Abstract

We present an optically addressed non-pixelated spatial light modulator. The system is based on reversible photoalignment of a LC cell using a red light sensitive novel azobenzene photoalignment layer. It is an electrode-free device that manipulates the liquid crystal orientation and consequently the polarization via light without artifacts caused by electrodes. The capability to miniaturize the spatial light modulator allows the integration into a microscope objective. This includes a miniaturized 200 channel optical addressing system based on a VCSEL array and hybrid refractive-diffractive beam shapers. As an application example, the utilization as a microscope objective integrated analog phase contrast modulator is shown.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ferroelectric-liquid-crystal/silicon-integrated-circuit spatial light modulator

L. K. Cotter, T. J. Drabik, R. J. Dillon, and M. A. Handschy
Opt. Lett. 15(5) 291-293 (1990)

Space-domain lock-in amplifier based on a liquid-crystal spatial light modulator

Gregory P. Lousberg, Lars D. Lundeberg, Dmitri L. Boiko, and Eli Kapon
Opt. Lett. 31(7) 990-992 (2006)

Liquid-crystal integrated silicon spatial light modulator

David Armitage and Donald K. Kinell
Appl. Opt. 31(20) 3945-3949 (1992)

References

  • View by:
  • |
  • |
  • |

  1. G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 1–23.
  2. Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
    [Crossref]
  3. C. Lingel, T. Haist, and W. Osten, “Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect,” Appl. Opt. 52(28), 6877–6883 (2013).
    [Crossref] [PubMed]
  4. N. Collings, S. Mias, T. Wilkinson, A. Travis, J. Moore, and W. Crossland, “Optically addressed spatial light modulator performance and applications,” Proc. SPIE 5213, 40–48 (2003).
    [Crossref]
  5. P. Shrestha, Y. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
    [Crossref]
  6. U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, and R. N. Schwartz, “The silicon liquid-crystal light valve,” J. Appl. Phys. 57(4), 1356–1368 (1985).
    [Crossref]
  7. D. Armitage, W. Anderson, and T. Karr, “High-speed spatial light modulator,” IEEE J. Quantum Electron. 21(8), 1241–1248 (1985).
    [Crossref]
  8. A. Natansohn and P. Rochon, “Photoinduced Motions in Azo-Containing Polymers,” Chem. Rev. 102, 4139–4176 (2002).
    [Crossref] [PubMed]
  9. L. Angiolini, “Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals,” Macromol. Chem. Phys. 211, 481 (2010).
    [Crossref]
  10. A. V Bogdanov and A. K. Vorobiev, “ESR and Optical Study of Photo-Orientation in Azobenzene-Containing Liquid-Crystalline Polymer,” J. Phys. Chem. B 117, 12328–12338 (2013).
    [Crossref] [PubMed]
  11. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(1), 1214–1216 (1988).
    [Crossref]
  12. T. Seki, M. Sakuragi, Y. Kawanishi, T. Tamaki, R. Fukuda, K. Ichimura, and Y. Suzuki, “Command surfaces of Langmuir-Blodgett films. Photoregulations of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9(1), 211–218 (1993).
    [Crossref]
  13. S. Furumi and K. Ichimura, “Photogeneration of High Pretilt Angles of Nematic Liquid Crystals by Non-Polarized Light Irradiation of Azobenzene-Containing Polymer Films,” Adv. Funct. Mater. 14, 247–254 (2004).
    [Crossref]
  14. W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
    [Crossref]
  15. V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, “Photoalignment of LCs,” in Photoalignment of Liquid Crystalline Materials (John Wiley & Sons, Ltd, 2008), pp. 69–100.
    [Crossref]
  16. M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roßbach, M. Jetter, and P. Michler, “Room-temperature lasing of electrically pumped red-emitting InP /(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
    [Crossref]
  17. F. Gallego-Gomez, F. del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater. 7, 490–497 (2008).
    [Crossref] [PubMed]
  18. N. Otsuki, N. Fujioka, N. Kawatsuki, and H. Ono, “Photoinduced Orientation and Holographic Recording in Polyester Films Comprising Azobenzene Side-Groups Using 633 nm Red Light,” Mol. Cryst. Liq. Cryst. 458(1), 139–148 (2006).
    [Crossref]
  19. D. S. Correa, M. R. Cardoso, V. C. Goncalves, D. T. Balogh, L. De Boni, and C. R. Mendonca, “Optical birefringence induced by two-photon absorption in polythiophene bearing an azochromophore,” Polymer 49(6), 1562–1566 (2008).
    [Crossref]
  20. C. R. Mendonca, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira, “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun. 273, 435–440 (2007).
    [Crossref]
  21. J. Stumpe, O. Sakhno, Y. Gritsai, R. Rosenhauer, T. Fischer, M. Rutloh, F. Schaal, S. Weidenfeld, M. Jetter, and P. Michler, and others, “Active and Passive LC Based Polarization Elements,” Mol. Cryst. Liq. Cryst. 594(1), 140–149 (2014).
    [Crossref]
  22. F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, and W. Osten, “Tunable non-pixelated spatial polarization shaping including an integrated optical addressing unit,” Proc. SPIE 9181, 91810H (2014).
    [Crossref]
  23. F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, M. Jetter, P. Michler, and W. Osten, Chapter “Polarization Elements,’ in Tunable Micro-Optics, H. Zappe and C. Duppe, eds. (Cambridge University Press, 2015).
  24. M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
    [Crossref]
  25. A. Marquez, I. Moreno, C. Iemmi, A. Lizana, J. Campos, and M. J. Yzuel, “Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization,” Opt. Express 16(3), 1669–1685 (2008).
    [Crossref] [PubMed]
  26. E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9, 5160–5165 (2013).
    [Crossref]

