A. R. Pawloski, A. Acheta, S. Bell, B. La Fontaine, T. Wallow, and H. J. Levinson, “The transfer of photoresist ler through etch,” in Advances in Resist Technology and Processing XXIII, 6153 (SPIE, 2006), p. 615318.
T. H. Naylor, J. L. Balintfy, D. S. Burdick, and K. Chu, “Computer simulation techniques,” Tech. rep., Wiley (1966).
M. Heusinger, M. Banasch, and U. D. Zeitner, “Rowland ghost suppression in high efficiency spectrometer gratings fabricated by e-beam lithography,” Opt. Express 25, 6182–6191 (2017).
[Crossref]
[PubMed]
M. Heusinger, M. Banasch, T. Flügel-Paul, and U. D. Zeitner, “Investigation and optimization of rowland ghosts in high efficiency spectrometer gratings fabricated by e-beam lithography,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, 9759 (SPIE, 2016), p. 97590A.
H. Gross, S. Heidenreich, and M. Bär, “Impact of different stochastic line edge roughness patterns on measurements in scatterometry-a simulation study,” Measurement 98, 339–346 (2017).
[Crossref]
H. Gross, M.-A. Henn, S. Heidenreich, A. Rathsfeld, and M. Bär, “Modeling of line roughness and its impact on the diffraction intensities and the reconstructed critical dimensions in scatterometry,” Appl. Opt. 51, 7384–7394 (2012).
[Crossref]
[PubMed]
A. R. Pawloski, A. Acheta, S. Bell, B. La Fontaine, T. Wallow, and H. J. Levinson, “The transfer of photoresist ler through etch,” in Advances in Resist Technology and Processing XXIII, 6153 (SPIE, 2006), p. 615318.
G. Kopp, P. Pilewskie, C. Belting, Z. Castleman, G. Drake, J. Espejo, K. Heuerman, B. Lamprecht, P. Smith, and B. Vermeer, “Radiometric absolute accuracy improvements for imaging spectrometry with hysics,” in Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, (IEEE, 2013), pp. 3518–3521.
U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys. A 109, 789–796 (2012).
[Crossref]
B. C. Bergner, T. A. Germer, and T. J. Suleski, “Effective medium approximations for modeling optical reflectance from gratings with rough edges,” JOSA A 27, 1083–1090 (2010).
[Crossref]
[PubMed]
S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence imaging spectrometer concepts for the earth explorer mission candidate flex,” in ICSO 2012, 10564 (SPIE, 2017), p. 105641W.
D. Lobb and I. Bhatti, “Applications of immersed diffraction gratings in earth observation from space,” in ICSO 2010, 10565 (SPIE, 2017), p. 105651M.
J. Bischoff and K. Hehl, “Scatterometry modeling for gratings with roughness and irregularities,” in Metrology, Inspection, and Process Control for Microlithography XXX, 9778 (SPIE, 2016), p. 977804.
S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence imaging spectrometer concepts for the earth explorer mission candidate flex,” in ICSO 2012, 10564 (SPIE, 2017), p. 105641W.
T. H. Naylor, J. L. Balintfy, D. S. Burdick, and K. Chu, “Computer simulation techniques,” Tech. rep., Wiley (1966).
G. Kopp, P. Pilewskie, C. Belting, Z. Castleman, G. Drake, J. Espejo, K. Heuerman, B. Lamprecht, P. Smith, and B. Vermeer, “Radiometric absolute accuracy improvements for imaging spectrometry with hysics,” in Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, (IEEE, 2013), pp. 3518–3521.
J. E. Harvey, N. Choi, S. Schroeder, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51, 013402 (2012).
[Crossref]
A. Krywonos, J. E. Harvey, and N. Choi, “Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles,” JOSA A 28, 1121–1138 (2011).
[Crossref]
[PubMed]
T. H. Naylor, J. L. Balintfy, D. S. Burdick, and K. Chu, “Computer simulation techniques,” Tech. rep., Wiley (1966).
B. Harnisch, A. Deep, R. Vink, and C. Coatantiec, “Grating scattering brdf and imaging performances: A test survey performed in the frame of the flex mission,” in ICSO 2012, 10564 (SPIE, 2017), p. 105642P.
V. Constantoudis, G. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. ii. scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. & Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 1019–1026 (2003).
