Abstract

Ultrafast detection and switching of light are key processes in high-speed optoelectronic devices. However, the performances of VO2-based optoelectronics are strongly degraded by photothermal. The mechanism of the latter is still unclear. Here, by using femtosecond-laser (fs-laser) driven kinetic terahertz wave absorption, we quantitatively separate slow photothermal response and ultrafast photodoping response (e.g. light-induced insulator-to-metal transition) from second- to picosecond-timescales, and discover the competing interplay between them. With self-photothermal (mainly determined by fs-laser pulse repetition rate and pump fluence), the ultrafast transition time was degraded by 190% from 50 ps to 95 ps, the ultrafast transition threshold was decreased to 82% from 11mJ/cm2 to 9mJ/cm2, while the amplitudes of the two photoresponse are competing. Percolation theory, along with the macroscopic conductivity response, is used to explain the competing interplay. Our findings are relevant for designing and optimizing VO2-based ultrafast optoelectronic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved light-induced insulator-metal transition in niobium dioxide and vanadium dioxide thin films

Melissa R. Beebe, J. Michael Klopf, Yuhan Wang, Salinporn Kittiwatanakul, Jiwei Lu, Stuart A. Wolf, and R. Alejandra Lukaszew
Opt. Mater. Express 7(1) 213-223 (2017)

Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

Emily Sistrunk, Jakob Grilj, Jaewoo Jeong, Mahesh G. Samant, Alexander X. Gray, Hermann A. Dürr, Stuart S. P. Parkin, and Markus Gühr
Opt. Express 23(4) 4340-4347 (2015)

Dynamics of photo-induced terahertz optical activity in metal chiral gratings

Natsuki Kanda, Kuniaki Konishi, and Makoto Kuwata-Gonokami
Opt. Lett. 37(17) 3510-3512 (2012)

References

  • View by:
  • |
  • |
  • |

  1. N. F. Mott, “Metal-Insulator transition,” Rev. Mod. Phys. 40(4), 677–683 (1968).
    [Crossref]
  2. M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
    [Crossref]
  3. Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
    [Crossref]
  4. M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
    [Crossref] [PubMed]
  5. Z. Tao, T.-R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C.-Y. Ruan, K. Wang, and J. Wu, “Decoupling of Structural and Electronic Phase Transitions in VO2.,” Phys. Rev. Lett. 109(16), 166406 (2012).
    [Crossref] [PubMed]
  6. J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
    [Crossref] [PubMed]
  7. J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2.,” Nature 500(7463), 431–434 (2013).
    [Crossref] [PubMed]
  8. T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
    [Crossref] [PubMed]
  9. M. Esaulkov, P. Solyankin, A. Sidorov, L. Parshina, A. Makarevich, Q. Jin, Q. Luo, O. Novodvorsky, A. Kaul, E. Cherepetskaya, A. Shkurinov, V. Makarov, and X.-C. Zhang, “Emission of terahertz pulses from vanadium dioxide films undergoing metal–insulator phase transition,” Optica 2(9), 790–796 (2015).
    [Crossref]
  10. J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
    [Crossref] [PubMed]
  11. Y.-G. Jeong, S. Han, J. Rhie, J.-S. Kyoung, J.-W. Choi, N. Park, S. Hong, B.-J. Kim, H.-T. Kim, and D.-S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
    [Crossref] [PubMed]
  12. D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photonics 2(9), 1306–1313 (2015).
    [Crossref]
  13. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
    [Crossref]
  14. T. S. Kasırga, D. Sun, J. H. Park, J. M. Coy, Z. Fei, X. Xu, and D. H. Cobden, “Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy,” Nat. Nanotechnol. 7(11), 723–727 (2012).
    [Crossref] [PubMed]
  15. X. Wang and H. Gao, “Distinguishing the photothermal and photoinjection effects in vanadium dioxide nanowires,” Nano Lett. 15(10), 7037–7042 (2015).
    [Crossref] [PubMed]
  16. B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric effects in localized photocurrent of individual VO2 nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
    [Crossref]
  17. C. Chen and Z. Zhou, “Optical phonons assisted infrared absorption in VO2 based bolometer,” Appl. Phys. Lett. 91(1), 011107 (2007).
    [Crossref]
  18. A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Wavelength-size hybrid Si-VO(2) waveguide electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
    [Crossref] [PubMed]
  19. J. M. Wu and W. E. Chang, “Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire,” ACS Appl. Mater. Interfaces 6(16), 14286–14292 (2014).
    [Crossref] [PubMed]
  20. P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11(1), 693–701 (2017).
    [Crossref] [PubMed]
  21. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
    [Crossref] [PubMed]
  22. J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(1), 3029 (2013).
    [Crossref] [PubMed]
  23. S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
    [Crossref]
  24. V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
    [Crossref] [PubMed]
  25. S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
    [Crossref]
  26. B. T. O’Callahan, A. C. Jones, J. Hyung Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2.,” Nat. Commun. 6(1), 6849 (2015).
    [Crossref] [PubMed]
  27. D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
    [Crossref] [PubMed]
  28. Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
    [Crossref] [PubMed]
  29. K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14(3), 1127–1133 (2014).
    [Crossref] [PubMed]
  30. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [Crossref] [PubMed]
  31. M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
    [Crossref]
  32. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  33. A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2,” Phys. Rev. Lett. 110(5), 056601 (2013).
    [Crossref] [PubMed]
  34. Y. Xiao, Z.-H. Zhai, Q.-W. Shi, L.-G. Zhu, J. Li, W.-X. Huang, F. Yue, Y.-Y. Hu, Q.-X. Peng, and Z.-R. Li, “Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 107(3), 031906 (2015).
    [Crossref]
  35. Q. W. Shi, W. X. Huang, T. C. Lu, Y. X. Zhang, F. Yue, S. Qiao, and Y. Xiao, “Nanostructured VO2 film with high transparency and enhanced switching ratio in THz range,” Appl. Phys. Lett. 104(7), 071903 (2014).
    [Crossref]
  36. S. Liu, B. Phillabaum, E. W. Carlson, K. A. Dahmen, N. S. Vidhyadhiraja, M. M. Qazilbash, and D. N. Basov, “Random field driven spatial complexity at the mott transition in VO2,” Phys. Rev. Lett. 116(3), 036401 (2016).
    [Crossref] [PubMed]
  37. J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadium dioxide films,” Appl. Phys. Lett. 88(8), 081902 (2006).
    [Crossref]
  38. H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B Condens. Matter 54(7), 4621–4628 (1996).
    [Crossref] [PubMed]
  39. S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
    [Crossref]
  40. P. Mandal, A. Speck, C. Ko, and S. Ramanathan, “Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition,” Opt. Lett. 36(10), 1927–1929 (2011).
    [Crossref] [PubMed]