2015 (1)

P. Shrestha, Y. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

2014 (3)

J. Stumpe, O. Sakhno, Y. Gritsai, R. Rosenhauer, T. Fischer, M. Rutloh, F. Schaal, S. Weidenfeld, M. Jetter, and P. Michler, and others, “Active and Passive LC Based Polarization Elements,” Mol. Cryst. Liq. Cryst. 594(1), 140–149 (2014).
[Crossref]

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, and W. Osten, “Tunable non-pixelated spatial polarization shaping including an integrated optical addressing unit,” Proc. SPIE 9181, 91810H (2014).
[Crossref]

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

2013 (3)

E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9, 5160–5165 (2013).
[Crossref]

C. Lingel, T. Haist, and W. Osten, “Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect,” Appl. Opt. 52(28), 6877–6883 (2013).
[Crossref] [PubMed]

A. V Bogdanov and A. K. Vorobiev, “ESR and Optical Study of Photo-Orientation in Azobenzene-Containing Liquid-Crystalline Polymer,” J. Phys. Chem. B 117, 12328–12338 (2013).
[Crossref] [PubMed]

2010 (1)

L. Angiolini, “Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals,” Macromol. Chem. Phys. 211, 481 (2010).
[Crossref]

2009 (2)

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[Crossref]

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roßbach, M. Jetter, and P. Michler, “Room-temperature lasing of electrically pumped red-emitting InP /(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]

2008 (3)

F. Gallego-Gomez, F. del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater. 7, 490–497 (2008).
[Crossref] [PubMed]

D. S. Correa, M. R. Cardoso, V. C. Goncalves, D. T. Balogh, L. De Boni, and C. R. Mendonca, “Optical birefringence induced by two-photon absorption in polythiophene bearing an azochromophore,” Polymer 49(6), 1562–1566 (2008).
[Crossref]

A. Marquez, I. Moreno, C. Iemmi, A. Lizana, J. Campos, and M. J. Yzuel, “Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization,” Opt. Express 16(3), 1669–1685 (2008).
[Crossref] [PubMed]

2007 (1)

C. R. Mendonca, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira, “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun. 273, 435–440 (2007).
[Crossref]

2006 (1)

N. Otsuki, N. Fujioka, N. Kawatsuki, and H. Ono, “Photoinduced Orientation and Holographic Recording in Polyester Films Comprising Azobenzene Side-Groups Using 633 nm Red Light,” Mol. Cryst. Liq. Cryst. 458(1), 139–148 (2006).
[Crossref]

2004 (1)

S. Furumi and K. Ichimura, “Photogeneration of High Pretilt Angles of Nematic Liquid Crystals by Non-Polarized Light Irradiation of Azobenzene-Containing Polymer Films,” Adv. Funct. Mater. 14, 247–254 (2004).
[Crossref]

2003 (1)

N. Collings, S. Mias, T. Wilkinson, A. Travis, J. Moore, and W. Crossland, “Optically addressed spatial light modulator performance and applications,” Proc. SPIE 5213, 40–48 (2003).
[Crossref]

2002 (1)

A. Natansohn and P. Rochon, “Photoinduced Motions in Azo-Containing Polymers,” Chem. Rev. 102, 4139–4176 (2002).
[Crossref] [PubMed]

1993 (1)

T. Seki, M. Sakuragi, Y. Kawanishi, T. Tamaki, R. Fukuda, K. Ichimura, and Y. Suzuki, “Command surfaces of Langmuir-Blodgett films. Photoregulations of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9(1), 211–218 (1993).
[Crossref]

1991 (1)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[Crossref]

1988 (1)

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(1), 1214–1216 (1988).
[Crossref]

1985 (2)

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, and R. N. Schwartz, “The silicon liquid-crystal light valve,” J. Appl. Phys. 57(4), 1356–1368 (1985).
[Crossref]

D. Armitage, W. Anderson, and T. Karr, “High-speed spatial light modulator,” IEEE J. Quantum Electron. 21(8), 1241–1248 (1985).
[Crossref]

Afanasyev, A. D.