[Crossref]
E. Gogolides, V. Constantoudis, and G. Kokkoris, “Towards an integrated line edge roughness understanding: metrology, characterization, and plasma etching transfer,” in Advanced Etch Technology for Nanopatterning II, 8685 (SPIE, 2013), p. 868505.
B. Guldimann, A. Deep, and R. Vink, “Overview on grating developments at esa,” CEAS Space J. 7, 433–451 (2015).
[Crossref]
B. Harnisch, A. Deep, R. Vink, and C. Coatantiec, “Grating scattering brdf and imaging performances: A test survey performed in the frame of the flex mission,” in ICSO 2012, 10564 (SPIE, 2017), p. 105642P.
S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence imaging spectrometer concepts for the earth explorer mission candidate flex,” in ICSO 2012, 10564 (SPIE, 2017), p. 105641W.
G. Kopp, P. Pilewskie, C. Belting, Z. Castleman, G. Drake, J. Espejo, K. Heuerman, B. Lamprecht, P. Smith, and B. Vermeer, “Radiometric absolute accuracy improvements for imaging spectrometry with hysics,” in Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, (IEEE, 2013), pp. 3518–3521.
S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence imaging spectrometer concepts for the earth explorer mission candidate flex,” in ICSO 2012, 10564 (SPIE, 2017), p. 105641W.
S. Schröder, D. Unglaub, M. Trost, X. Cheng, J. Zhang, and A. Duparré, “Spectral angle resolved scattering of thin film coatings,” Appl. Opt. 53, A35–A41 (2014).
[Crossref]
[PubMed]
J. E. Harvey, N. Choi, S. Schroeder, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51, 013402 (2012).
[Crossref]
S. Schröder, A. Duparré, L. Coriand, A. Tünnermann, D. H. Penalver, and J. E. Harvey, “Modeling of light scattering in different regimes of surface roughness,” Opt. Express 19, 9820–9835 (2011).
[Crossref]
[PubMed]
T. M. Elfouhaily and C.-A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14, R1–R40 (2004).
[Crossref]
G. Kopp, P. Pilewskie, C. Belting, Z. Castleman, G. Drake, J. Espejo, K. Heuerman, B. Lamprecht, P. Smith, and B. Vermeer, “Radiometric absolute accuracy improvements for imaging spectrometry with hysics,” in Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, (IEEE, 2013), pp. 3518–3521.
M. Heusinger, T. Flügel-Paul, and U.-D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122, 222 (2016).
[Crossref]
M. Heusinger, M. Banasch, T. Flügel-Paul, and U. D. Zeitner, “Investigation and optimization of rowland ghosts in high efficiency spectrometer gratings fabricated by e-beam lithography,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, 9759 (SPIE, 2016), p. 97590A.
M. Kroneberger and S. Fray, “Scattering from reflective diffraction gratings: the challenges of measurement and simulation,” Adv. Opt. Technol. 6, 379–386 (2017).
T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with kirchhoff-boundaries as a model based description for line edge roughness (ler) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).
[Crossref]
U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys. A 109, 789–796 (2012).
[Crossref]
M. Moharam, E. B. Grann, D. A. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” JOSA A 12, 1068–1076 (1995).
[Crossref]
B. C. Bergner, T. A. Germer, and T. J. Suleski, “Effective medium approximations for modeling optical reflectance from gratings with rough edges,” JOSA A 27, 1083–1090 (2010).
[Crossref]
[PubMed]
E. Marx, T. A. Germer, T. V. Vorburger, and B. C. Park, “Angular distribution of light scattered from a sinusoidal grating,” Appl. Opt. 39, 4473–4485 (2000).
[Crossref]
T. A. Germer, “Modeling the effect of line profile variation on optical critical dimension metrology,” in Advanced Lithography, (SPIE, 2007), pp. 65180Z.
[Crossref]
E. N. Glytsis, “Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis,” JOSA A 19, 702–715 (2002).
[Crossref]
[PubMed]
V. Constantoudis, G. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. ii. scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. & Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 1019–1026 (2003).
[Crossref]
E. Gogolides, V. Constantoudis, and G. Kokkoris, “Towards an integrated line edge roughness understanding: metrology, characterization, and plasma etching transfer,” in Advanced Etch Technology for Nanopatterning II, 8685 (SPIE, 2013), p. 868505.