2017 (1)

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11(1), 693–701 (2017).
[Crossref] [PubMed]

2016 (3)

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

S. Liu, B. Phillabaum, E. W. Carlson, K. A. Dahmen, N. S. Vidhyadhiraja, M. M. Qazilbash, and D. N. Basov, “Random field driven spatial complexity at the mott transition in VO2,” Phys. Rev. Lett. 116(3), 036401 (2016).
[Crossref] [PubMed]

2015 (7)

Y.-G. Jeong, S. Han, J. Rhie, J.-S. Kyoung, J.-W. Choi, N. Park, S. Hong, B.-J. Kim, H.-T. Kim, and D.-S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photonics 2(9), 1306–1313 (2015).
[Crossref]

X. Wang and H. Gao, “Distinguishing the photothermal and photoinjection effects in vanadium dioxide nanowires,” Nano Lett. 15(10), 7037–7042 (2015).
[Crossref] [PubMed]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Wavelength-size hybrid Si-VO(2) waveguide electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
[Crossref] [PubMed]

M. Esaulkov, P. Solyankin, A. Sidorov, L. Parshina, A. Makarevich, Q. Jin, Q. Luo, O. Novodvorsky, A. Kaul, E. Cherepetskaya, A. Shkurinov, V. Makarov, and X.-C. Zhang, “Emission of terahertz pulses from vanadium dioxide films undergoing metal–insulator phase transition,” Optica 2(9), 790–796 (2015).
[Crossref]

Y. Xiao, Z.-H. Zhai, Q.-W. Shi, L.-G. Zhu, J. Li, W.-X. Huang, F. Yue, Y.-Y. Hu, Q.-X. Peng, and Z.-R. Li, “Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 107(3), 031906 (2015).
[Crossref]

B. T. O’Callahan, A. C. Jones, J. Hyung Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2.,” Nat. Commun. 6(1), 6849 (2015).
[Crossref] [PubMed]

2014 (5)

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Q. W. Shi, W. X. Huang, T. C. Lu, Y. X. Zhang, F. Yue, S. Qiao, and Y. Xiao, “Nanostructured VO2 film with high transparency and enhanced switching ratio in THz range,” Appl. Phys. Lett. 104(7), 071903 (2014).
[Crossref]

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14(3), 1127–1133 (2014).
[Crossref] [PubMed]

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

J. M. Wu and W. E. Chang, “Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire,” ACS Appl. Mater. Interfaces 6(16), 14286–14292 (2014).
[Crossref] [PubMed]

2013 (3)

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2.,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(1), 3029 (2013).
[Crossref] [PubMed]

2012 (3)

T. S. Kasırga, D. Sun, J. H. Park, J. M. Coy, Z. Fei, X. Xu, and D. H. Cobden, “Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy,” Nat. Nanotechnol. 7(11), 723–727 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Z. Tao, T.-R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C.-Y. Ruan, K. Wang, and J. Wu, “Decoupling of Structural and Electronic Phase Transitions in VO2.,” Phys. Rev. Lett. 109(16), 166406 (2012).
[Crossref] [PubMed]

2011 (2)

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

P. Mandal, A. Speck, C. Ko, and S. Ramanathan, “Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition,” Opt. Lett. 36(10), 1927–1929 (2011).
[Crossref] [PubMed]

2010 (2)

B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric effects in localized photocurrent of individual VO2 nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
[Crossref]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

2009 (1)

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

2008 (2)

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

2007 (5)

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
[Crossref]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

C. Chen and Z. Zhou, “Optical phonons assisted infrared absorption in VO2 based bolometer,” Appl. Phys. Lett. 91(1), 011107 (2007).
[Crossref]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
[Crossref]

2006 (1)

J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadium dioxide films,” Appl. Phys. Lett. 88(8), 081902 (2006).
[Crossref]

2004 (1)

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

2002 (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

1998 (1)

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

1996 (1)

H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B Condens. Matter 54(7), 4621–4628 (1996).
[Crossref] [PubMed]

1968 (1)

N. F. Mott, “Metal-Insulator transition,” Rev. Mod. Phys. 40(4), 677–683 (1968).
[Crossref]

Abernathy, D. L.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Ahn, J. S.

H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B Condens. Matter 54(7), 4621–4628 (1996).
[Crossref] [PubMed]

Ahn, K.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Ahn, Y. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Aigouy, L.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Alain, D.

Andreev, G. O.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Appavoo, K.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photonics 2(9), 1306–1313 (2015).
[Crossref]

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14(3), 1127–1133 (2014).
[Crossref] [PubMed]

Atkin, J. M.

B. T. O’Callahan, A. C. Jones, J. Hyung Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2.,” Nat. Commun. 6(1), 6849 (2015).
[Crossref] [PubMed]

Averitt, R. D.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Balatsky, A. V.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Basov, D. N.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

S. Liu, B. Phillabaum, E. W. Carlson, K. A. Dahmen, N. S. Vidhyadhiraja, M. M. Qazilbash, and D. N. Basov, “Random field driven spatial complexity at the mott transition in VO2,” Phys. Rev. Lett. 116(3), 036401 (2016).
[Crossref] [PubMed]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Bernien, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Boatner, L. A.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Brady, N. F.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14(3), 1127–1133 (2014).
[Crossref] [PubMed]

Brassard, D.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Brehm, M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Bruhács, A.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Budai, J. D.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Cai, Z.

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

Cao, C.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(1), 3029 (2013).
[Crossref] [PubMed]

Capasso, F.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Carlson, E. W.

S. Liu, B. Phillabaum, E. W. Carlson, K. A. Dahmen, N. S. Vidhyadhiraja, M. M. Qazilbash, and D. N. Basov, “Random field driven spatial complexity at the mott transition in VO2,” Phys. Rev. Lett. 116(3), 036401 (2016).
[Crossref] [PubMed]

Cavalleri, A.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Chae, B. G.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Chae, B.-G.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Chaker, M.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Chang, R. P. H.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11(1), 693–701 (2017).
[Crossref] [PubMed]

Chang, W. E.