E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9, 5160–5165 (2013).
[Crossref]

Anderson, W.

D. Armitage, W. Anderson, and T. Karr, “High-speed spatial light modulator,” IEEE J. Quantum Electron. 21(8), 1241–1248 (1985).
[Crossref]

Andrade, A. A.

C. R. Mendonca, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira, “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun. 273, 435–440 (2007).
[Crossref]

Angiolini, L.

L. Angiolini, “Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals,” Macromol. Chem. Phys. 211, 481 (2010).
[Crossref]

Aoki, K.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(1), 1214–1216 (1988).
[Crossref]

Armitage, D.

D. Armitage, W. Anderson, and T. Karr, “High-speed spatial light modulator,” IEEE J. Quantum Electron. 21(8), 1241–1248 (1985).
[Crossref]

Balogh, D. T.

D. S. Correa, M. R. Cardoso, V. C. Goncalves, D. T. Balogh, L. De Boni, and C. R. Mendonca, “Optical birefringence induced by two-photon absorption in polythiophene bearing an azochromophore,” Polymer 49(6), 1562–1566 (2008).
[Crossref]

Bogdanov, A. V

A. V Bogdanov and A. K. Vorobiev, “ESR and Optical Study of Photo-Orientation in Azobenzene-Containing Liquid-Crystalline Polymer,” J. Phys. Chem. B 117, 12328–12338 (2013).
[Crossref] [PubMed]

Braatz, P. O.

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, and R. N. Schwartz, “The silicon liquid-crystal light valve,” J. Appl. Phys. 57(4), 1356–1368 (1985).
[Crossref]

Campos, J.

Cardoso, M. R.

D. S. Correa, M. R. Cardoso, V. C. Goncalves, D. T. Balogh, L. De Boni, and C. R. Mendonca, “Optical birefringence induced by two-photon absorption in polythiophene bearing an azochromophore,” Polymer 49(6), 1562–1566 (2008).
[Crossref]

Chigrinov, V. G.

E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9, 5160–5165 (2013).
[Crossref]

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, “Photoalignment of LCs,” in Photoalignment of Liquid Crystalline Materials (John Wiley & Sons, Ltd, 2008), pp. 69–100.
[Crossref]

Chu, D.

P. Shrestha, Y. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

Chun, Y.

P. Shrestha, Y. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

Collings, N.

N. Collings, S. Mias, T. Wilkinson, A. Travis, J. Moore, and W. Crossland, “Optically addressed spatial light modulator performance and applications,” Proc. SPIE 5213, 40–48 (2003).
[Crossref]

Correa, D. S.

D. S. Correa, M. R. Cardoso, V. C. Goncalves, D. T. Balogh, L. De Boni, and C. R. Mendonca, “Optical birefringence induced by two-photon absorption in polythiophene bearing an azochromophore,” Polymer 49(6), 1562–1566 (2008).
[Crossref]

Crossland, W.

N. Collings, S. Mias, T. Wilkinson, A. Travis, J. Moore, and W. Crossland, “Optically addressed spatial light modulator performance and applications,” Proc. SPIE 5213, 40–48 (2003).
[Crossref]

De Boni, L.

D. S. Correa, M. R. Cardoso, V. C. Goncalves, D. T. Balogh, L. De Boni, and C. R. Mendonca, “Optical birefringence induced by two-photon absorption in polythiophene bearing an azochromophore,” Polymer 49(6), 1562–1566 (2008).
[Crossref]

C. R. Mendonca, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira, “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun. 273, 435–440 (2007).
[Crossref]

del Monte, F.

F. Gallego-Gomez, F. del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater. 7, 490–497 (2008).
[Crossref] [PubMed]

dos Santos, D. S.

C. R. Mendonca, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira, “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun. 273, 435–440 (2007).
[Crossref]

Efron, U.

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, and R. N. Schwartz, “The silicon liquid-crystal light valve,” J. Appl. Phys. 57(4), 1356–1368 (1985).
[Crossref]

Eichfelder, M.

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roßbach, M. Jetter, and P. Michler, “Room-temperature lasing of electrically pumped red-emitting InP /(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]

Fischer, T.