M. Moharam, E. B. Grann, D. A. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” JOSA A 12, 1068–1076 (1995).
[Crossref]
D. A. Pommet, M. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” JOSA A 11, 1827–1834 (1994).
[Crossref]
H. Gross, S. Heidenreich, and M. Bär, “Impact of different stochastic line edge roughness patterns on measurements in scatterometry-a simulation study,” Measurement 98, 339–346 (2017).
[Crossref]
H. Gross, M.-A. Henn, S. Heidenreich, A. Rathsfeld, and M. Bär, “Modeling of line roughness and its impact on the diffraction intensities and the reconstructed critical dimensions in scatterometry,” Appl. Opt. 51, 7384–7394 (2012).
[Crossref]
[PubMed]
T. M. Elfouhaily and C.-A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14, R1–R40 (2004).
[Crossref]
B. Guldimann, A. Deep, and R. Vink, “Overview on grating developments at esa,” CEAS Space J. 7, 433–451 (2015).
[Crossref]
T. Verduin, P. Kruit, and C. W. Hagen, “Determination of line edge roughness in low-dose top-down scanning electron microscopy images,” J. Micro/Nanolithography, MEMS MOEMS 13, 033009 (2014).
[Crossref]
M. H. Madsen and P.-E. Hansen, “Scatterometry: A fast and robust measurements of nano-textured surfaces,” Surf. Topogr. Metrol. Prop. 4, 023003 (2016).
[Crossref]
B. Harnisch, A. Deep, R. Vink, and C. Coatantiec, “Grating scattering brdf and imaging performances: A test survey performed in the frame of the flex mission,” in ICSO 2012, 10564 (SPIE, 2017), p. 105642P.
S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence imaging spectrometer concepts for the earth explorer mission candidate flex,” in ICSO 2012, 10564 (SPIE, 2017), p. 105641W.
J. E. Harvey, N. Choi, S. Schroeder, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51, 013402 (2012).
[Crossref]
A. Krywonos, J. E. Harvey, and N. Choi, “Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles,” JOSA A 28, 1121–1138 (2011).
[Crossref]
[PubMed]
S. Schröder, A. Duparré, L. Coriand, A. Tünnermann, D. H. Penalver, and J. E. Harvey, “Modeling of light scattering in different regimes of surface roughness,” Opt. Express 19, 9820–9835 (2011).
[Crossref]
[PubMed]
U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys. A 109, 789–796 (2012).
[Crossref]
J. Bischoff and K. Hehl, “Scatterometry modeling for gratings with roughness and irregularities,” in Metrology, Inspection, and Process Control for Microlithography XXX, 9778 (SPIE, 2016), p. 977804.
H. Gross, S. Heidenreich, and M. Bär, “Impact of different stochastic line edge roughness patterns on measurements in scatterometry-a simulation study,” Measurement 98, 339–346 (2017).
[Crossref]
H. Gross, M.-A. Henn, S. Heidenreich, A. Rathsfeld, and M. Bär, “Modeling of line roughness and its impact on the diffraction intensities and the reconstructed critical dimensions in scatterometry,” Appl. Opt. 51, 7384–7394 (2012).
[Crossref]
[PubMed]
G. Kopp, P. Pilewskie, C. Belting, Z. Castleman, G. Drake, J. Espejo, K. Heuerman, B. Lamprecht, P. Smith, and B. Vermeer, “Radiometric absolute accuracy improvements for imaging spectrometry with hysics,” in Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, (IEEE, 2013), pp. 3518–3521.
M. Heusinger, M. Banasch, and U. D. Zeitner, “Rowland ghost suppression in high efficiency spectrometer gratings fabricated by e-beam lithography,” Opt. Express 25, 6182–6191 (2017).
[Crossref]
[PubMed]
M. Heusinger, T. Flügel-Paul, and U.-D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122, 222 (2016).
[Crossref]
M. Heusinger, M. Banasch, T. Flügel-Paul, and U. D. Zeitner, “Investigation and optimization of rowland ghosts in high efficiency spectrometer gratings fabricated by e-beam lithography,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, 9759 (SPIE, 2016), p. 97590A.
