. P. R. David, “Correlation between defect density and current leakage in InAs/GaAs quantum dot-in-well structures,” J. Appl. Phys. 106(2), 024502 (2009).
[Crossref]

2008 (2)

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 µm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Variation of the feedback sensitivity in a 1.55 µm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
[Crossref]

2007 (3)

2006 (1)

G. Brammertz, Y. Mols, S. Degroote, V. Motsnyi, M. Leys, G. Borghs, and M. Caymax, “Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates,” J. Appl. Phys. 99(9), 093514 (2006).
[Crossref]

2004 (2)

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. Mcinerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, and S. S. Mikhrin, “Quantum dot semiconductor lasers with optical feedback,” Phys. Status Solidi (b) 201(2), 345–352 (2004).
[Crossref]

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29(10), 1072–1074 (2004).
[Crossref]

2003 (1)

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 µm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[Crossref]

1997 (1)

D. Lacombe, A. Ponchet, J. M. Gerard, and O. Cabrol, “Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate,” Appl. Phys. Lett. 70(18), 2398–2400 (1997).
[Crossref]

1990 (2)

J. Helms and K. Petermann, “A simple analytic expression for the stable operation range of laser diode with optical feedback,” IEEE J. Quantum Electron. 26(5), 833–836 (1990).
[Crossref]

B. Tromborg and J. Mork, “Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers,” IEEE J. Quantum Electron. 26(4), 642–654 (1990).
[Crossref]

1989 (1)

J. O. Binder and G. D. Cormack, “Mode selection and stability of a semiconductor laser with weak optical feedback,” IEEE J. Quantum Electron. 25(11), 2255–2259 (1989).
[Crossref]

1988 (1)

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[Crossref]

1985 (1)

M. A. Tischler, T. Katsuyama, N. A. El-Masry, and S. M. Bedair, “Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice,” Appl. Phys. Lett. 46(3), 294–296 (1985).
[Crossref]

Accard, A.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. L. Gouezigou, A. Accard, A. Martinez, K. Merghem, and F. Grillot, “Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 764–773 (2009).
[Crossref]

S. Azouigui, B. Kelleher, S. P. Hegarty, G. Huyet, B. Dagens, F. Lelarge, A. Accard, D. Make, G. O. Le, and K. Merghem, “Coherence collapse and low-frequency fluctuations in quantum-dash based lasers emitting at 1.57 µm,” Opt. Express 15(21), 14155–14162 (2007).
[Crossref] [PubMed]

Arai, S.

Arakawa, Y.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C,” J. Light. Technol. 33(6), 1223–1229 (2015).
[Crossref]

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 µm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(6), 082703 (2013).
[Crossref]

Azouigui, S.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. L. Gouezigou, A. Accard, A. Martinez, K. Merghem, and F. Grillot, “Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 764–773 (2009).
[Crossref]

S. Azouigui, B. Kelleher, S. P. Hegarty, G. Huyet, B. Dagens, F. Lelarge, A. Accard, D. Make, G. O. Le, and K. Merghem, “Coherence collapse and low-frequency fluctuations in quantum-dash based lasers emitting at 1.57 µm,” Opt. Express 15(21), 14155–14162 (2007).
[Crossref] [PubMed]

Beanland, R.

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, and H. Liu, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

A. M. Sanchez, R. Beanland, N. F. Hasbullah, M. Hopkinson, and J. P. R. David, “Correlation between defect density and current leakage in InAs/GaAs quantum dot-in-well structures,” J. Appl. Phys. 106(2), 024502 (2009).
[Crossref]

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 µm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

Beausoleil, R. G.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

Bedair, S. M.

M. A. Tischler, T. Katsuyama, N. A. El-Masry, and S. M. Bedair, “Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice,” Appl. Phys. Lett. 46(3), 294–296 (1985).
[Crossref]

Bi, L.

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Bimberg, D.

A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, and D. Bimberg, “Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser,” Opt. Express 15(9), 5388–5393 (2007).
[Crossref] [PubMed]

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. Mcinerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, and S. S. Mikhrin, “Quantum dot semiconductor lasers with optical feedback,” Phys. Status Solidi (b) 201(2), 345–352 (2004).
[Crossref]

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999), Chap. 1.

Binder, J. O.