J. Stumpe, O. Sakhno, Y. Gritsai, R. Rosenhauer, T. Fischer, M. Rutloh, F. Schaal, S. Weidenfeld, M. Jetter, and P. Michler, and others, “Active and Passive LC Based Polarization Elements,” Mol. Cryst. Liq. Cryst. 594(1), 140–149 (2014).
[Crossref]

Fujioka, N.

N. Otsuki, N. Fujioka, N. Kawatsuki, and H. Ono, “Photoinduced Orientation and Holographic Recording in Polyester Films Comprising Azobenzene Side-Groups Using 633 nm Red Light,” Mol. Cryst. Liq. Cryst. 458(1), 139–148 (2006).
[Crossref]

Fukuda, R.

T. Seki, M. Sakuragi, Y. Kawanishi, T. Tamaki, R. Fukuda, K. Ichimura, and Y. Suzuki, “Command surfaces of Langmuir-Blodgett films. Photoregulations of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9(1), 211–218 (1993).
[Crossref]

Furumi, S.

S. Furumi and K. Ichimura, “Photogeneration of High Pretilt Angles of Nematic Liquid Crystals by Non-Polarized Light Irradiation of Azobenzene-Containing Polymer Films,” Adv. Funct. Mater. 14, 247–254 (2004).
[Crossref]

Gallego-Gomez, F.

F. Gallego-Gomez, F. del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater. 7, 490–497 (2008).
[Crossref] [PubMed]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[Crossref]

Goncalves, V. C.

D. S. Correa, M. R. Cardoso, V. C. Goncalves, D. T. Balogh, L. De Boni, and C. R. Mendonca, “Optical birefringence induced by two-photon absorption in polythiophene bearing an azochromophore,” Polymer 49(6), 1562–1566 (2008).
[Crossref]

Grinberg, J.

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, and R. N. Schwartz, “The silicon liquid-crystal light valve,” J. Appl. Phys. 57(4), 1356–1368 (1985).
[Crossref]

Gritsai, Y.

J. Stumpe, O. Sakhno, Y. Gritsai, R. Rosenhauer, T. Fischer, M. Rutloh, F. Schaal, S. Weidenfeld, M. Jetter, and P. Michler, and others, “Active and Passive LC Based Polarization Elements,” Mol. Cryst. Liq. Cryst. 594(1), 140–149 (2014).
[Crossref]

Haist, T.

C. Lingel, T. Haist, and W. Osten, “Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect,” Appl. Opt. 52(28), 6877–6883 (2013).
[Crossref] [PubMed]

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[Crossref]

Hasler, M.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[Crossref]

Hermerschmidt, A.

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 1–23.

Hosoki, A.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(1), 1214–1216 (1988).
[Crossref]

Ichimura, K.

S. Furumi and K. Ichimura, “Photogeneration of High Pretilt Angles of Nematic Liquid Crystals by Non-Polarized Light Irradiation of Azobenzene-Containing Polymer Films,” Adv. Funct. Mater. 14, 247–254 (2004).
[Crossref]

T. Seki, M. Sakuragi, Y. Kawanishi, T. Tamaki, R. Fukuda, K. Ichimura, and Y. Suzuki, “Command surfaces of Langmuir-Blodgett films. Photoregulations of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9(1), 211–218 (1993).
[Crossref]

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(1), 1214–1216 (1988).
[Crossref]

Iemmi, C.

Jetter, M.

J. Stumpe, O. Sakhno, Y. Gritsai, R. Rosenhauer, T. Fischer, M. Rutloh, F. Schaal, S. Weidenfeld, M. Jetter, and P. Michler, and others, “Active and Passive LC Based Polarization Elements,” Mol. Cryst. Liq. Cryst. 594(1), 140–149 (2014).
[Crossref]

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roßbach, M. Jetter, and P. Michler, “Room-temperature lasing of electrically pumped red-emitting InP /(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, M. Jetter, P. Michler, and W. Osten, Chapter “Polarization Elements,’ in Tunable Micro-Optics, H. Zappe and C. Duppe, eds. (Cambridge University Press, 2015).

Karr, T.

D. Armitage, W. Anderson, and T. Karr, “High-speed spatial light modulator,” IEEE J. Quantum Electron. 21(8), 1241–1248 (1985).
[Crossref]

Kawanishi, Y.

T. Seki, M. Sakuragi, Y. Kawanishi, T. Tamaki, R. Fukuda, K. Ichimura, and Y. Suzuki, “Command surfaces of Langmuir-Blodgett films. Photoregulations of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9(1), 211–218 (1993).
[Crossref]

Kawatsuki, N.