M. Sharpe and D. Irish, “Straylight in diffraction grating monochromators,” Opt. acta 25, 861–893 (1978).
[Crossref]
U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys. A 109, 789–796 (2012).
[Crossref]
B. Schnabel and E.-B. Kley, “On the influence of the e-beam writer address grid on the optical quality of high-frequency gratings,” Microelectron. Eng. 57, 327–333 (2001).
[Crossref]
E. Gogolides, V. Constantoudis, and G. Kokkoris, “Towards an integrated line edge roughness understanding: metrology, characterization, and plasma etching transfer,” in Advanced Etch Technology for Nanopatterning II, 8685 (SPIE, 2013), p. 868505.
G. Kopp, P. Pilewskie, C. Belting, Z. Castleman, G. Drake, J. Espejo, K. Heuerman, B. Lamprecht, P. Smith, and B. Vermeer, “Radiometric absolute accuracy improvements for imaging spectrometry with hysics,” in Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, (IEEE, 2013), pp. 3518–3521.
S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence imaging spectrometer concepts for the earth explorer mission candidate flex,” in ICSO 2012, 10564 (SPIE, 2017), p. 105641W.
M. Kroneberger and S. Fray, “Scattering from reflective diffraction gratings: the challenges of measurement and simulation,” Adv. Opt. Technol. 6, 379–386 (2017).
T. Verduin, P. Kruit, and C. W. Hagen, “Determination of line edge roughness in low-dose top-down scanning electron microscopy images,” J. Micro/Nanolithography, MEMS MOEMS 13, 033009 (2014).
[Crossref]
A. Krywonos, J. E. Harvey, and N. Choi, “Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles,” JOSA A 28, 1121–1138 (2011).
[Crossref]
[PubMed]
A. R. Pawloski, A. Acheta, S. Bell, B. La Fontaine, T. Wallow, and H. J. Levinson, “The transfer of photoresist ler through etch,” in Advances in Resist Technology and Processing XXIII, 6153 (SPIE, 2006), p. 615318.
G. Kopp, P. Pilewskie, C. Belting, Z. Castleman, G. Drake, J. Espejo, K. Heuerman, B. Lamprecht, P. Smith, and B. Vermeer, “Radiometric absolute accuracy improvements for imaging spectrometry with hysics,” in Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, (IEEE, 2013), pp. 3518–3521.
H. Rigneault, F. Lemarchand, and A. Sentenac, “Dipole radiation into grating structures,” JOSA A 17, 1048–1058 (2000).
[Crossref]
[PubMed]
A. R. Pawloski, A. Acheta, S. Bell, B. La Fontaine, T. Wallow, and H. J. Levinson, “The transfer of photoresist ler through etch,” in Advances in Resist Technology and Processing XXIII, 6153 (SPIE, 2006), p. 615318.
D. Lobb and I. Bhatti, “Applications of immersed diffraction gratings in earth observation from space,” in ICSO 2010, 10565 (SPIE, 2017), p. 105651M.
C. A. Palmer and E. G. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).
Y. Zhao, G.-C. Wang, and T.-M. Lu, Characterization of Amorphous and Crystalline Rough Surface – Principles and Applications (Elsevier, 2000).
C. A. Mack, “Analytical expression for impact of linewidth roughness on critical dimension uniformity,” J. Micro/Nanolithography, MEMS MOEMS 13, 020501 (2014).
[Crossref]
M. H. Madsen and P.-E. Hansen, “Scatterometry: A fast and robust measurements of nano-textured surfaces,” Surf. Topogr. Metrol. Prop. 4, 023003 (2016).
[Crossref]
U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys. A 109, 789–796 (2012).
[Crossref]
M. Moharam, E. B. Grann, D. A. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” JOSA A 12, 1068–1076 (1995).
[Crossref]
D. A. Pommet, M. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” JOSA A 11, 1827–1834 (1994).
[Crossref]
T. H. Naylor, J. L. Balintfy, D. S. Burdick, and K. Chu, “Computer simulation techniques,” Tech. rep., Wiley (1966).
U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys. A 109, 789–796 (2012).
[Crossref]
T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with kirchhoff-boundaries as a model based description for line edge roughness (ler) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).
[Crossref]
C. A. Palmer and E. G. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).
V. Constantoudis, G. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. ii. scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. & Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 1019–1026 (2003).