J. O. Binder and G. D. Cormack, “Mode selection and stability of a semiconductor laser with weak optical feedback,” IEEE J. Quantum Electron. 25(11), 2255–2259 (1989).
[Crossref]

Borghs, G.

G. Brammertz, Y. Mols, S. Degroote, V. Motsnyi, M. Leys, G. Borghs, and M. Caymax, “Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates,” J. Appl. Phys. 99(9), 093514 (2006).
[Crossref]

Bowers, J. E.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3 µm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26(6), 7022–7033 (2018).
[Crossref] [PubMed]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 µm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

A. Y. Liu, T. Komljenovic, M. L. Davenport, A. C. Gossard, and J. E. Bowers, “Reflection sensitivity of 1.3 µm quantum dot lasers epitaxially grown on silicon,” Opt. Express 25(9), 9535–9543 (2017).
[Crossref] [PubMed]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Brammertz, G.

G. Brammertz, Y. Mols, S. Degroote, V. Motsnyi, M. Leys, G. Borghs, and M. Caymax, “Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates,” J. Appl. Phys. 99(9), 093514 (2006).
[Crossref]

Buda, M.

K. Sears, M. Buda, H. Tan, and C. Jagadish, “Modeling and characterization of InAs/GaAs quantum dot lasers grown using metal organic chemical vapor deposition,” J. Appl. Phys. 101(1), 013112 (2007).
[Crossref]

Cabrol, O.

D. Lacombe, A. Ponchet, J. M. Gerard, and O. Cabrol, “Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate,” Appl. Phys. Lett. 70(18), 2398–2400 (1997).
[Crossref]

Cao, C.

S. Wang, Q. Gong, P. Wang, C. Cao, and Y. Li, “High quality InAs quantum dot lasers on germanium substrates,” in International Conference on Transparent Optical Networks, (2015), p. Tu.A4.3.

Cao, C. F.

Y. G. Zhou, C. Zhou, C. F. Cao, J. B. Du, Q. Gong, and C. Wang, “Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge,” Opt. Express 25(23), 28817–28824 (2017).
[Crossref]

C. Wang, Y. G. Zhou, Q. Gong, C. F. Cao, J. B. Du, and C. Zhou, “Defect impacts on the intensity and phase noises of InAs/GaAs quantum dot lasers epitaxially grown on germanium,” presented at International Symposium on Physics and Applications of Laser Dynamics, France, 15-17 Nov. 2017.

Capua, A.

Caymax, M.

G. Brammertz, Y. Mols, S. Degroote, V. Motsnyi, M. Leys, G. Borghs, and M. Caymax, “Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates,” J. Appl. Phys. 99(9), 093514 (2006).
[Crossref]

Chan, S. C.

Chen, S.

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, and H. Liu, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Childs, D.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 µm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

Chow, W. W.

B. Lingnau, K. Ludge, W. W. Chow, and E. Scholl, “Influencing modulation properties of quantum-dot semiconductor lasers by carrier lifetime engineering,” Appl. Phys. Lett. 101(13), 1755 (2012).
[Crossref]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), Chap. 4-5.

Cormack, G. D.

J. O. Binder and G. D. Cormack, “Mode selection and stability of a semiconductor laser with weak optical feedback,” IEEE J. Quantum Electron. 25(11), 2255–2259 (1989).
[Crossref]

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), Chap. 4-5.

Dagens, B.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. L. Gouezigou, A. Accard, A. Martinez, K. Merghem, and F. Grillot, “Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 764–773 (2009).
[Crossref]

S. Azouigui, B. Kelleher, S. P. Hegarty, G. Huyet, B. Dagens, F. Lelarge, A. Accard, D. Make, G. O. Le, and K. Merghem, “Coherence collapse and low-frequency fluctuations in quantum-dash based lasers emitting at 1.57 µm,” Opt. Express 15(21), 14155–14162 (2007).
[Crossref] [PubMed]

Davenport, M. L.

David, J. P. R.

A. M. Sanchez, R. Beanland, N. F. Hasbullah, M. Hopkinson, and J. P. R. David, “Correlation between defect density and current leakage in InAs/GaAs quantum dot-in-well structures,” J. Appl. Phys. 106(2), 024502 (2009).
[Crossref]

Degroote, S.