N. Otsuki, N. Fujioka, N. Kawatsuki, and H. Ono, “Photoinduced Orientation and Holographic Recording in Polyester Films Comprising Azobenzene Side-Groups Using 633 nm Red Light,” Mol. Cryst. Liq. Cryst. 458(1), 139–148 (2006).
[Crossref]

Kozenkov, V. M.

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, “Photoalignment of LCs,” in Photoalignment of Liquid Crystalline Materials (John Wiley & Sons, Ltd, 2008), pp. 69–100.
[Crossref]

Krüger, S.

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 1–23.

Kwok, H.-S.

E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9, 5160–5165 (2013).
[Crossref]

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, “Photoalignment of LCs,” in Photoalignment of Liquid Crystalline Materials (John Wiley & Sons, Ltd, 2008), pp. 69–100.
[Crossref]

Lazarev, G.

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 1–23.

Lingel, C.

Little, M. J.

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, and R. N. Schwartz, “The silicon liquid-crystal light valve,” J. Appl. Phys. 57(4), 1356–1368 (1985).
[Crossref]

Lizana, A.

Marquez, A.

Meerholz, K.

F. Gallego-Gomez, F. del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater. 7, 490–497 (2008).
[Crossref] [PubMed]

Mendonca, C. R.

D. S. Correa, M. R. Cardoso, V. C. Goncalves, D. T. Balogh, L. De Boni, and C. R. Mendonca, “Optical birefringence induced by two-photon absorption in polythiophene bearing an azochromophore,” Polymer 49(6), 1562–1566 (2008).
[Crossref]

C. R. Mendonca, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira, “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun. 273, 435–440 (2007).
[Crossref]

Mias, S.

N. Collings, S. Mias, T. Wilkinson, A. Travis, J. Moore, and W. Crossland, “Optically addressed spatial light modulator performance and applications,” Proc. SPIE 5213, 40–48 (2003).
[Crossref]

Michler, P.

J. Stumpe, O. Sakhno, Y. Gritsai, R. Rosenhauer, T. Fischer, M. Rutloh, F. Schaal, S. Weidenfeld, M. Jetter, and P. Michler, and others, “Active and Passive LC Based Polarization Elements,” Mol. Cryst. Liq. Cryst. 594(1), 140–149 (2014).
[Crossref]

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roßbach, M. Jetter, and P. Michler, “Room-temperature lasing of electrically pumped red-emitting InP /(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, M. Jetter, P. Michler, and W. Osten, Chapter “Polarization Elements,’ in Tunable Micro-Optics, H. Zappe and C. Duppe, eds. (Cambridge University Press, 2015).

Misoguti, L.

C. R. Mendonca, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira, “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun. 273, 435–440 (2007).
[Crossref]

Moore, J.

N. Collings, S. Mias, T. Wilkinson, A. Travis, J. Moore, and W. Crossland, “Optically addressed spatial light modulator performance and applications,” Proc. SPIE 5213, 40–48 (2003).
[Crossref]

Moreno, I.

Natansohn, A.

A. Natansohn and P. Rochon, “Photoinduced Motions in Azo-Containing Polymers,” Chem. Rev. 102, 4139–4176 (2002).
[Crossref] [PubMed]

Neves, U. M.

C. R. Mendonca, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira, “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun. 273, 435–440 (2007).
[Crossref]

Oliveira, O. N.

C. R. Mendonca, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira, “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun. 273, 435–440 (2007).
[Crossref]

Ono, H.

N. Otsuki, N. Fujioka, N. Kawatsuki, and H. Ono, “Photoinduced Orientation and Holographic Recording in Polyester Films Comprising Azobenzene Side-Groups Using 633 nm Red Light,” Mol. Cryst. Liq. Cryst. 458(1), 139–148 (2006).
[Crossref]

Osten, S.

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 1–23.

Osten, W.

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, and W. Osten, “Tunable non-pixelated spatial polarization shaping including an integrated optical addressing unit,” Proc. SPIE 9181, 91810H (2014).
[Crossref]

C. Lingel, T. Haist, and W. Osten, “Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect,” Appl. Opt. 52(28), 6877–6883 (2013).
[Crossref] [PubMed]

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[Crossref]

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, M. Jetter, P. Michler, and W. Osten, Chapter “Polarization Elements,’ in Tunable Micro-Optics, H. Zappe and C. Duppe, eds. (Cambridge University Press, 2015).

Otsuki, N.

N. Otsuki, N. Fujioka, N. Kawatsuki, and H. Ono, “Photoinduced Orientation and Holographic Recording in Polyester Films Comprising Azobenzene Side-Groups Using 633 nm Red Light,” Mol. Cryst. Liq. Cryst. 458(1), 139–148 (2006).
[Crossref]

Pavinatto, F. J.