J. M. Wu and W. E. Chang, “Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire,” ACS Appl. Mater. Interfaces 6(16), 14286–14292 (2014).
[Crossref] [PubMed]

Chatelain, R. P.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Chen, C.

C. Chen and Z. Zhou, “Optical phonons assisted infrared absorption in VO2 based bolometer,” Appl. Phys. Lett. 91(1), 011107 (2007).
[Crossref]

Chen, P.

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

Chen, S.

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

Chen, X.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11(1), 693–701 (2017).
[Crossref] [PubMed]

Chen, Z.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(1), 3029 (2013).
[Crossref] [PubMed]

Cherepetskaya, E.

Cho, S. Y.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Choe, J. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Choi, H. S.

H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B Condens. Matter 54(7), 4621–4628 (1996).
[Crossref] [PubMed]

Choi, J.-W.

Y.-G. Jeong, S. Han, J. Rhie, J.-S. Kyoung, J.-W. Choi, N. Park, S. Hong, B.-J. Kim, H.-T. Kim, and D.-S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Cobden, D. H.

B. T. O’Callahan, A. C. Jones, J. Hyung Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2.,” Nat. Commun. 6(1), 6849 (2015).
[Crossref] [PubMed]

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2.,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

T. S. Kasırga, D. Sun, J. H. Park, J. M. Coy, Z. Fei, X. Xu, and D. H. Cobden, “Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy,” Nat. Nanotechnol. 7(11), 723–727 (2012).
[Crossref] [PubMed]

Coy, J. M.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2.,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

T. S. Kasırga, D. Sun, J. H. Park, J. M. Coy, Z. Fei, X. Xu, and D. H. Cobden, “Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy,” Nat. Nanotechnol. 7(11), 723–727 (2012).
[Crossref] [PubMed]

Dahmen, K. A.

S. Liu, B. Phillabaum, E. W. Carlson, K. A. Dahmen, N. S. Vidhyadhiraja, M. M. Qazilbash, and D. N. Basov, “Random field driven spatial complexity at the mott transition in VO2,” Phys. Rev. Lett. 116(3), 036401 (2016).
[Crossref] [PubMed]

Dai, L.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(1), 3029 (2013).
[Crossref] [PubMed]

Delaire, O.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Di Ventra, M.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Diroll, B. T.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11(1), 693–701 (2017).
[Crossref] [PubMed]

Driscoll, T.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Dufresne, E. M.

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

Duxbury, P. M.

Z. Tao, T.-R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C.-Y. Ruan, K. Wang, and J. Wu, “Decoupling of Structural and Electronic Phase Transitions in VO2.,” Phys. Rev. Lett. 109(16), 166406 (2012).
[Crossref] [PubMed]

El Khakani, M. A.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Emery, J. D.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11(1), 693–701 (2017).
[Crossref] [PubMed]

Esaulkov, M.

Evans, P. G.

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

Fan, K.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Fei, Z.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2.,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

T. S. Kasırga, D. Sun, J. H. Park, J. M. Coy, Z. Fei, X. Xu, and D. H. Cobden, “Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy,” Nat. Nanotechnol. 7(11), 723–727 (2012).
[Crossref] [PubMed]

Feldman, L. C.

J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadium dioxide films,” Appl. Phys. Lett. 88(8), 081902 (2006).
[Crossref]

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Fernández, F.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
[Crossref]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
[Crossref]

Fourmaux, S.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Freeland, J. W.

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

Fujimori, A.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

Gao, H.

X. Wang and H. Gao, “Distinguishing the photothermal and photoinjection effects in vanadium dioxide nanowires,” Nano Lett. 15(10), 7037–7042 (2015).
[Crossref] [PubMed]

Gao, Y.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(1), 3029 (2013).
[Crossref] [PubMed]

Giannetti, C.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Goldflam, M.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Guo, P.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11(1), 693–701 (2017).
[Crossref] [PubMed]

Haglund, R. F.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photonics 2(9), 1306–1313 (2015).
[Crossref]

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14(3), 1127–1133 (2014).
[Crossref] [PubMed]

J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadium dioxide films,” Appl. Phys. Lett. 88(8), 081902 (2006).
[Crossref]

Han, S.

Y.-G. Jeong, S. Han, J. Rhie, J.-S. Kyoung, J.-W. Choi, N. Park, S. Hong, B.-J. Kim, H.-T. Kim, and D.-S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Han, T.-R. T.

Z. Tao, T.-R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C.-Y. Ruan, K. Wang, and J. Wu, “Decoupling of Structural and Electronic Phase Transitions in VO2.,” Phys. Rev. Lett. 109(16), 166406 (2012).
[Crossref] [PubMed]

Hao, Z.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Hendaoui, A.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Highland, M. J.

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

Hilton, D. J.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14(3), 1127–1133 (2014).
[Crossref] [PubMed]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Ho, P. C.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Hock, A. S.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11(1), 693–701 (2017).
[Crossref] [PubMed]

Hong, J.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Hong, S.

Y.-G. Jeong, S. Han, J. Rhie, J.-S. Kyoung, J.-W. Choi, N. Park, S. Hong, B.-J. Kim, H.-T. Kim, and D.-S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Hu, Y.-Y.

Y. Xiao, Z.-H. Zhai, Q.-W. Shi, L.-G. Zhu, J. Li, W.-X. Huang, F. Yue, Y.-Y. Hu, Q.-X. Peng, and Z.-R. Li, “Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 107(3), 031906 (2015).
[Crossref]

Huang, C.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2.,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

Huang, W. X.

Q. W. Shi, W. X. Huang, T. C. Lu, Y. X. Zhang, F. Yue, S. Qiao, and Y. Xiao, “Nanostructured VO2 film with high transparency and enhanced switching ratio in THz range,” Appl. Phys. Lett. 104(7), 071903 (2014).
[Crossref]

Huang, W.-X.

Y. Xiao, Z.-H. Zhai, Q.-W. Shi, L.-G. Zhu, J. Li, W.-X. Huang, F. Yue, Y.-Y. Hu, Q.-X. Peng, and Z.-R. Li, “Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 107(3), 031906 (2015).
[Crossref]

Hunter, S.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2.,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Hyung Park, J.