G. Brammertz, Y. Mols, S. Degroote, V. Motsnyi, M. Leys, G. Borghs, and M. Caymax, “Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates,” J. Appl. Phys. 99(9), 093514 (2006).
[Crossref]

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Dong, H. K.

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Du, J. B.

Y. G. Zhou, C. Zhou, C. F. Cao, J. B. Du, Q. Gong, and C. Wang, “Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge,” Opt. Express 25(23), 28817–28824 (2017).
[Crossref]

C. Wang, Y. G. Zhou, Q. Gong, C. F. Cao, J. B. Du, and C. Zhou, “Defect impacts on the intensity and phase noises of InAs/GaAs quantum dot lasers epitaxially grown on germanium,” presented at International Symposium on Physics and Applications of Laser Dynamics, France, 15-17 Nov. 2017.

Eisenstein, G.

Elliott, S.

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

El-Masry, N. A.

M. A. Tischler, T. Katsuyama, N. A. El-Masry, and S. M. Bedair, “Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice,” Appl. Phys. Lett. 46(3), 294–296 (1985).
[Crossref]

Even, J.

C. Wang, J. Even, and F. Grillot, “Phase-amplitude coupling characteristics in directly modulated quantum dot lasers,” Appl. Phys. Lett. 105(22), 221114 (2014).
[Crossref]

F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[Crossref]

C. Wang, F. Grillot, and J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” IEEE J. Quantum Electron. 48(9), 1144–1150 (2012).
[Crossref]

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Feng, K.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

Fiorentino, M.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

Frith, R.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 µm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[Crossref]

Fujikata, J.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C,” J. Light. Technol. 33(6), 1223–1229 (2015).
[Crossref]

Gerard, J. M.

D. Lacombe, A. Ponchet, J. M. Gerard, and O. Cabrol, “Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate,” Appl. Phys. Lett. 70(18), 2398–2400 (1997).
[Crossref]

Gong, Q.

Y. G. Zhou, C. Zhou, C. F. Cao, J. B. Du, Q. Gong, and C. Wang, “Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge,” Opt. Express 25(23), 28817–28824 (2017).
[Crossref]

S. Wang, Q. Gong, P. Wang, C. Cao, and Y. Li, “High quality InAs quantum dot lasers on germanium substrates,” in International Conference on Transparent Optical Networks, (2015), p. Tu.A4.3.

C. Wang, Y. G. Zhou, Q. Gong, C. F. Cao, J. B. Du, and C. Zhou, “Defect impacts on the intensity and phase noises of InAs/GaAs quantum dot lasers epitaxially grown on germanium,” presented at International Symposium on Physics and Applications of Laser Dynamics, France, 15-17 Nov. 2017.

Gossard, A. C.

Gouezigou, O. L.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. L. Gouezigou, A. Accard, A. Martinez, K. Merghem, and F. Grillot, “Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 764–773 (2009).
[Crossref]

Grillot, F.

C. Wang, J. P. Zhuang, F. Grillot, and S. C. Chan, “Contribution of off-resonant states to the phase noise of quantum dot lasers,” Opt. Express 24(26), 29872–29881 (2016).
[Crossref]

C. Wang, J. Even, and F. Grillot, “Phase-amplitude coupling characteristics in directly modulated quantum dot lasers,” Appl. Phys. Lett. 105(22), 221114 (2014).
[Crossref]

F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[Crossref]

C. Wang, F. Grillot, and J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” IEEE J. Quantum Electron. 48(9), 1144–1150 (2012).
[Crossref]

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. L. Gouezigou, A. Accard, A. Martinez, K. Merghem, and F. Grillot, “Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 764–773 (2009).
[Crossref]

F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Variation of the feedback sensitivity in a 1.55 µm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
[Crossref]

Groom, K. M.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 µm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

Grundmann, M.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999), Chap. 1.

Harrison, C. N.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 µm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[Crossref]

Hasbullah, N. F.

A. M. Sanchez, R. Beanland, N. F. Hasbullah, M. Hopkinson, and J. P. R. David, “Correlation between defect density and current leakage in InAs/GaAs quantum dot-in-well structures,” J. Appl. Phys. 106(2), 024502 (2009).
[Crossref]

Hatori, N.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C,” J. Light. Technol. 33(6), 1223–1229 (2015).
[Crossref]

Hegarty, S. P.