C. R. Mendonca, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira, “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun. 273, 435–440 (2007).
[Crossref]

Reif, P. G.

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, and R. N. Schwartz, “The silicon liquid-crystal light valve,” J. Appl. Phys. 57(4), 1356–1368 (1985).
[Crossref]

Reischle, M.

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roßbach, M. Jetter, and P. Michler, “Room-temperature lasing of electrically pumped red-emitting InP /(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]

Rochon, P.

A. Natansohn and P. Rochon, “Photoinduced Motions in Azo-Containing Polymers,” Chem. Rev. 102, 4139–4176 (2002).
[Crossref] [PubMed]

Rosenhauer, R.

J. Stumpe, O. Sakhno, Y. Gritsai, R. Rosenhauer, T. Fischer, M. Rutloh, F. Schaal, S. Weidenfeld, M. Jetter, and P. Michler, and others, “Active and Passive LC Based Polarization Elements,” Mol. Cryst. Liq. Cryst. 594(1), 140–149 (2014).
[Crossref]

Roßbach, R.

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roßbach, M. Jetter, and P. Michler, “Room-temperature lasing of electrically pumped red-emitting InP /(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]

Rutloh, M.

J. Stumpe, O. Sakhno, Y. Gritsai, R. Rosenhauer, T. Fischer, M. Rutloh, F. Schaal, S. Weidenfeld, M. Jetter, and P. Michler, and others, “Active and Passive LC Based Polarization Elements,” Mol. Cryst. Liq. Cryst. 594(1), 140–149 (2014).
[Crossref]

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, and W. Osten, “Tunable non-pixelated spatial polarization shaping including an integrated optical addressing unit,” Proc. SPIE 9181, 91810H (2014).
[Crossref]

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, M. Jetter, P. Michler, and W. Osten, Chapter “Polarization Elements,’ in Tunable Micro-Optics, H. Zappe and C. Duppe, eds. (Cambridge University Press, 2015).

Sakhno, O.

J. Stumpe, O. Sakhno, Y. Gritsai, R. Rosenhauer, T. Fischer, M. Rutloh, F. Schaal, S. Weidenfeld, M. Jetter, and P. Michler, and others, “Active and Passive LC Based Polarization Elements,” Mol. Cryst. Liq. Cryst. 594(1), 140–149 (2014).
[Crossref]

Sakuragi, M.

T. Seki, M. Sakuragi, Y. Kawanishi, T. Tamaki, R. Fukuda, K. Ichimura, and Y. Suzuki, “Command surfaces of Langmuir-Blodgett films. Photoregulations of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9(1), 211–218 (1993).
[Crossref]

Schaal, F.

J. Stumpe, O. Sakhno, Y. Gritsai, R. Rosenhauer, T. Fischer, M. Rutloh, F. Schaal, S. Weidenfeld, M. Jetter, and P. Michler, and others, “Active and Passive LC Based Polarization Elements,” Mol. Cryst. Liq. Cryst. 594(1), 140–149 (2014).
[Crossref]

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, and W. Osten, “Tunable non-pixelated spatial polarization shaping including an integrated optical addressing unit,” Proc. SPIE 9181, 91810H (2014).
[Crossref]

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, M. Jetter, P. Michler, and W. Osten, Chapter “Polarization Elements,’ in Tunable Micro-Optics, H. Zappe and C. Duppe, eds. (Cambridge University Press, 2015).

Schulz, W.-M.

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roßbach, M. Jetter, and P. Michler, “Room-temperature lasing of electrically pumped red-emitting InP /(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]

Schwartz, R. N.

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, and R. N. Schwartz, “The silicon liquid-crystal light valve,” J. Appl. Phys. 57(4), 1356–1368 (1985).
[Crossref]

Seki, T.

T. Seki, M. Sakuragi, Y. Kawanishi, T. Tamaki, R. Fukuda, K. Ichimura, and Y. Suzuki, “Command surfaces of Langmuir-Blodgett films. Photoregulations of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9(1), 211–218 (1993).
[Crossref]

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(1), 1214–1216 (1988).
[Crossref]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[Crossref]

Shrestha, P.

P. Shrestha, Y. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

Shteyner, E. A.

E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9, 5160–5165 (2013).
[Crossref]

Srivastava, A. K.

E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9, 5160–5165 (2013).
[Crossref]

Stumpe, J.