B. T. O’Callahan, A. C. Jones, J. Hyung Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2.,” Nat. Commun. 6(1), 6849 (2015).
[Crossref] [PubMed]

Imada, M.

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

Jeong, J.

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Wavelength-size hybrid Si-VO(2) waveguide electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
[Crossref] [PubMed]

Jeong, Y.-G.

Y.-G. Jeong, S. Han, J. Rhie, J.-S. Kyoung, J.-W. Choi, N. Park, S. Hong, B.-J. Kim, H.-T. Kim, and D.-S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Jin, Q.

Jokerst, N. M.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Jones, A. C.

B. T. O’Callahan, A. C. Jones, J. Hyung Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2.,” Nat. Commun. 6(1), 6849 (2015).
[Crossref] [PubMed]

Joushaghani, A.

Jung, I. W.

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

Jung, J. H.

H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B Condens. Matter 54(7), 4621–4628 (1996).
[Crossref] [PubMed]

Kasirga, T. S.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2.,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

T. S. Kasırga, D. Sun, J. H. Park, J. M. Coy, Z. Fei, X. Xu, and D. H. Cobden, “Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy,” Nat. Nanotechnol. 7(11), 723–727 (2012).
[Crossref] [PubMed]

Kats, M. A.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Kaul, A.

Ke, C.

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

Keilmann, F.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Keiser, G. R.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Kerbusch, J.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Kieffer, J. C.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Kim, B. J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kim, B.-J.

Y.-G. Jeong, S. Han, J. Rhie, J.-S. Kyoung, J.-W. Choi, N. Park, S. Hong, B.-J. Kim, H.-T. Kim, and D.-S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Kim, D. H.

H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B Condens. Matter 54(7), 4621–4628 (1996).
[Crossref] [PubMed]

Kim, D. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, D.-S.

Y.-G. Jeong, S. Han, J. Rhie, J.-S. Kyoung, J.-W. Choi, N. Park, S. Hong, B.-J. Kim, H.-T. Kim, and D.-S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Kim, H. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H. T.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kim, H.-T.

Y.-G. Jeong, S. Han, J. Rhie, J.-S. Kyoung, J.-W. Choi, N. Park, S. Hong, B.-J. Kim, H.-T. Kim, and D.-S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Ko, C.

P. Mandal, A. Speck, C. Ko, and S. Ramanathan, “Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition,” Opt. Lett. 36(10), 1927–1929 (2011).
[Crossref] [PubMed]

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

Koo, S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kyoung, J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kyoung, J.-S.

Y.-G. Jeong, S. Han, J. Rhie, J.-S. Kyoung, J.-W. Choi, N. Park, S. Hong, B.-J. Kim, H.-T. Kim, and D.-S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Lee, Y.-W.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Lei, D. Y.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photonics 2(9), 1306–1313 (2015).
[Crossref]

Leu, B. M.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Li, C. W.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Li, J.

Y. Xiao, Z.-H. Zhai, Q.-W. Shi, L.-G. Zhu, J. Li, W.-X. Huang, F. Yue, Y.-Y. Hu, Q.-X. Peng, and Z.-R. Li, “Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 107(3), 031906 (2015).
[Crossref]

Li, Z.-R.

Y. Xiao, Z.-H. Zhai, Q.-W. Shi, L.-G. Zhu, J. Li, W.-X. Huang, F. Yue, Y.-Y. Hu, Q.-X. Peng, and Z.-R. Li, “Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 107(3), 031906 (2015).
[Crossref]

Ligmajer, F.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photonics 2(9), 1306–1313 (2015).
[Crossref]

Liu, H.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
[Crossref]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
[Crossref]

Liu, M.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Liu, S.

S. Liu, B. Phillabaum, E. W. Carlson, K. A. Dahmen, N. S. Vidhyadhiraja, M. M. Qazilbash, and D. N. Basov, “Random field driven spatial complexity at the mott transition in VO2,” Phys. Rev. Lett. 116(3), 036401 (2016).
[Crossref] [PubMed]

Liu, X.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(1), 3029 (2013).
[Crossref] [PubMed]

Lopez, R.

J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadium dioxide films,” Appl. Phys. Lett. 88(8), 081902 (2006).
[Crossref]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Lu, T. C.

Q. W. Shi, W. X. Huang, T. C. Lu, Y. X. Zhang, F. Yue, S. Qiao, and Y. Xiao, “Nanostructured VO2 film with high transparency and enhanced switching ratio in THz range,” Appl. Phys. Lett. 104(7), 071903 (2014).
[Crossref]

Luo, H.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(1), 3029 (2013).
[Crossref] [PubMed]

Luo, Q.

Lysenko, S.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
[Crossref]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
[Crossref]

Ma, H.

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

Mahanti, S. D.

Z. Tao, T.-R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C.-Y. Ruan, K. Wang, and J. Wu, “Decoupling of Structural and Electronic Phase Transitions in VO2.,” Phys. Rev. Lett. 109(16), 166406 (2012).
[Crossref] [PubMed]

Maier, S. A.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photonics 2(9), 1306–1313 (2015).
[Crossref]

Makarevich, A.

Makarov, V.

Mandal, P.

Manley, M. E.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Maple, M. B.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Marie Jokerst, N.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Martinson, A. B. F.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11(1), 693–701 (2017).
[Crossref] [PubMed]

McLeod, A. S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

McQueeney, R. J.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Mhaisalkar, S. G.

B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric effects in localized photocurrent of individual VO2 nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
[Crossref]

Morrison, V. R.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Mortier, M.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Mott, N. F.

N. F. Mott, “Metal-Insulator transition,” Rev. Mod. Phys. 40(4), 677–683 (1968).
[Crossref]

Nag, J.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14(3), 1127–1133 (2014).
[Crossref] [PubMed]

Nawrodt, R.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Noh, T. W.

H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B Condens. Matter 54(7), 4621–4628 (1996).
[Crossref] [PubMed]

Novodvorsky, O.

O’Callahan, B. T.

B. T. O’Callahan, A. C. Jones, J. Hyung Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2.,” Nat. Commun. 6(1), 6849 (2015).
[Crossref] [PubMed]

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Onoda, M.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Palit, S.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Pantelides, S. T.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14(3), 1127–1133 (2014).
[Crossref] [PubMed]

Paradis, S.