Helms, J.

J. Helms and K. Petermann, “A simple analytic expression for the stable operation range of laser diode with optical feedback,” IEEE J. Quantum Electron. 26(5), 833–836 (1990).
[Crossref]

Herrick, R.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

Hogg, R.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Hopkinson, M.

A. M. Sanchez, R. Beanland, N. F. Hasbullah, M. Hopkinson, and J. P. R. David, “Correlation between defect density and current leakage in InAs/GaAs quantum dot-in-well structures,” J. Appl. Phys. 106(2), 024502 (2009).
[Crossref]

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 µm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 µm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[Crossref]

Horikawa, T.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C,” J. Light. Technol. 33(6), 1223–1229 (2015).
[Crossref]

Hu, J.

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Huang, X.

Huyet, G.

Inoue, D.

Jagadish, C.

K. Sears, M. Buda, H. Tan, and C. Jagadish, “Modeling and characterization of InAs/GaAs quantum dot lasers grown using metal organic chemical vapor deposition,” J. Appl. Phys. 101(1), 013112 (2007).
[Crossref]

Jan, C.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

Jiang, P.

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, and H. Liu, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Jones, R.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

Jung, D.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3 µm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26(6), 7022–7033 (2018).
[Crossref] [PubMed]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 µm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

Katsuyama, T.

M. A. Tischler, T. Katsuyama, N. A. El-Masry, and S. M. Bedair, “Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice,” Appl. Phys. Lett. 46(3), 294–296 (1985).
[Crossref]

Kelleher, B.

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Komljenovic, T.

Kuntz, M.

Kurczveil, G.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

Lacombe, D.

D. Lacombe, A. Ponchet, J. M. Gerard, and O. Cabrol, “Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate,” Appl. Phys. Lett. 70(18), 2398–2400 (1997).
[Crossref]

Laemmlin, M.

Le, G. O.

Ledentsov, N. N.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999), Chap. 1.

Lee, M. L.

Lelarge, F.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. L. Gouezigou, A. Accard, A. Martinez, K. Merghem, and F. Grillot, “Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 764–773 (2009).
[Crossref]

S. Azouigui, B. Kelleher, S. P. Hegarty, G. Huyet, B. Dagens, F. Lelarge, A. Accard, D. Make, G. O. Le, and K. Merghem, “Coherence collapse and low-frequency fluctuations in quantum-dash based lasers emitting at 1.57 µm,” Opt. Express 15(21), 14155–14162 (2007).
[Crossref] [PubMed]

Lester, L.

F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Variation of the feedback sensitivity in a 1.55 µm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
[Crossref]

Leys, M.

G. Brammertz, Y. Mols, S. Degroote, V. Motsnyi, M. Leys, G. Borghs, and M. Caymax, “Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates,” J. Appl. Phys. 99(9), 093514 (2006).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Li, Y.

S. Wang, Q. Gong, P. Wang, C. Cao, and Y. Li, “High quality InAs quantum dot lasers on germanium substrates,” in International Conference on Transparent Optical Networks, (2015), p. Tu.A4.3.

Liang, D.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Lin, C.-Y.

F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Variation of the feedback sensitivity in a 1.55 µm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
[Crossref]

Lingnau, B.

B. Lingnau, K. Ludge, W. W. Chow, and E. Scholl, “Influencing modulation properties of quantum-dot semiconductor lasers by carrier lifetime engineering,” Appl. Phys. Lett. 101(13), 1755 (2012).
[Crossref]

Liu, A. W.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Liu, A. Y.

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, and H. Liu, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Liu, H. Y.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 µm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 µm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Ludge, K.

B. Lingnau, K. Ludge, W. W. Chow, and E. Scholl, “Influencing modulation properties of quantum-dot semiconductor lasers by carrier lifetime engineering,” Appl. Phys. Lett. 101(13), 1755 (2012).
[Crossref]

Make, D.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. L. Gouezigou, A. Accard, A. Martinez, K. Merghem, and F. Grillot, “Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 764–773 (2009).
[Crossref]

S. Azouigui, B. Kelleher, S. P. Hegarty, G. Huyet, B. Dagens, F. Lelarge, A. Accard, D. Make, G. O. Le, and K. Merghem, “Coherence collapse and low-frequency fluctuations in quantum-dash based lasers emitting at 1.57 µm,” Opt. Express 15(21), 14155–14162 (2007).
[Crossref] [PubMed]