[Crossref]
A. R. Pawloski, A. Acheta, S. Bell, B. La Fontaine, T. Wallow, and H. J. Levinson, “The transfer of photoresist ler through etch,” in Advances in Resist Technology and Processing XXIII, 6153 (SPIE, 2006), p. 615318.
T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with kirchhoff-boundaries as a model based description for line edge roughness (ler) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).
[Crossref]
G. Kopp, P. Pilewskie, C. Belting, Z. Castleman, G. Drake, J. Espejo, K. Heuerman, B. Lamprecht, P. Smith, and B. Vermeer, “Radiometric absolute accuracy improvements for imaging spectrometry with hysics,” in Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, (IEEE, 2013), pp. 3518–3521.
M. Moharam, E. B. Grann, D. A. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” JOSA A 12, 1068–1076 (1995).
[Crossref]
D. A. Pommet, M. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” JOSA A 11, 1827–1834 (1994).
[Crossref]
T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with kirchhoff-boundaries as a model based description for line edge roughness (ler) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).
[Crossref]
H. Rigneault, F. Lemarchand, and A. Sentenac, “Dipole radiation into grating structures,” JOSA A 17, 1048–1058 (2000).
[Crossref]
[PubMed]
B. Schnabel and E.-B. Kley, “On the influence of the e-beam writer address grid on the optical quality of high-frequency gratings,” Microelectron. Eng. 57, 327–333 (2001).
[Crossref]
S. Schröder, D. Unglaub, M. Trost, X. Cheng, J. Zhang, and A. Duparré, “Spectral angle resolved scattering of thin film coatings,” Appl. Opt. 53, A35–A41 (2014).
[Crossref]
[PubMed]
S. Schröder, A. Duparré, L. Coriand, A. Tünnermann, D. H. Penalver, and J. E. Harvey, “Modeling of light scattering in different regimes of surface roughness,” Opt. Express 19, 9820–9835 (2011).
[Crossref]
[PubMed]
J. E. Harvey, N. Choi, S. Schroeder, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51, 013402 (2012).
[Crossref]
T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with kirchhoff-boundaries as a model based description for line edge roughness (ler) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).
[Crossref]
H. Rigneault, F. Lemarchand, and A. Sentenac, “Dipole radiation into grating structures,” JOSA A 17, 1048–1058 (2000).
[Crossref]
[PubMed]
M. Sharpe and D. Irish, “Straylight in diffraction grating monochromators,” Opt. acta 25, 861–893 (1978).
[Crossref]
G. Kopp, P. Pilewskie, C. Belting, Z. Castleman, G. Drake, J. Espejo, K. Heuerman, B. Lamprecht, P. Smith, and B. Vermeer, “Radiometric absolute accuracy improvements for imaging spectrometry with hysics,” in Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, (IEEE, 2013), pp. 3518–3521.
J. C. Stover, Optical Scattering: Measurement and Analysis (SPIE Optical Engineering, 1995).
[Crossref]
B. C. Bergner, T. A. Germer, and T. J. Suleski, “Effective medium approximations for modeling optical reflectance from gratings with rough edges,” JOSA A 27, 1083–1090 (2010).
[Crossref]
[PubMed]
V. Constantoudis, G. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. ii. scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. & Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 1019–1026 (2003).
[Crossref]
T. Verduin, P. Kruit, and C. W. Hagen, “Determination of line edge roughness in low-dose top-down scanning electron microscopy images,” J. Micro/Nanolithography, MEMS MOEMS 13, 033009 (2014).
[Crossref]
G. Kopp, P. Pilewskie, C. Belting, Z. Castleman, G. Drake, J. Espejo, K. Heuerman, B. Lamprecht, P. Smith, and B. Vermeer, “Radiometric absolute accuracy improvements for imaging spectrometry with hysics,” in Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, (IEEE, 2013), pp. 3518–3521.
B. Guldimann, A. Deep, and R. Vink, “Overview on grating developments at esa,” CEAS Space J. 7, 433–451 (2015).
[Crossref]
B. Harnisch, A. Deep, R. Vink, and C. Coatantiec, “Grating scattering brdf and imaging performances: A test survey performed in the frame of the flex mission,” in ICSO 2012, 10564 (SPIE, 2017), p. 105642P.