Park, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, J. H.

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2.,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

T. S. Kasırga, D. Sun, J. H. Park, J. M. Coy, Z. Fei, X. Xu, and D. H. Cobden, “Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy,” Nat. Nanotechnol. 7(11), 723–727 (2012).
[Crossref] [PubMed]

Park, N.

Y.-G. Jeong, S. Han, J. Rhie, J.-S. Kyoung, J.-W. Choi, N. Park, S. Hong, B.-J. Kim, H.-T. Kim, and D.-S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, Q. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Parkin, S. S.

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

Parmigiani, F.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Parshina, L.

Peng, Q.-X.

Y. Xiao, Z.-H. Zhai, Q.-W. Shi, L.-G. Zhu, J. Li, W.-X. Huang, F. Yue, Y.-Y. Hu, Q.-X. Peng, and Z.-R. Li, “Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 107(3), 031906 (2015).
[Crossref]

Phillabaum, B.

S. Liu, B. Phillabaum, E. W. Carlson, K. A. Dahmen, N. S. Vidhyadhiraja, M. M. Qazilbash, and D. N. Basov, “Random field driven spatial complexity at the mott transition in VO2,” Phys. Rev. Lett. 116(3), 036401 (2016).
[Crossref] [PubMed]

Poon, J. K. S.

Prasankumar, R. P.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14(3), 1127–1133 (2014).
[Crossref] [PubMed]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Qazilbash, M. M.

S. Liu, B. Phillabaum, E. W. Carlson, K. A. Dahmen, N. S. Vidhyadhiraja, M. M. Qazilbash, and D. N. Basov, “Random field driven spatial complexity at the mott transition in VO2,” Phys. Rev. Lett. 116(3), 036401 (2016).
[Crossref] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Qiao, S.

Q. W. Shi, W. X. Huang, T. C. Lu, Y. X. Zhang, F. Yue, S. Qiao, and Y. Xiao, “Nanostructured VO2 film with high transparency and enhanced switching ratio in THz range,” Appl. Phys. Lett. 104(7), 071903 (2014).
[Crossref]

Ramanathan, S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

P. Mandal, A. Speck, C. Ko, and S. Ramanathan, “Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition,” Opt. Lett. 36(10), 1927–1929 (2011).
[Crossref] [PubMed]

Ramirez, J. G.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Raschke, M. B.

B. T. O’Callahan, A. C. Jones, J. Hyung Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2.,” Nat. Commun. 6(1), 6849 (2015).
[Crossref] [PubMed]

Rensberg, J.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Rhie, J.

Y.-G. Jeong, S. Han, J. Rhie, J.-S. Kyoung, J.-W. Choi, N. Park, S. Hong, B.-J. Kim, H.-T. Kim, and D.-S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Rini, M.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Ronning, C.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Rozen, J.

J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadium dioxide films,” Appl. Phys. Lett. 88(8), 081902 (2006).
[Crossref]

Rúa, A.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
[Crossref]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
[Crossref]

Ruan, C.-Y.

Z. Tao, T.-R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C.-Y. Ruan, K. Wang, and J. Wu, “Decoupling of Structural and Electronic Phase Transitions in VO2.,” Phys. Rev. Lett. 109(16), 166406 (2012).
[Crossref] [PubMed]

Said, A. H.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Samant, M. G.

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

Schaller, R. D.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11(1), 693–701 (2017).
[Crossref] [PubMed]

Schoenlein, R. W.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Schuller, I. K.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Schwarz, C.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Seo, M.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14(3), 1127–1133 (2014).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Sharoni, A.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Shi, Q. W.

Q. W. Shi, W. X. Huang, T. C. Lu, Y. X. Zhang, F. Yue, S. Qiao, and Y. Xiao, “Nanostructured VO2 film with high transparency and enhanced switching ratio in THz range,” Appl. Phys. Lett. 104(7), 071903 (2014).
[Crossref]

Shi, Q.-W.

Y. Xiao, Z.-H. Zhai, Q.-W. Shi, L.-G. Zhu, J. Li, W.-X. Huang, F. Yue, Y.-Y. Hu, Q.-X. Peng, and Z.-R. Li, “Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 107(3), 031906 (2015).
[Crossref]

Shkurinov, A.

Sidorov, A.

Siwick, B. J.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Smith, D. R.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Solyankin, P.

Sonnefraud, Y.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photonics 2(9), 1306–1313 (2015).
[Crossref]

Sow, C. H.

B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric effects in localized photocurrent of individual VO2 nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
[Crossref]

Specht, E. D.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Speck, A.

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Stewart Aitchison, J.

Strikwerda, A. C.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Sun, D.

T. S. Kasırga, D. Sun, J. H. Park, J. M. Coy, Z. Fei, X. Xu, and D. H. Cobden, “Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy,” Nat. Nanotechnol. 7(11), 723–727 (2012).
[Crossref] [PubMed]

Tamang, R.

B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric effects in localized photocurrent of individual VO2 nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
[Crossref]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Tao, Z.

Z. Tao, T.-R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C.-Y. Ruan, K. Wang, and J. Wu, “Decoupling of Structural and Electronic Phase Transitions in VO2.,” Phys. Rev. Lett. 109(16), 166406 (2012).
[Crossref] [PubMed]

Taylor, A. J.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Tischler, J. Z.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Tiwari, K. L.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

Tok, E. S.

B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric effects in localized photocurrent of individual VO2 nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
[Crossref]

Tokura, Y.

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

Varghese, B.

B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric effects in localized photocurrent of individual VO2 nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
[Crossref]

Vidhyadhiraja, N. S.

S. Liu, B. Phillabaum, E. W. Carlson, K. A. Dahmen, N. S. Vidhyadhiraja, M. M. Qazilbash, and D. N. Basov, “Random field driven spatial complexity at the mott transition in VO2,” Phys. Rev. Lett. 116(3), 036401 (2016).
[Crossref] [PubMed]

Vikhnin, V.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
[Crossref]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
[Crossref]

Walko, D. A.

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

Wall, S.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Wang, B.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14(3), 1127–1133 (2014).
[Crossref] [PubMed]

Wang, H.

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

Wang, K.

