Abstract

Conventional image-reject mixing based on Hartley and Weaver architectures cannot deal with the mixing spurs generated by the nonlinearity of the mixer, leading to a fundamental restriction on the instantaneous bandwidth and frequency tuning range. This paper proposes and demonstrates a new architecture for broadband image-reject mixing enabled uniquely by photonics. The RF signal and the electrical LO signal are converted into the optical domain and are then launched into the signal and LO ports of a 90-degree optical hybrid, respectively. The optical hybrid coupler introduces 0, π, π/2 and 3π/2 phase shifts to the input signals, so a new dimension for additional balanced detection is enabled, which can dramatically remove the undesirable mixing spurs and the common-mode noises. As a result, the proposed architecture suppresses the downconverted image and the nonlinear mixing spurs simultaneously, enabling a truly wideband microwave frequency mixer. A theoretical and experimental investigation is performed. More than 60-dB image rejection and mixing spur suppression is achieved over a 40-GHz working frequency range.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband lower-IF RF receiver based on microwave photonic mixer and Kramers-Kronig detection

Chunjing Yin, Jianqiang Li, Liang Shu, Zhenming Yu, Feifei Yin, Yue Zhou, Yitang Dai, and Kun Xu
Opt. Express 26(20) 26400-26410 (2018)

Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q mixer

Ziyi Meng, Jianqiang Li, Chunjing Yin, Yuting Fan, Feifei Yin, Yue Zhou, Yitang Dai, and Kun Xu
Opt. Express 25(18) 22055-22065 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Onori, F. Scotti, F. Laghezza, M. Bartocci, A. Zaccaron, A. Tafuto, A. Albertoni, A. Bogoni, and P. Ghelfi, “A photonically enabled compact 0.5-28.5 GHz RF scanning receiver,” J. Lightwave Technol. 36(10), 1831–1839 (2018).
    [Crossref]
  2. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  3. S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
    [Crossref]
  4. B. Razavi, RF Microelectronics, II Edition (Pearson Education, 2012).
  5. D. Zhu and S. L. Pan, “Photonics-based microwave image-reject mixer,” MDPI Photon. 5(2), 6 (2018).
  6. H. Ogawa and H. Kamitsuna, “Fiber optic microwave links using balanced laser harmonic generation, and balanced/image cancellation laser mixing,” IEEE Trans. Microw. Theory Tech. 40(12), 2278–2284 (1992).
    [Crossref]
  7. C. Lu, W. Chen, and J. F. Shiang, “Photonic mixers and image-rejection mixers for optical SCM systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1478–1480 (1997).
    [Crossref]
  8. J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(4), 3900411 (2016).
    [Crossref]
  9. Z. Z. Tang and S. L. Pan, “Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter,” J. Lightwave Technol. 34(20), 4729–4735 (2016).
    [Crossref]
  10. Y. Gao, A. Wen, W. Chen, and X. Li, “All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter,” Opt. Lett. 42(6), 1105–1108 (2017).
    [Crossref] [PubMed]
  11. W. Zhang, A. J. Wen, Y. S. Gao, S. Shang, H. X. Zheng, and H. Y. He, “Large bandwidth photonic microwave image rejection mixer with high conversion efficiency,” IEEE Photonics J. 9(3), 7201908 (2017).
    [Crossref]
  12. Z. Tang and S. Pan, “Reconfigurable microwave photonic mixer with minimized path separation and large suppression of mixing spurs,” Opt. Lett. 42(1), 33–36 (2017).
    [Crossref] [PubMed]
  13. Z. Z. Tang and S. L. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Tech. 64(9), 3017–3025 (2016).
    [Crossref]
  14. Z. Meng, J. Li, C. Yin, Y. Fan, F. Yin, Y. Zhou, Y. Dai, and K. Xu, “Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q mixer,” Opt. Express 25(18), 22055–22065 (2017).
    [Crossref] [PubMed]
  15. Z. Shi, S. Zhu, M. Li, N. H. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun. 428, 131–135 (2018).
    [Crossref]
  16. W. J. Chen, D. Zhu, and S. L. Pan, “Multi-octave image-reject mixer with large suppression of mixing spurs based on balanced photodetectors,” in CLEO 2018 (2018).
  17. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]

2018 (3)

D. Onori, F. Scotti, F. Laghezza, M. Bartocci, A. Zaccaron, A. Tafuto, A. Albertoni, A. Bogoni, and P. Ghelfi, “A photonically enabled compact 0.5-28.5 GHz RF scanning receiver,” J. Lightwave Technol. 36(10), 1831–1839 (2018).
[Crossref]