Martinez, A.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. L. Gouezigou, A. Accard, A. Martinez, K. Merghem, and F. Grillot, “Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 764–773 (2009).
[Crossref]

Mcinerney, J. G.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. Mcinerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, and S. S. Mikhrin, “Quantum dot semiconductor lasers with optical feedback,” Phys. Status Solidi (b) 201(2), 345–352 (2004).
[Crossref]

Merghem, K.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. L. Gouezigou, A. Accard, A. Martinez, K. Merghem, and F. Grillot, “Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 764–773 (2009).
[Crossref]

S. Azouigui, B. Kelleher, S. P. Hegarty, G. Huyet, B. Dagens, F. Lelarge, A. Accard, D. Make, G. O. Le, and K. Merghem, “Coherence collapse and low-frequency fluctuations in quantum-dash based lasers emitting at 1.57 µm,” Opt. Express 15(21), 14155–14162 (2007).
[Crossref] [PubMed]

Mikhelashvili, V.

Mikhrin, S. S.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. Mcinerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, and S. S. Mikhrin, “Quantum dot semiconductor lasers with optical feedback,” Phys. Status Solidi (b) 201(2), 345–352 (2004).
[Crossref]

Mizutani, K.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C,” J. Light. Technol. 33(6), 1223–1229 (2015).
[Crossref]

Mols, Y.

G. Brammertz, Y. Mols, S. Degroote, V. Motsnyi, M. Leys, G. Borghs, and M. Caymax, “Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates,” J. Appl. Phys. 99(9), 093514 (2006).
[Crossref]

Mork, J.

B. Tromborg and J. Mork, “Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers,” IEEE J. Quantum Electron. 26(4), 642–654 (1990).
[Crossref]

Motsnyi, V.

G. Brammertz, Y. Mols, S. Degroote, V. Motsnyi, M. Leys, G. Borghs, and M. Caymax, “Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates,” J. Appl. Phys. 99(9), 093514 (2006).
[Crossref]

Mowbray, D. J.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 µm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 µm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[Crossref]

Naderi, N.

F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Variation of the feedback sensitivity in a 1.55 µm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
[Crossref]

Naderi, N. A.

F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[Crossref]

Nakamura, T.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C,” J. Light. Technol. 33(6), 1223–1229 (2015).
[Crossref]

Nishiyama, N.

Norman, J.

D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3 µm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26(6), 7022–7033 (2018).
[Crossref] [PubMed]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 µm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Norman, J. C.

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

O’Brien, D.

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29(10), 1072–1074 (2004).
[Crossref]

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. Mcinerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, and S. S. Mikhrin, “Quantum dot semiconductor lasers with optical feedback,” Phys. Status Solidi (b) 201(2), 345–352 (2004).
[Crossref]

Ohtsubo, J.

J. Ohtsubo, Semiconductor Lasers : Stability, Instability and Chaos, (Springer, 2012), Chap. 5.

Orchard, J. R.

Petermann, K.

J. Helms and K. Petermann, “A simple analytic expression for the stable operation range of laser diode with optical feedback,” IEEE J. Quantum Electron. 26(5), 833–836 (1990).
[Crossref]

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[Crossref]

Peters, J.

Piels, M.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

Pochet, M.

F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Variation of the feedback sensitivity in a 1.55 µm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
[Crossref]

Ponchet, A.

D. Lacombe, A. Ponchet, J. M. Gerard, and O. Cabrol, “Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate,” Appl. Phys. Lett. 70(18), 2398–2400 (1997).
[Crossref]

Pozzi, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Provost, J. G.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. L. Gouezigou, A. Accard, A. Martinez, K. Merghem, and F. Grillot, “Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 764–773 (2009).
[Crossref]

Rae, T.

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 µm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(6), 082703 (2013).
[Crossref]

Ribbat, C.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. Mcinerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, and S. S. Mikhrin, “Quantum dot semiconductor lasers with optical feedback,” Phys. Status Solidi (b) 201(2), 345–352 (2004).
[Crossref]

Ross, C. A.

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Rozenfeld, L.

Sanchez, A. M.