Z. Tao, T.-R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C.-Y. Ruan, K. Wang, and J. Wu, “Decoupling of Structural and Electronic Phase Transitions in VO2.,” Phys. Rev. Lett. 109(16), 166406 (2012).
[Crossref] [PubMed]

Wang, S.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Wang, X.

X. Wang and H. Gao, “Distinguishing the photothermal and photoinjection effects in vanadium dioxide nanowires,” Nano Lett. 15(10), 7037–7042 (2015).
[Crossref] [PubMed]

Weimer, M. S.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11(1), 693–701 (2017).
[Crossref] [PubMed]

Wen, H.

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

West, K. G.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Wu, J.

Z. Tao, T.-R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C.-Y. Ruan, K. Wang, and J. Wu, “Decoupling of Structural and Electronic Phase Transitions in VO2.,” Phys. Rev. Lett. 109(16), 166406 (2012).
[Crossref] [PubMed]

Wu, J. M.

J. M. Wu and W. E. Chang, “Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire,” ACS Appl. Mater. Interfaces 6(16), 14286–14292 (2014).
[Crossref] [PubMed]

Xiao, Y.

Y. Xiao, Z.-H. Zhai, Q.-W. Shi, L.-G. Zhu, J. Li, W.-X. Huang, F. Yue, Y.-Y. Hu, Q.-X. Peng, and Z.-R. Li, “Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 107(3), 031906 (2015).
[Crossref]

Q. W. Shi, W. X. Huang, T. C. Lu, Y. X. Zhang, F. Yue, S. Qiao, and Y. Xiao, “Nanostructured VO2 film with high transparency and enhanced switching ratio in THz range,” Appl. Phys. Lett. 104(7), 071903 (2014).
[Crossref]

Xiong, T.

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

Xu, X.

T. S. Kasırga, D. Sun, J. H. Park, J. M. Coy, Z. Fei, X. Xu, and D. H. Cobden, “Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy,” Nat. Nanotechnol. 7(11), 723–727 (2012).
[Crossref] [PubMed]

Yang, Z.

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

Yi, X.

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

Yuan, F.

Z. Tao, T.-R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C.-Y. Ruan, K. Wang, and J. Wu, “Decoupling of Structural and Electronic Phase Transitions in VO2.,” Phys. Rev. Lett. 109(16), 166406 (2012).
[Crossref] [PubMed]

Yue, F.

Y. Xiao, Z.-H. Zhai, Q.-W. Shi, L.-G. Zhu, J. Li, W.-X. Huang, F. Yue, Y.-Y. Hu, Q.-X. Peng, and Z.-R. Li, “Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 107(3), 031906 (2015).
[Crossref]

Q. W. Shi, W. X. Huang, T. C. Lu, Y. X. Zhang, F. Yue, S. Qiao, and Y. Xiao, “Nanostructured VO2 film with high transparency and enhanced switching ratio in THz range,” Appl. Phys. Lett. 104(7), 071903 (2014).
[Crossref]

Yun, S. J.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Yun, S.-J.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Zhai, Z.-H.

Y. Xiao, Z.-H. Zhai, Q.-W. Shi, L.-G. Zhu, J. Li, W.-X. Huang, F. Yue, Y.-Y. Hu, Q.-X. Peng, and Z.-R. Li, “Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 107(3), 031906 (2015).
[Crossref]

Zhang, Q.

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

Zhang, S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Zhang, X.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Zhang, X.-C.

Zhang, Y. X.

Q. W. Shi, W. X. Huang, T. C. Lu, Y. X. Zhang, F. Yue, S. Qiao, and Y. Xiao, “Nanostructured VO2 film with high transparency and enhanced switching ratio in THz range,” Appl. Phys. Lett. 104(7), 071903 (2014).
[Crossref]

Zhang, Z.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(1), 3029 (2013).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(1), 3029 (2013).
[Crossref] [PubMed]

Zhou, Y.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Zhou, Z.

C. Chen and Z. Zhou, “Optical phonons assisted infrared absorption in VO2 based bolometer,” Appl. Phys. Lett. 91(1), 011107 (2007).
[Crossref]

Zhu, L.-G.

Y. Xiao, Z.-H. Zhai, Q.-W. Shi, L.-G. Zhu, J. Li, W.-X. Huang, F. Yue, Y.-Y. Hu, Q.-X. Peng, and Z.-R. Li, “Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 107(3), 031906 (2015).
[Crossref]

Zhu, Y.

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

Zimmers, A.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

J. M. Wu and W. E. Chang, “Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire,” ACS Appl. Mater. Interfaces 6(16), 14286–14292 (2014).
[Crossref] [PubMed]

ACS Nano (1)

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11(1), 693–701 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photonics 2(9), 1306–1313 (2015).
[Crossref]

Annu. Rev. Mater. Res. (1)

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

Appl. Phys. Lett. (6)

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

C. Chen and Z. Zhou, “Optical phonons assisted infrared absorption in VO2 based bolometer,” Appl. Phys. Lett. 91(1), 011107 (2007).
[Crossref]

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Y. Xiao, Z.-H. Zhai, Q.-W. Shi, L.-G. Zhu, J. Li, W.-X. Huang, F. Yue, Y.-Y. Hu, Q.-X. Peng, and Z.-R. Li, “Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy,” Appl. Phys. Lett. 107(3), 031906 (2015).
[Crossref]

Q. W. Shi, W. X. Huang, T. C. Lu, Y. X. Zhang, F. Yue, S. Qiao, and Y. Xiao, “Nanostructured VO2 film with high transparency and enhanced switching ratio in THz range,” Appl. Phys. Lett. 104(7), 071903 (2014).
[Crossref]

J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadium dioxide films,” Appl. Phys. Lett. 88(8), 081902 (2006).
[Crossref]

J. Phys. Chem. C (1)

B. Varghese, R. Tamang, E. S. Tok, S. G. Mhaisalkar, and C. H. Sow, “Photothermoelectric effects in localized photocurrent of individual VO2 nanowires,” J. Phys. Chem. C 114(35), 15149–15156 (2010).
[Crossref]

Nano Lett. (5)

X. Wang and H. Gao, “Distinguishing the photothermal and photoinjection effects in vanadium dioxide nanowires,” Nano Lett. 15(10), 7037–7042 (2015).
[Crossref] [PubMed]

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16(2), 1050–1055 (2016).
[Crossref] [PubMed]