A. R. Pawloski, A. Acheta, S. Bell, B. La Fontaine, T. Wallow, and H. J. Levinson, “The transfer of photoresist ler through etch,” in Advances in Resist Technology and Processing XXIII, 6153 (SPIE, 2006), p. 615318.
Y. Zhao, G.-C. Wang, and T.-M. Lu, Characterization of Amorphous and Crystalline Rough Surface – Principles and Applications (Elsevier, 2000).
M. Heusinger, M. Banasch, and U. D. Zeitner, “Rowland ghost suppression in high efficiency spectrometer gratings fabricated by e-beam lithography,” Opt. Express 25, 6182–6191 (2017).
[Crossref]
[PubMed]
U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys. A 109, 789–796 (2012).
[Crossref]
M. Heusinger, M. Banasch, T. Flügel-Paul, and U. D. Zeitner, “Investigation and optimization of rowland ghosts in high efficiency spectrometer gratings fabricated by e-beam lithography,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, 9759 (SPIE, 2016), p. 97590A.
M. Heusinger, T. Flügel-Paul, and U.-D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122, 222 (2016).
[Crossref]
Y. Zhao, G.-C. Wang, and T.-M. Lu, Characterization of Amorphous and Crystalline Rough Surface – Principles and Applications (Elsevier, 2000).
M. Kroneberger and S. Fray, “Scattering from reflective diffraction gratings: the challenges of measurement and simulation,” Adv. Opt. Technol. 6, 379–386 (2017).
S. Schröder, D. Unglaub, M. Trost, X. Cheng, J. Zhang, and A. Duparré, “Spectral angle resolved scattering of thin film coatings,” Appl. Opt. 53, A35–A41 (2014).
[Crossref]
[PubMed]
A. Kato and F. Scholze, “Effect of line roughness on the diffraction intensities in angular resolved scatterometry,” Appl. Opt. 49, 6102–6110 (2010).
[Crossref]
H. Gross, M.-A. Henn, S. Heidenreich, A. Rathsfeld, and M. Bär, “Modeling of line roughness and its impact on the diffraction intensities and the reconstructed critical dimensions in scatterometry,” Appl. Opt. 51, 7384–7394 (2012).
[Crossref]
[PubMed]
E. Marx, T. A. Germer, T. V. Vorburger, and B. C. Park, “Angular distribution of light scattered from a sinusoidal grating,” Appl. Opt. 39, 4473–4485 (2000).
[Crossref]
A. Hessel and A. Oliner, “A new theory of wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
[Crossref]
U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys. A 109, 789–796 (2012).
[Crossref]
M. Heusinger, T. Flügel-Paul, and U.-D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122, 222 (2016).
[Crossref]
B. Guldimann, A. Deep, and R. Vink, “Overview on grating developments at esa,” CEAS Space J. 7, 433–451 (2015).
[Crossref]
C. A. Mack, “Analytical expression for impact of linewidth roughness on critical dimension uniformity,” J. Micro/Nanolithography, MEMS MOEMS 13, 020501 (2014).
[Crossref]
T. Verduin, P. Kruit, and C. W. Hagen, “Determination of line edge roughness in low-dose top-down scanning electron microscopy images,” J. Micro/Nanolithography, MEMS MOEMS 13, 033009 (2014).
[Crossref]
V. Constantoudis, G. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. ii. scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. & Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 1019–1026 (2003).
[Crossref]
M. Moharam, E. B. Grann, D. A. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” JOSA A 12, 1068–1076 (1995).
[Crossref]
H. Rigneault, F. Lemarchand, and A. Sentenac, “Dipole radiation into grating structures,” JOSA A 17, 1048–1058 (2000).
[Crossref]
[PubMed]
B. C. Bergner, T. A. Germer, and T. J. Suleski, “Effective medium approximations for modeling optical reflectance from gratings with rough edges,” JOSA A 27, 1083–1090 (2010).
[Crossref]
[PubMed]
D. A. Pommet, M. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” JOSA A 11, 1827–1834 (1994).
[Crossref]
E. N. Glytsis, “Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis,” JOSA A 19, 702–715 (2002).
[Crossref]
[PubMed]
A. Krywonos, J. E. Harvey, and N. Choi, “Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles,” JOSA A 28, 1121–1138 (2011).