A. M. Sanchez, R. Beanland, N. F. Hasbullah, M. Hopkinson, and J. P. R. David, “Correlation between defect density and current leakage in InAs/GaAs quantum dot-in-well structures,” J. Appl. Phys. 106(2), 024502 (2009).
[Crossref]

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 µm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

Scholl, E.

B. Lingnau, K. Ludge, W. W. Chow, and E. Scholl, “Influencing modulation properties of quantum-dot semiconductor lasers by carrier lifetime engineering,” Appl. Phys. Lett. 101(13), 1755 (2012).
[Crossref]

Schunk, N.

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[Crossref]

Sears, K.

K. Sears, M. Buda, H. Tan, and C. Jagadish, “Modeling and characterization of InAs/GaAs quantum dot lasers grown using metal organic chemical vapor deposition,” J. Appl. Phys. 101(1), 013112 (2007).
[Crossref]

Seeds, A.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sellers, I. R.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 µm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, and H. Liu, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

Skolnick, M. S.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 µm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, and H. Liu, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

Steer, M. J.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 µm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[Crossref]

Sysak, M. N.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

Tan, H.

K. Sears, M. Buda, H. Tan, and C. Jagadish, “Modeling and characterization of InAs/GaAs quantum dot lasers grown using metal organic chemical vapor deposition,” J. Appl. Phys. 101(1), 013112 (2007).
[Crossref]

Tanabe, K.

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 µm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(6), 082703 (2013).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, and H. Liu, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

Tischler, M. A.

M. A. Tischler, T. Katsuyama, N. A. El-Masry, and S. M. Bedair, “Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice,” Appl. Phys. Lett. 46(3), 294–296 (1985).
[Crossref]

Tromborg, B.

B. Tromborg and J. Mork, “Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers,” IEEE J. Quantum Electron. 26(4), 642–654 (1990).
[Crossref]

Turnlund, K.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

Tutu, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Urino, Y.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C,” J. Light. Technol. 33(6), 1223–1229 (2015).
[Crossref]

Uskov, A. V.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. Mcinerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, and S. S. Mikhrin, “Quantum dot semiconductor lasers with optical feedback,” Phys. Status Solidi (b) 201(2), 345–352 (2004).
[Crossref]

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29(10), 1072–1074 (2004).
[Crossref]

Ustinov, V. M.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. Mcinerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, and S. S. Mikhrin, “Quantum dot semiconductor lasers with optical feedback,” Phys. Status Solidi (b) 201(2), 345–352 (2004).
[Crossref]

Usuki, T.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C,” J. Light. Technol. 33(6), 1223–1229 (2015).
[Crossref]

Wan, Y.

Wang, C.

Y. G. Zhou, C. Zhou, C. F. Cao, J. B. Du, Q. Gong, and C. Wang, “Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge,” Opt. Express 25(23), 28817–28824 (2017).
[Crossref]

C. Wang, J. P. Zhuang, F. Grillot, and S. C. Chan, “Contribution of off-resonant states to the phase noise of quantum dot lasers,” Opt. Express 24(26), 29872–29881 (2016).
[Crossref]

C. Wang, J. Even, and F. Grillot, “Phase-amplitude coupling characteristics in directly modulated quantum dot lasers,” Appl. Phys. Lett. 105(22), 221114 (2014).
[Crossref]

F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[Crossref]

C. Wang, F. Grillot, and J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” IEEE J. Quantum Electron. 48(9), 1144–1150 (2012).
[Crossref]

C. Wang, Y. G. Zhou, Q. Gong, C. F. Cao, J. B. Du, and C. Zhou, “Defect impacts on the intensity and phase noises of InAs/GaAs quantum dot lasers epitaxially grown on germanium,” presented at International Symposium on Physics and Applications of Laser Dynamics, France, 15-17 Nov. 2017.

Wang, P.

S. Wang, Q. Gong, P. Wang, C. Cao, and Y. Li, “High quality InAs quantum dot lasers on germanium substrates,” in International Conference on Transparent Optical Networks, (2015), p. Tu.A4.3.

Wang, S.

S. Wang, Q. Gong, P. Wang, C. Cao, and Y. Li, “High quality InAs quantum dot lasers on germanium substrates,” in International Conference on Transparent Optical Networks, (2015), p. Tu.A4.3.

Wang, T.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Watanabe, K.