Y.-G. Jeong, S. Han, J. Rhie, J.-S. Kyoung, J.-W. Choi, N. Park, S. Hong, B.-J. Kim, H.-T. Kim, and D.-S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14(3), 1127–1133 (2014).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

B. T. O’Callahan, A. C. Jones, J. Hyung Park, D. H. Cobden, J. M. Atkin, and M. B. Raschke, “Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2.,” Nat. Commun. 6(1), 6849 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

T. S. Kasırga, D. Sun, J. H. Park, J. M. Coy, Z. Fei, X. Xu, and D. H. Cobden, “Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy,” Nat. Nanotechnol. 7(11), 723–727 (2012).
[Crossref] [PubMed]

Nature (3)

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in VO2.,” Nature 500(7463), 431–434 (2013).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Phys. Rev. B Condens. Matter (1)

H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, “Mid-infrared properties of a VO2 film near the metal-insulator transition,” Phys. Rev. B Condens. Matter 54(7), 4621–4628 (1996).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
[Crossref]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 76(3), 035104 (2007).
[Crossref]

Phys. Rev. Lett. (4)

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

S. Liu, B. Phillabaum, E. W. Carlson, K. A. Dahmen, N. S. Vidhyadhiraja, M. M. Qazilbash, and D. N. Basov, “Random field driven spatial complexity at the mott transition in VO2,” Phys. Rev. Lett. 116(3), 036401 (2016).
[Crossref] [PubMed]

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Z. Tao, T.-R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C.-Y. Ruan, K. Wang, and J. Wu, “Decoupling of Structural and Electronic Phase Transitions in VO2.,” Phys. Rev. Lett. 109(16), 166406 (2012).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

N. F. Mott, “Metal-Insulator transition,” Rev. Mod. Phys. 40(4), 677–683 (1968).
[Crossref]

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

Sci. Rep. (2)

Y. Zhu, Z. Cai, P. Chen, Q. Zhang, M. J. Highland, I. W. Jung, D. A. Walko, E. M. Dufresne, J. Jeong, M. G. Samant, S. S. Parkin, J. W. Freeland, P. G. Evans, and H. Wen, “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6(1), 21999 (2016).
[Crossref] [PubMed]

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(1), 3029 (2013).
[Crossref] [PubMed]

Science (3)