D. Zhu and S. L. Pan, “Photonics-based microwave image-reject mixer,” MDPI Photon. 5(2), 6 (2018).

Z. Shi, S. Zhu, M. Li, N. H. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun. 428, 131–135 (2018).
[Crossref]

2017 (4)

2016 (3)

Z. Z. Tang and S. L. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Tech. 64(9), 3017–3025 (2016).
[Crossref]

J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(4), 3900411 (2016).
[Crossref]

Z. Z. Tang and S. L. Pan, “Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter,” J. Lightwave Technol. 34(20), 4729–4735 (2016).
[Crossref]

2015 (1)

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

2014 (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

1997 (1)

C. Lu, W. Chen, and J. F. Shiang, “Photonic mixers and image-rejection mixers for optical SCM systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1478–1480 (1997).
[Crossref]

1992 (1)

H. Ogawa and H. Kamitsuna, “Fiber optic microwave links using balanced laser harmonic generation, and balanced/image cancellation laser mixing,” IEEE Trans. Microw. Theory Tech. 40(12), 2278–2284 (1992).
[Crossref]

Albertoni, A.

Bartocci, M.

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bogoni, A.

D. Onori, F. Scotti, F. Laghezza, M. Bartocci, A. Zaccaron, A. Tafuto, A. Albertoni, A. Bogoni, and P. Ghelfi, “A photonically enabled compact 0.5-28.5 GHz RF scanning receiver,” J. Lightwave Technol. 36(10), 1831–1839 (2018).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chan, E. H. W.

J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(4), 3900411 (2016).
[Crossref]

Chen, W.

Y. Gao, A. Wen, W. Chen, and X. Li, “All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter,” Opt. Lett. 42(6), 1105–1108 (2017).
[Crossref] [PubMed]

C. Lu, W. Chen, and J. F. Shiang, “Photonic mixers and image-rejection mixers for optical SCM systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1478–1480 (1997).
[Crossref]

Chen, W. J.

W. J. Chen, D. Zhu, and S. L. Pan, “Multi-octave image-reject mixer with large suppression of mixing spurs based on balanced photodetectors,” in CLEO 2018 (2018).

Dai, Y.

Dai, Y. T.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Fan, Y.

Feng, X.

J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(4), 3900411 (2016).
[Crossref]

Gao, Y.

Gao, Y. S.

W. Zhang, A. J. Wen, Y. S. Gao, S. Shang, H. X. Zheng, and H. Y. He, “Large bandwidth photonic microwave image rejection mixer with high conversion efficiency,” IEEE Photonics J. 9(3), 7201908 (2017).
[Crossref]

Ghelfi, P.

D. Onori, F. Scotti, F. Laghezza, M. Bartocci, A. Zaccaron, A. Tafuto, A. Albertoni, A. Bogoni, and P. Ghelfi, “A photonically enabled compact 0.5-28.5 GHz RF scanning receiver,” J. Lightwave Technol. 36(10), 1831–1839 (2018).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Guan, B.

J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(4), 3900411 (2016).
[Crossref]

He, H. Y.

W. Zhang, A. J. Wen, Y. S. Gao, S. Shang, H. X. Zheng, and H. Y. He, “Large bandwidth photonic microwave image rejection mixer with high conversion efficiency,” IEEE Photonics J. 9(3), 7201908 (2017).
[Crossref]

Kamitsuna, H.

H. Ogawa and H. Kamitsuna, “Fiber optic microwave links using balanced laser harmonic generation, and balanced/image cancellation laser mixing,” IEEE Trans. Microw. Theory Tech. 40(12), 2278–2284 (1992).
[Crossref]

Laghezza, F.

D. Onori, F. Scotti, F. Laghezza, M. Bartocci, A. Zaccaron, A. Tafuto, A. Albertoni, A. Bogoni, and P. Ghelfi, “A photonically enabled compact 0.5-28.5 GHz RF scanning receiver,” J. Lightwave Technol. 36(10), 1831–1839 (2018).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Li, J.

Li, M.

Z. Shi, S. Zhu, M. Li, N. H. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun. 428, 131–135 (2018).
[Crossref]

Li, W.

Z. Shi, S. Zhu, M. Li, N. H. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun. 428, 131–135 (2018).
[Crossref]

Li, X.

Liu, J. G.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Liu, N. J.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Liu, S. F.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Lu, C.

C. Lu, W. Chen, and J. F. Shiang, “Photonic mixers and image-rejection mixers for optical SCM systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1478–1480 (1997).
[Crossref]

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Meng, Z.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Ogawa, H.

H. Ogawa and H. Kamitsuna, “Fiber optic microwave links using balanced laser harmonic generation, and balanced/image cancellation laser mixing,” IEEE Trans. Microw. Theory Tech. 40(12), 2278–2284 (1992).
[Crossref]

Onori, D.