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, and W. Osten, “Tunable non-pixelated spatial polarization shaping including an integrated optical addressing unit,” Proc. SPIE 9181, 91810H (2014).
[Crossref]

J. Stumpe, O. Sakhno, Y. Gritsai, R. Rosenhauer, T. Fischer, M. Rutloh, F. Schaal, S. Weidenfeld, M. Jetter, and P. Michler, and others, “Active and Passive LC Based Polarization Elements,” Mol. Cryst. Liq. Cryst. 594(1), 140–149 (2014).
[Crossref]

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, M. Jetter, P. Michler, and W. Osten, Chapter “Polarization Elements,’ in Tunable Micro-Optics, H. Zappe and C. Duppe, eds. (Cambridge University Press, 2015).

Sun, S.-T.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[Crossref]

Suzuki, Y.

T. Seki, M. Sakuragi, Y. Kawanishi, T. Tamaki, R. Fukuda, K. Ichimura, and Y. Suzuki, “Command surfaces of Langmuir-Blodgett films. Photoregulations of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9(1), 211–218 (1993).
[Crossref]

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(1), 1214–1216 (1988).
[Crossref]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[Crossref]

Tamaki, T.

T. Seki, M. Sakuragi, Y. Kawanishi, T. Tamaki, R. Fukuda, K. Ichimura, and Y. Suzuki, “Command surfaces of Langmuir-Blodgett films. Photoregulations of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9(1), 211–218 (1993).
[Crossref]

Travis, A.

N. Collings, S. Mias, T. Wilkinson, A. Travis, J. Moore, and W. Crossland, “Optically addressed spatial light modulator performance and applications,” Proc. SPIE 5213, 40–48 (2003).
[Crossref]

Vorobiev, A. K.

A. V Bogdanov and A. K. Vorobiev, “ESR and Optical Study of Photo-Orientation in Azobenzene-Containing Liquid-Crystalline Polymer,” J. Phys. Chem. B 117, 12328–12338 (2013).
[Crossref] [PubMed]

Warber, M.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[Crossref]

Weidenfeld, S.

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, and W. Osten, “Tunable non-pixelated spatial polarization shaping including an integrated optical addressing unit,” Proc. SPIE 9181, 91810H (2014).
[Crossref]

J. Stumpe, O. Sakhno, Y. Gritsai, R. Rosenhauer, T. Fischer, M. Rutloh, F. Schaal, S. Weidenfeld, M. Jetter, and P. Michler, and others, “Active and Passive LC Based Polarization Elements,” Mol. Cryst. Liq. Cryst. 594(1), 140–149 (2014).
[Crossref]

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, M. Jetter, P. Michler, and W. Osten, Chapter “Polarization Elements,’ in Tunable Micro-Optics, H. Zappe and C. Duppe, eds. (Cambridge University Press, 2015).

Wiesner, M.

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roßbach, M. Jetter, and P. Michler, “Room-temperature lasing of electrically pumped red-emitting InP /(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]

Wilkinson, T.

N. Collings, S. Mias, T. Wilkinson, A. Travis, J. Moore, and W. Crossland, “Optically addressed spatial light modulator performance and applications,” Proc. SPIE 5213, 40–48 (2003).
[Crossref]

You, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

Yzuel, M. J.

Zhang, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

Zilio, S. C.

C. R. Mendonca, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira, “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun. 273, 435–440 (2007).
[Crossref]

Zwick, S.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[Crossref]

Adv. Funct. Mater. (1)

S. Furumi and K. Ichimura, “Photogeneration of High Pretilt Angles of Nematic Liquid Crystals by Non-Polarized Light Irradiation of Azobenzene-Containing Polymer Films,” Adv. Funct. Mater. 14, 247–254 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roßbach, M. Jetter, and P. Michler, “Room-temperature lasing of electrically pumped red-emitting InP /(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]

Chem. Rev. (1)

A. Natansohn and P. Rochon, “Photoinduced Motions in Azo-Containing Polymers,” Chem. Rev. 102, 4139–4176 (2002).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

D. Armitage, W. Anderson, and T. Karr, “High-speed spatial light modulator,” IEEE J. Quantum Electron. 21(8), 1241–1248 (1985).
[Crossref]

J. Appl. Phys. (1)

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, and R. N. Schwartz, “The silicon liquid-crystal light valve,” J. Appl. Phys. 57(4), 1356–1368 (1985).
[Crossref]

J. Phys. Chem. B (1)

A. V Bogdanov and A. K. Vorobiev, “ESR and Optical Study of Photo-Orientation in Azobenzene-Containing Liquid-Crystalline Polymer,” J. Phys. Chem. B 117, 12328–12338 (2013).
[Crossref] [PubMed]

Langmuir (2)

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(1), 1214–1216 (1988).
[Crossref]

T. Seki, M. Sakuragi, Y. Kawanishi, T. Tamaki, R. Fukuda, K. Ichimura, and Y. Suzuki, “Command surfaces of Langmuir-Blodgett films. Photoregulations of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9(1), 211–218 (1993).
[Crossref]