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 µm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(6), 082703 (2013).
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, and H. Liu, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

Yamada, K.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C,” J. Light. Technol. 33(6), 1223–1229 (2015).
[Crossref]

Zhang, C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Zhou, C.

Y. G. Zhou, C. Zhou, C. F. Cao, J. B. Du, Q. Gong, and C. Wang, “Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge,” Opt. Express 25(23), 28817–28824 (2017).
[Crossref]

C. Wang, Y. G. Zhou, Q. Gong, C. F. Cao, J. B. Du, and C. Zhou, “Defect impacts on the intensity and phase noises of InAs/GaAs quantum dot lasers epitaxially grown on germanium,” presented at International Symposium on Physics and Applications of Laser Dynamics, France, 15-17 Nov. 2017.

Zhou, Y. G.

Y. G. Zhou, C. Zhou, C. F. Cao, J. B. Du, Q. Gong, and C. Wang, “Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge,” Opt. Express 25(23), 28817–28824 (2017).
[Crossref]

C. Wang, Y. G. Zhou, Q. Gong, C. F. Cao, J. B. Du, and C. Zhou, “Defect impacts on the intensity and phase noises of InAs/GaAs quantum dot lasers epitaxially grown on germanium,” presented at International Symposium on Physics and Applications of Laser Dynamics, France, 15-17 Nov. 2017.

Zhuang, J. P.

Zhukov, A. E.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. Mcinerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, and S. S. Mikhrin, “Quantum dot semiconductor lasers with optical feedback,” Phys. Status Solidi (b) 201(2), 345–352 (2004).
[Crossref]

APL Photonics (1)

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

Appl. Phys. Express (1)

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 µm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(6), 082703 (2013).
[Crossref]

Appl. Phys. Lett. (7)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

M. A. Tischler, T. Katsuyama, N. A. El-Masry, and S. M. Bedair, “Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice,” Appl. Phys. Lett. 46(3), 294–296 (1985).
[Crossref]

D. Lacombe, A. Ponchet, J. M. Gerard, and O. Cabrol, “Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate,” Appl. Phys. Lett. 70(18), 2398–2400 (1997).
[Crossref]

F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Variation of the feedback sensitivity in a 1.55 µm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
[Crossref]

C. Wang, J. Even, and F. Grillot, “Phase-amplitude coupling characteristics in directly modulated quantum dot lasers,” Appl. Phys. Lett. 105(22), 221114 (2014).
[Crossref]

B. Lingnau, K. Ludge, W. W. Chow, and E. Scholl, “Influencing modulation properties of quantum-dot semiconductor lasers by carrier lifetime engineering,” Appl. Phys. Lett. 101(13), 1755 (2012).
[Crossref]

IEEE J. Quantum Electron. (5)

C. Wang, F. Grillot, and J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” IEEE J. Quantum Electron. 48(9), 1144–1150 (2012).
[Crossref]

J. Helms and K. Petermann, “A simple analytic expression for the stable operation range of laser diode with optical feedback,” IEEE J. Quantum Electron. 26(5), 833–836 (1990).
[Crossref]

J. O. Binder and G. D. Cormack, “Mode selection and stability of a semiconductor laser with weak optical feedback,” IEEE J. Quantum Electron. 25(11), 2255–2259 (1989).
[Crossref]

B. Tromborg and J. Mork, “Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers,” IEEE J. Quantum Electron. 26(4), 642–654 (1990).
[Crossref]

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[Crossref]

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. L. Gouezigou, A. Accard, A. Martinez, K. Merghem, and F. Grillot, “Optical feedback tolerance of quantum-dot- and quantum-dash-based semiconductor lasers operating at 1.55 µm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 764–773 (2009).
[Crossref]

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

J. Appl. Phys. (5)

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 µm quantum dot lasers,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

A. M. Sanchez, R. Beanland, N. F. Hasbullah, M. Hopkinson, and J. P. R. David, “Correlation between defect density and current leakage in InAs/GaAs quantum dot-in-well structures,” J. Appl. Phys. 106(2), 024502 (2009).
[Crossref]

G. Brammertz, Y. Mols, S. Degroote, V. Motsnyi, M. Leys, G. Borghs, and M. Caymax, “Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates,” J. Appl. Phys. 99(9), 093514 (2006).
[Crossref]