D. Onori, F. Scotti, F. Laghezza, M. Bartocci, A. Zaccaron, A. Tafuto, A. Albertoni, A. Bogoni, and P. Ghelfi, “A photonically enabled compact 0.5-28.5 GHz RF scanning receiver,” J. Lightwave Technol. 36(10), 1831–1839 (2018).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pan, S.

Pan, S. L.

D. Zhu and S. L. Pan, “Photonics-based microwave image-reject mixer,” MDPI Photon. 5(2), 6 (2018).

Z. Z. Tang and S. L. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Tech. 64(9), 3017–3025 (2016).
[Crossref]

Z. Z. Tang and S. L. Pan, “Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter,” J. Lightwave Technol. 34(20), 4729–4735 (2016).
[Crossref]

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

W. J. Chen, D. Zhu, and S. L. Pan, “Multi-octave image-reject mixer with large suppression of mixing spurs based on balanced photodetectors,” in CLEO 2018 (2018).

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

D. Onori, F. Scotti, F. Laghezza, M. Bartocci, A. Zaccaron, A. Tafuto, A. Albertoni, A. Bogoni, and P. Ghelfi, “A photonically enabled compact 0.5-28.5 GHz RF scanning receiver,” J. Lightwave Technol. 36(10), 1831–1839 (2018).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Shang, S.

W. Zhang, A. J. Wen, Y. S. Gao, S. Shang, H. X. Zheng, and H. Y. He, “Large bandwidth photonic microwave image rejection mixer with high conversion efficiency,” IEEE Photonics J. 9(3), 7201908 (2017).
[Crossref]

Shi, Z.

Z. Shi, S. Zhu, M. Li, N. H. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun. 428, 131–135 (2018).
[Crossref]

Shiang, J. F.

C. Lu, W. Chen, and J. F. Shiang, “Photonic mixers and image-rejection mixers for optical SCM systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1478–1480 (1997).
[Crossref]

Tafuto, A.

Tang, Z.

Tang, Z. Z.

Z. Z. Tang and S. L. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Tech. 64(9), 3017–3025 (2016).
[Crossref]

Z. Z. Tang and S. L. Pan, “Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter,” J. Lightwave Technol. 34(20), 4729–4735 (2016).
[Crossref]

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Wang, T. L.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Wang, X.

J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(4), 3900411 (2016).
[Crossref]

Wen, A.

Wen, A. J.

W. Zhang, A. J. Wen, Y. S. Gao, S. Shang, H. X. Zheng, and H. Y. He, “Large bandwidth photonic microwave image rejection mixer with high conversion efficiency,” IEEE Photonics J. 9(3), 7201908 (2017).
[Crossref]

Xu, K.

Z. Meng, J. Li, C. Yin, Y. Fan, F. Yin, Y. Zhou, Y. Dai, and K. Xu, “Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q mixer,” Opt. Express 25(18), 22055–22065 (2017).
[Crossref] [PubMed]

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Xue, Y.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Yin, C.

Yin, F.

Zaccaron, A.

Zhang, J.

J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(4), 3900411 (2016).
[Crossref]

Zhang, W.

W. Zhang, A. J. Wen, Y. S. Gao, S. Shang, H. X. Zheng, and H. Y. He, “Large bandwidth photonic microwave image rejection mixer with high conversion efficiency,” IEEE Photonics J. 9(3), 7201908 (2017).
[Crossref]

Zheng, H. X.

W. Zhang, A. J. Wen, Y. S. Gao, S. Shang, H. X. Zheng, and H. Y. He, “Large bandwidth photonic microwave image rejection mixer with high conversion efficiency,” IEEE Photonics J. 9(3), 7201908 (2017).
[Crossref]

Zhou, Y.

Zhu, D.

D. Zhu and S. L. Pan, “Photonics-based microwave image-reject mixer,” MDPI Photon. 5(2), 6 (2018).

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

W. J. Chen, D. Zhu, and S. L. Pan, “Multi-octave image-reject mixer with large suppression of mixing spurs based on balanced photodetectors,” in CLEO 2018 (2018).

Zhu, N. H.

Z. Shi, S. Zhu, M. Li, N. H. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun. 428, 131–135 (2018).
[Crossref]

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Zhu, S.