Light Sci. Appl. (2)

P. Shrestha, Y. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3(10), e213 (2014).
[Crossref]

Macromol. Chem. Phys. (1)

L. Angiolini, “Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals,” Macromol. Chem. Phys. 211, 481 (2010).
[Crossref]

Mol. Cryst. Liq. Cryst. (2)

N. Otsuki, N. Fujioka, N. Kawatsuki, and H. Ono, “Photoinduced Orientation and Holographic Recording in Polyester Films Comprising Azobenzene Side-Groups Using 633 nm Red Light,” Mol. Cryst. Liq. Cryst. 458(1), 139–148 (2006).
[Crossref]

J. Stumpe, O. Sakhno, Y. Gritsai, R. Rosenhauer, T. Fischer, M. Rutloh, F. Schaal, S. Weidenfeld, M. Jetter, and P. Michler, and others, “Active and Passive LC Based Polarization Elements,” Mol. Cryst. Liq. Cryst. 594(1), 140–149 (2014).
[Crossref]

Nat. Mater. (1)

F. Gallego-Gomez, F. del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater. 7, 490–497 (2008).
[Crossref] [PubMed]

Nature (1)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[Crossref]

Opt. Commun. (1)

C. R. Mendonca, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira, “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun. 273, 435–440 (2007).
[Crossref]

Opt. Express (1)

Polymer (1)

D. S. Correa, M. R. Cardoso, V. C. Goncalves, D. T. Balogh, L. De Boni, and C. R. Mendonca, “Optical birefringence induced by two-photon absorption in polythiophene bearing an azochromophore,” Polymer 49(6), 1562–1566 (2008).
[Crossref]

Proc. SPIE (3)

N. Collings, S. Mias, T. Wilkinson, A. Travis, J. Moore, and W. Crossland, “Optically addressed spatial light modulator performance and applications,” Proc. SPIE 5213, 40–48 (2003).
[Crossref]

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[Crossref]

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, and W. Osten, “Tunable non-pixelated spatial polarization shaping including an integrated optical addressing unit,” Proc. SPIE 9181, 91810H (2014).
[Crossref]

Soft Matter (1)

E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and A. D. Afanasyev, “Submicron-scale liquid crystal photo-alignment,” Soft Matter 9, 5160–5165 (2013).
[Crossref]

Other (3)

F. Schaal, M. Rutloh, S. Weidenfeld, J. Stumpe, M. Jetter, P. Michler, and W. Osten, Chapter “Polarization Elements,’ in Tunable Micro-Optics, H. Zappe and C. Duppe, eds. (Cambridge University Press, 2015).

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 1–23.

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, “Photoalignment of LCs,” in Photoalignment of Liquid Crystalline Materials (John Wiley & Sons, Ltd, 2008), pp. 69–100.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the optical addressed spatial polarization shaping system.
Fig. 2
Fig. 2 a) Composition of the photo-addressable cell (PAC); b) Image of a PAC; c) Molecular structure of the initial material of the photo-addressable command layer: Silan IV with terminal attached push-pull bis triethoxy-bis-azobenzene.
Fig. 3
Fig. 3 a) Schematic illustration of planar orientation of liquid crystal molecules; b) Schematic illustration of splay orientation of liquid crystal molecules.
Fig. 4
Fig. 4 a) Temporal optical addressing response of the PAC. Addressing wavelength: 660 nm. Measurement wavelength 900 nm measurement vector parallel to the planar orientation; b) Thermal relaxation of the PAC after turning off the addressing light; c) Induced birefringence as a function of addressing light power density d) Switching time t95 depending on the addressing light power density.
Fig. 5
Fig. 5 a) Schematic diagram of the tunable phase contrast microscope; b) Addressing area of the individual light sources with an overlay of the target phase distribution for the phase contrast image; c) Phase contrast image (w-DIC)of a 86 nm stepheight USAF quartz phase target; d) Image of the microscope setup.
Fig. 6
Fig. 6 a) Un-optimized addressing pattern of the individual light sources with an overlay of the target phase distribution for the phase contrast image (b); b) Un-optimized v-DIC phase contrast image of rabbit taste bud cells c) Optimized addressing pattern for the phase contrast image (d); d) Optimized v-DIC phase contrast image of rabbit taste bud cells.
Fig. 7
Fig. 7 a) Schematic depiction of the 200 channel optical addressing system; b) Image of the addressing system integrated into a microscope objective; c) Array of 200 VCSEL light sources mounted onto a PCB board; d) array of diffractive optical elements; e) Axicon mounted onto distance ring.

Metrics