[Crossref]
[PubMed]
H. Gross, S. Heidenreich, and M. Bär, “Impact of different stochastic line edge roughness patterns on measurements in scatterometry-a simulation study,” Measurement 98, 339–346 (2017).
[Crossref]
T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with kirchhoff-boundaries as a model based description for line edge roughness (ler) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).
[Crossref]
B. Schnabel and E.-B. Kley, “On the influence of the e-beam writer address grid on the optical quality of high-frequency gratings,” Microelectron. Eng. 57, 327–333 (2001).
[Crossref]
M. Sharpe and D. Irish, “Straylight in diffraction grating monochromators,” Opt. acta 25, 861–893 (1978).
[Crossref]
J. E. Harvey, N. Choi, S. Schroeder, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51, 013402 (2012).
[Crossref]
M. Heusinger, M. Banasch, and U. D. Zeitner, “Rowland ghost suppression in high efficiency spectrometer gratings fabricated by e-beam lithography,” Opt. Express 25, 6182–6191 (2017).
[Crossref]
[PubMed]
S. Schröder, A. Duparré, L. Coriand, A. Tünnermann, D. H. Penalver, and J. E. Harvey, “Modeling of light scattering in different regimes of surface roughness,” Opt. Express 19, 9820–9835 (2011).
[Crossref]
[PubMed]
M. H. Madsen and P.-E. Hansen, “Scatterometry: A fast and robust measurements of nano-textured surfaces,” Surf. Topogr. Metrol. Prop. 4, 023003 (2016).
[Crossref]
T. M. Elfouhaily and C.-A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14, R1–R40 (2004).
[Crossref]
Y. Zhao, G.-C. Wang, and T.-M. Lu, Characterization of Amorphous and Crystalline Rough Surface – Principles and Applications (Elsevier, 2000).
T. A. Germer, “Modeling the effect of line profile variation on optical critical dimension metrology,” in Advanced Lithography, (SPIE, 2007), pp. 65180Z.
[Crossref]
M. Heusinger, M. Banasch, T. Flügel-Paul, and U. D. Zeitner, “Investigation and optimization of rowland ghosts in high efficiency spectrometer gratings fabricated by e-beam lithography,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, 9759 (SPIE, 2016), p. 97590A.
C. A. Palmer and E. G. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).
D. Lobb and I. Bhatti, “Applications of immersed diffraction gratings in earth observation from space,” in ICSO 2010, 10565 (SPIE, 2017), p. 105651M.
S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence imaging spectrometer concepts for the earth explorer mission candidate flex,” in ICSO 2012, 10564 (SPIE, 2017), p. 105641W.
G. Kopp, P. Pilewskie, C. Belting, Z. Castleman, G. Drake, J. Espejo, K. Heuerman, B. Lamprecht, P. Smith, and B. Vermeer, “Radiometric absolute accuracy improvements for imaging spectrometry with hysics,” in Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, (IEEE, 2013), pp. 3518–3521.
B. Harnisch, A. Deep, R. Vink, and C. Coatantiec, “Grating scattering brdf and imaging performances: A test survey performed in the frame of the flex mission,” in ICSO 2012, 10564 (SPIE, 2017), p. 105642P.
J. Bischoff and K. Hehl, “Scatterometry modeling for gratings with roughness and irregularities,” in Metrology, Inspection, and Process Control for Microlithography XXX, 9778 (SPIE, 2016), p. 977804.
E. Gogolides, V. Constantoudis, and G. Kokkoris, “Towards an integrated line edge roughness understanding: metrology, characterization, and plasma etching transfer,” in Advanced Etch Technology for Nanopatterning II, 8685 (SPIE, 2013), p. 868505.
A. R. Pawloski, A. Acheta, S. Bell, B. La Fontaine, T. Wallow, and H. J. Levinson, “The transfer of photoresist ler through etch,” in Advances in Resist Technology and Processing XXIII, 6153 (SPIE, 2006), p. 615318.
T. H. Naylor, J. L. Balintfy, D. S. Burdick, and K. Chu, “Computer simulation techniques,” Tech. rep., Wiley (1966).
J. C. Stover, Optical Scattering: Measurement and Analysis (SPIE Optical Engineering, 1995).
[Crossref]