Z. Shi, S. Zhu, M. Li, N. H. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun. 428, 131–135 (2018).
[Crossref]

IEEE Microw. Mag. (1)

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

IEEE Photonics J. (2)

J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(4), 3900411 (2016).
[Crossref]

W. Zhang, A. J. Wen, Y. S. Gao, S. Shang, H. X. Zheng, and H. Y. He, “Large bandwidth photonic microwave image rejection mixer with high conversion efficiency,” IEEE Photonics J. 9(3), 7201908 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (3)

Z. Z. Tang and S. L. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Tech. 64(9), 3017–3025 (2016).
[Crossref]

H. Ogawa and H. Kamitsuna, “Fiber optic microwave links using balanced laser harmonic generation, and balanced/image cancellation laser mixing,” IEEE Trans. Microw. Theory Tech. 40(12), 2278–2284 (1992).
[Crossref]

C. Lu, W. Chen, and J. F. Shiang, “Photonic mixers and image-rejection mixers for optical SCM systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1478–1480 (1997).
[Crossref]

J. Lightwave Technol. (2)

MDPI Photon. (1)

D. Zhu and S. L. Pan, “Photonics-based microwave image-reject mixer,” MDPI Photon. 5(2), 6 (2018).

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. Shi, S. Zhu, M. Li, N. H. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun. 428, 131–135 (2018).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Other (2)

B. Razavi, RF Microelectronics, II Edition (Pearson Education, 2012).

W. J. Chen, D. Zhu, and S. L. Pan, “Multi-octave image-reject mixer with large suppression of mixing spurs based on balanced photodetectors,” in CLEO 2018 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The schematic diagram of the image-reject mixer based on the Hartley architecture [4], LPF: low pass filter.
Fig. 2
Fig. 2 The schematic diagram of the proposed balanced Hartley architecture for broadband image-reject microwave mixing.
Fig. 3
Fig. 3 The electrical spectra of the IF signals from the proposed IRM when the frequency of the RF signal is swept from 15.1 to 20 GHz (dashed line). The solid line denotes the case when the RF signal is switched to the corresponding image.
Fig. 4
Fig. 4 The electrical spectra of the mixing results from the scheme using (a) the Hartley architecture and (b) the proposed balanced Hartley architecture, when the RF signal with a frequency sweeping from 15.1 to 20 GHz and the corresponding image are introduced to the system.
Fig. 5
Fig. 5 The electrical spectra of the mixing results from the scheme using (a) the Hartley architecture and (b) the proposed balanced Hartley architecture, when the RF signal with a frequency sweeping from 16 to 29 GHz and the corresponding image are introduced to the system.
Fig. 6
Fig. 6 The rejection ratio of the image/mixing spurs as a function of the RF frequency using (a) the Hartley architecture and (b) the proposed balanced Hartley architecture.
Fig. 7
Fig. 7 The mixing spur suppression ratio versus the LO power for the Hartley architecture and the proposed balanced Hartley architecture.
Fig. 8
Fig. 8 (a) The electrical spectra and (b) the instantaneous frequency-time diagram of the wideband downconverted signals using the scheme based on (1) the Hartley architecture and (2) the proposed balanced Hartley architecture.
Fig. 9
Fig. 9 The measured electrical spectra of the mixing results with an 11.5-GHz LO by injecting the RF signal (with a 2-GHz bandwidth centered at 13.5 GHz) and the image into the system simultaneously with the DSB modulation format for (a) the Hartley architecture and (b) the balanced Hartley architecture.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E RF ( t ) a 1 exp j ( ω c t ω RF t - θ RF ) + b 1 exp j ( ω c t ω IM t - θ IM ) + a 0 exp j ( ω c t ) + a 1 exp j ( ω c t + ω RF t + θ RF ) + b 1 exp j ( ω c t + ω IM t + θ IM ) E LO ( t ) d 1 exp j ( ω c t + ω LO t + θ LO )
i I I 1 * I 1 I 2 * I 2 = 4 a 1 d 1 cos ( ω R F t ω L O t + θ R F θ L O ) + 4 b 1 d 1 cos ( ω L O t ω I M t + θ L O θ I M ) + 4 a 1 d 1 cos ( ω L O t + ω R F t + θ L O + θ R F ) + 4 b 1 d 1 cos ( ω L O t + ω I M t + θ L O + θ I M ) + 4 a 0 d 1 cos ( ω L O t + θ L O ) i Q Q 1 * Q 1 Q 2 * Q 2 = 4 a 1 d 1 sin ( ω R F t ω L O t + θ R F θ L O ) 4 b 1 d 1 sin ( ω L O t ω I M t + θ L O θ I M ) 4 a 1 d 1 sin ( ω L O t + ω R F t + θ L O + θ R F ) 4 b 1 d 1 sin ( ω L O t + ω I M t + θ L O + θ I M ) 4 a 0 d 1 sin ( ω L O t + θ L O )
i = i I 0 + i Q π 2 8 a 1 d 1 cos ( ω R F t ω L O t + θ R F - θ L O )

Metrics