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[Crossref] [PubMed]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Ultrafast photodoping induced IMT dynamics under different pump fluences when photothermal accumulation stabilized. Fluence-dependent normalized transient differential THz wave transmittance induced by photodoping-induced IMT with excitation pulse repetition time of 1 ms (a) and the 3 ms (b). (Tsta represents THz transmittance through the film when photothermal stabilized with photothermal heating time t > 100 s in Fig. 2(b)). The maximum photodoping induced THz wave absorption (c), and photodoping induced transient IMT transition time τs (d) as a function of pump fluence. Red circles and blue squares stand for the excitation pulse repetition times of 1 ms and 3 ms, respectively. Arrows in (d) mark the pump fluence threshold Fth to trigger photodoping induced IMT.
Fig. 2
Fig. 2 IMT induced by photothermal accumulation. (a) The schematic of KITA for photothermal induced IMT measurements, along with the measurement of the sample’s temperature. The blue and red pulses represent the THz probe pulse and the fs excitation pulse, respectively. The inset shows relative positions of laser/THz spot and the temperature probe spot on the sample. The time delay between fs-laser pulse and THz pulse is represented by τ. τ<0 means that the THz pulse followed by a fs-laser pulse after time τ. Results in (b) and (c) are acquired at τ=10ps. (b) and (c) Differential transmittance of THz wave through insulator-metal coexisted VO2 nanofilm normalized by the transmittance at 0 s as a function of photothermal heating time t when the sample is excited by a fs-laser with variable pulse repetition time ((b) 1 ms, (c) 2 ms and 3ms), where Tini represents THz transmittance through initial unexcited (insulating) VO2 film, and ΔTph-th represents differential transmittance of THz wave induced by photothermal accumulation. Arrows in b indicate the times when the IMT-induced THz absorption started. (d) and (e) the corresponding temperature rise dynamics probed at ~3.5mm away from the excitation spot during the photo-thermal heating. The photo-thermal heating was set to begin at t = 0 s as indicated by the vertical dashed lines in (b)-(e). The horizontal dashed lines in (d) and (e) represent the phase transition threshold at the excitation spot, which is determined by modeling the heating diffusion with detailed description and results shown in Appendix II: Note 1. The excitation pump fluences are indicated in (b)-(e), respectively.
Fig. 3
Fig. 3 The THz power transmission dynamics of VO2 thin film sample studied by optical pump CW-THz probe. (a) The experimental scheme. The CW-THz wave source working at 0.21 THz was first focused by TPX THz lens and the sample was placed at the focal plane. The transmitted THz power after the laser pulse was detected by a THz zero-biased photo diode. The output signal of the photo diode was monitored directly by an oscilloscope. (b) THz transmission dynamics by photo-thermal accumulation with different optical pump intervals (time interval 0.8 ms, 1.0 ms, 1.2 ms, 1.4 ms, 1.6 ms, 1.8 ms, 2.0 ms and 3.0 ms) in time scale of ~100 s, which shows the insulator to metal transition of VO2 thin film by photo thermal accumulation. The time lag between optical pumping and the starting point of THz transmission change is marked by the downward arrows. This experiment was conducted on another VO2 sample using a fs laser system with variable repetition rate. The pump fluence used in the experiment is 26.8mJ/cm2.
Fig. 4
Fig. 4 Ultrafast photodoping induced IMT dynamics during photothermal accumulation. (a) photodoping induced ultrafast IMT dynamics on ps-timescale at different photothermal heating time t = 1.0 s, 5.0 s, 10.0 s, 15.0 s and 35.0 s (See Appendix I: Methods). Here T(t) represents THz transmittance through the VO2 nanofilm when photothermal accumulates at the given time t, and ΔTph-dp represents differential transmittance of THz wave caused by photodoping. All the measurements were performed under excitations with pulse repetition time of 1 ms, and under pump fluence of 21.8 mJ/cm2. (b) Extracted transition time τs (red circles) and maximum differential transmittance of THz wave normalized by the transmittance at photothermal heating time t -ΔTph-dp/T(t) (blue circles) for the ultrafast photodoping induced IMT during photothermal accumulation.
Fig. 5
Fig. 5 Distinguishing the IMTs induced by photothermal effect and by photodoping effect. (a) Photo-induced overall differential THz wave transmittance normalized by the initial transmittance (-ΔT/Tini) as a function of photothermal accumulation (under excitation pulse repetition time of 1ms and pump fluence of 21.8 mJ/cm2). Green and red areas represent differential THz wave transmittance due to photodoping and photothermal effect, respectively. The inset illustrates the penetration of photodoping and photothermal effects. (b) The corresponding volume fraction fmetal of metallic phase domain and effective conductivity σeff of the nanofilm extracted from a, and t (8.6s, 22s, 72s) denotes the photothermal accumulation time. (c) Photo-induced overall differential THz wave transmittance normalized by the initial transmittance (-ΔT/Tini) as a function of pump fluence (with excitation pulse repetition time of 1 ms). (d) The corresponding volume fraction fmetal of metallic phase domain and effective conductivity σeff of the nanofilm extracted from (c), and 15.1, 17, 23.4 mJ/cm2 denotes the pump fluence. Experimental data under pulse repetition time of 3-ms and pump fluence of 27.1 mJ/cm2 is also shown for comparison. Black asterisks (☆) in b and d denote the initial unexcited state of thin film, solid dots (●, ■, ▲, ▼) denote photothermally (PT) induced states, while empty dots (○, □, △, ▽) represent states induced further by photodoping (PD).
Fig. 6
Fig. 6 VO2 nanogranular thin film prepared by inorganic sol-gel method. (a) The XRD pattern shows insulating phase of the VO2 thin film. The film exhibits polycrystalline structure that matches the monoclinic VO2 well (JCPDS card no. 72-0514). A strong peak at the angle 2θ≈27.88° refers to a (011) preferred orientation. Inset: 3D AFM image of the film. The film is compact with uniform grain size of around 80 nm. (b) The temperature-dependent hysteresis of the normalized terahertz wave transmittance through the film. Here the THz transmission through the VO2 film has been normalized by comparing the THz signal transmitted through the VO2 film on the substrate. During the phase transition, the VO2 film presents a reduction of THz transmission of around 80%. This THz switching property is excellent, corresponding to high quality of the VO2 film. Inset: the derivative of temperature dependence of THz transmittance, which gives the critical phase transition temperature of 67.5 °C under heating and 61.4 °C under cooling.
Fig. 7
Fig. 7 Temperature distribution and rise dynamics with fs laser pumping. (a) and (b) the temperature distribution without and with fs laser pumping (at 8.6mJ/cm2, 1 kHz). (c) Temperature rise dynamics at three points marked by the circles in (b). (d) The temperature distribution along the dashed line in (b) at t = 27s. (e) Temperature rise dynamics at point A under different pumping fluencies at 1 kHz repetition rate. (f) Temperature rise dynamics at point A under different time interval of fs laser pulses at pump fluence of 26.8mJ/cm2. In (c), (e) and (f), the fs laser was turned on at t = 0s. The temperatures shown in this figure are calibrated with the temperature measured by T-type thermocouple probe. The accumulated photothermal induced the maximum temperature is 50°C below the IMT transition temperature (61.4°C). It also means under this laser condition, photothermal accumulation is insufficient to drive IMT.
Fig. 8
Fig. 8 Overall photo-induced differential THz wave transmittance normalized by the initial transmittance. -ΔT(t, τ)/T0 as a function of optical-pump THz-probe delay time τ and the photothermal accumulation time t.
Fig. 9
Fig. 9 Extracted transition time τr (fast non-thermal metallic nucleation) for (a) the ultrafast photo-doping induced IMT as a function of pump fluence, and (b) the ultrafast photo-doping induced IMT as a function of photothermal accumulation time t, under pump fluence of 21.8 mJ/cm2.
Fig. 10
Fig. 10 Modeling the temperature rise dynamics with optical pulse heating and diffusion. (a)Transient temperature rise and decay after optical pumping by one fs pulse. The temperature drop after pumping gives a drop rate of about (~10 μs)−1. The inset shows an expanded view of the temperature curve within 0~1.5 ps. (b) Simulated temperature dynamics under total 15 pulses of pumping fs laser with pump intervals of 1 ms and 2 ms. (c) Enlarged view of the accumulation of temperature in (b). The thick lines illustrate the heat accumulation.
Fig. 11
Fig. 11 Simulated long term surface temperature of the sample. (a) Temperature distribution in the radial direction x of the sample. The inset shows the temperature distribution geometrically. (b) Temperature rise dynamics at the sample’s center (x = 0.1 mm, red line) and at the temperature probe place in the experiment (x = 3.5 mm, blue line). This simulation was used for the estimation of central temperature.
Fig. 12
Fig. 12 THz transmission under different VO2 film parameters. Blue lines correspond to thickness d = 200 nm, 300 nm, 400 nm and metallic phase conductivity are fixed at 200 Ω−1cm−1, and red lines correspond to conductivity of σm = 200 Ω−1cm−1, 300 Ω−1cm−1, 400 Ω−1cm−1 and the thickness is fixed at d = 200 nm. (inset) Illustration of multi-beam interference model, where n1 = 1, n2 and n3 = 1.98 are the refractive index of air, VO2 sample and the SiO2 substrate, respectively. d and d0 = 0.5 mm are the thicknesses of the VO2 film and the SiO2 substrate.
Fig. 13
Fig. 13 Illustration of metallic volume fraction fm and differential THz wave transmittance caused by photo-doping as a function of pump fluence. (a) At photo-thermal equilibrium, more energy is needed to induce the same amount of metallic phase fph-dp by photo-doping when fm-th is at higher level. (b) Above pump threshold, the slope of differential THz wave transmittance with respect to the pump fluence is decreasing.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ T phdp ( τ ) T( t 0 ) = Δ T phdp ( ) T( t 0 ) ( 1 A e τ/ τ r +B e τ/ τ s A+B )
f m σ m σ eff σ m +2 σ eff + f i σ i σ eff σ i +2 σ eff =0
ε eff ( ω )= ε + j σ eff ε 0 ω
T= t 12 t 23 e i n 2 ωd/c 1 r 23 r 21 e 2i n 2 ωd/c t 31 e i n 3 ω d 0 /c

Metrics