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 µm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[Crossref]

K. Sears, M. Buda, H. Tan, and C. Jagadish, “Modeling and characterization of InAs/GaAs quantum dot lasers grown using metal organic chemical vapor deposition,” J. Appl. Phys. 101(1), 013112 (2007).
[Crossref]

J. Light. Technol. (1)

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C,” J. Light. Technol. 33(6), 1223–1229 (2015).
[Crossref]

Nat. Photonics (4)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

L. Bi, J. Hu, P. Jiang, H. K. Dong, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Opt. Express (7)

Y. G. Zhou, C. Zhou, C. F. Cao, J. B. Du, Q. Gong, and C. Wang, “Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge,” Opt. Express 25(23), 28817–28824 (2017).
[Crossref]

D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3 µm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26(6), 7022–7033 (2018).
[Crossref] [PubMed]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, and H. Liu, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

S. Azouigui, B. Kelleher, S. P. Hegarty, G. Huyet, B. Dagens, F. Lelarge, A. Accard, D. Make, G. O. Le, and K. Merghem, “Coherence collapse and low-frequency fluctuations in quantum-dash based lasers emitting at 1.57 µm,” Opt. Express 15(21), 14155–14162 (2007).
[Crossref] [PubMed]

A. Y. Liu, T. Komljenovic, M. L. Davenport, A. C. Gossard, and J. E. Bowers, “Reflection sensitivity of 1.3 µm quantum dot lasers epitaxially grown on silicon,” Opt. Express 25(9), 9535–9543 (2017).
[Crossref] [PubMed]

A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, and D. Bimberg, “Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser,” Opt. Express 15(9), 5388–5393 (2007).
[Crossref] [PubMed]

C. Wang, J. P. Zhuang, F. Grillot, and S. C. Chan, “Contribution of off-resonant states to the phase noise of quantum dot lasers,” Opt. Express 24(26), 29872–29881 (2016).
[Crossref]

Opt. Lett. (2)

Phys. Status Solidi (b) (1)

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. Mcinerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, and S. S. Mikhrin, “Quantum dot semiconductor lasers with optical feedback,” Phys. Status Solidi (b) 201(2), 345–352 (2004).
[Crossref]

Other (5)

C. Wang, Y. G. Zhou, Q. Gong, C. F. Cao, J. B. Du, and C. Zhou, “Defect impacts on the intensity and phase noises of InAs/GaAs quantum dot lasers epitaxially grown on germanium,” presented at International Symposium on Physics and Applications of Laser Dynamics, France, 15-17 Nov. 2017.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), Chap. 4-5.

J. Ohtsubo, Semiconductor Lasers : Stability, Instability and Chaos, (Springer, 2012), Chap. 5.

S. Wang, Q. Gong, P. Wang, C. Cao, and Y. Li, “High quality InAs quantum dot lasers on germanium substrates,” in International Conference on Transparent Optical Networks, (2015), p. Tu.A4.3.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Epilayer structure of the Qdot laser grown on Ge.
Fig. 2
Fig. 2 Experimental setup for the investigation of the optical feedback sensitivity.
Fig. 3
Fig. 3 Measured optical spectra of the Qdot lasers (a) on the Ge substrate with Ith=75 mA, and (b) on the GaAs substrate with Ith=60 mA at 1.2×Ith. The insets show the corresponding coupled laser power versus the pump current.
Fig. 4
Fig. 4 Measured intensity noise spectra of (a) the Ge-based Qdot laser and (b) the GaAs-based Qdot laser with and without optical feedback. The pump currents of both lasers are 2.8×Ith.
Fig. 5
Fig. 5 The MNP ratio as a function of the feedback ratio for various pump currents. (a) Qdot laser on Ge; (b) Qdot laser on GaAs.
Fig. 6
Fig. 6 The MNP ratio as a function of the feedback ratio for (a) 6-µm ridge, Ith=120 mA, and for (b) 8-µm ridge, Ith=100 mA Qdot lasers on Ge.
Fig. 7
Fig. 7 (a) Simulated damping factor and LBF versus the SRH lifetime for a fixed output power. (b) The critical feedback level as a function of the SRH lifetime.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f e x t , c = Γ 2 ( 1 + α 2 ) α 4 τ i n 2 R 4 ( 1 R ) 2

Metrics