Abstract

A photonic method to generate binary and quaternary phase-coded microwave signals using a dual-polarization dual-parallel Mach-Zehnder modulator (DP-DPMZM) is proposed and experimentally demonstrated. The upper DPMZM driven by a radio frequency (RF) signal acts as an optical wavelength shifter, while the lower DPMZM is used to generate a binary phase shift key (BPSK) or quadrature phase shift key (QPSK) signal. By combining the wavelength-shifted optical sideband and phase-modulated optical carrier, both binary and quaternary phase-coded microwave signals can be generated. Such signals with the carrier frequency of 10 GHz and 15 GHz are demonstrated. The pulse compression performance is also investigated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic generation of binary and quaternary phase-coded microwave waveforms with an ultra-wide frequency tunable range

Yang Chen, Aijun Wen, Yan Chen, and Xiaohui Wu
Opt. Express 22(13) 15618-15625 (2014)

All-optical generation of binary phase-coded microwave signal based on cross-polarization modulation in a highly nonlinear fiber

Wei Li, Wen Ting Wang, Wen Hui Sun, and Ning Hua Zhu
Opt. Lett. 39(6) 1561-1564 (2014)

Photonic generation of RF binary digitally modulated signals

Xia Feng, Lianshan Yan, Hengyun Jiang, Jia Ye, Yan Pan, Lin Jiang, Wei Pan, Bin Luo, and Can Liu
Opt. Express 25(16) 19043-19051 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [Crossref]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  4. I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Compon. Lett. 15(4), 226–228 (2005).
    [Crossref]
  5. C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveform generation using a spatially discrete chirped fiber bragg grating,” IEEE Photonics Technol. Lett. 24(17), 1493–1495 (2012).
    [Crossref]
  6. J. Ye, L. S. Yan, Z. Y. Chen, W. Pan, B. Luo, X. H. Zou, A. L. Yi, and S. Yao, “Photonic generation of microwave phase-coded signals based on frequency-to-time conversion,” IEEE Photonics Technol. Lett. 24(17), 1527–1529 (2012).
    [Crossref]
  7. F. Zhang, X. Ge, S. Pan, and J. Yao, “Photonic generation of pulsed microwave signals with tunable frequency and phase based on spectral-shaping and frequency-to-time mapping,” Opt. Lett. 38(20), 4256–4259 (2013).
    [Crossref] [PubMed]
  8. Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
    [Crossref]
  9. H. Y. Jiang, L. S. Yan, J. Ye, W. Pan, B. Luo, and X. Zou, “Photonic generation of phase-coded microwave signals with tunable carrier frequency,” Opt. Lett. 38(8), 1361–1363 (2013).
    [Crossref] [PubMed]
  10. H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Compon. Lett. 18(5), 371–373 (2008).
    [Crossref]
  11. Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38(5), 766–768 (2013).
    [Crossref] [PubMed]
  12. F. Zhang, X. Ge, B. Gao, and S. Pan, “Phase-coded microwave signal generation based on a single electro-optical modulator and its application in accurate distance measurement,” Opt. Express 23(17), 21867–21874 (2015).
    [Crossref] [PubMed]
  13. X. Li, S. Zhao, S. Pan, Z. Zhu, K. Qu, and T. Lin, “Generation of a frequency-quadrupled phase-coded signal using optical carrier phase shifting and balanced detection,” Appl. Opt. 56(4), 1151–1156 (2017).
    [Crossref] [PubMed]
  14. Y. Chen, A. J. Wen, and W. Zhang, “Generation of phase-coded microwave signals through equivalent phase modulation,” IEEE Photonics Technol. Lett. 29(16), 1371–1374 (2017).
    [Crossref]
  15. S. Zhu, Z. Shi, M. Li, N. H. Zhu, and W. Li, “Simultaneous frequency upconversion and phase coding of a radio-frequency signal for photonic radars,” Opt. Lett. 43(3), 583–586 (2018).
    [Crossref] [PubMed]
  16. J. Yang and T. K. Sarkar, “A novel Doppler-tolerant polyphase codes for pulse compression based on hyperbolic frequency modulation,” Digit. Signal Process. 17(6), 1019–1029 (2007).
    [Crossref]
  17. A. K. Sahoo and G. Panda, “Doppler tolerant convolutional windows for radar pulse compression,” Int. J. Electron. Commun. Eng. Intemational Research Publication 4(1), 145–152 (2011).
  18. W. Z. Li, F. Q. Kong, and J. P. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 31(23), 3780–3786 (2013).
    [Crossref]
  19. Y. Chen, A. Wen, Y. Chen, and X. Wu, “Photonic generation of binary and quaternary phase-coded microwave waveforms with an ultra-wide frequency tunable range,” Opt. Express 22(13), 15618–15625 (2014).
    [Crossref] [PubMed]
  20. W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
    [Crossref]
  21. D. Van Den Bome, “Robust optical transmission systems: modulation and equalization,” thesis (2008).
  22. Y. Zhang, S. L. Pan, and S. Member, “Broadband microwave signal processing enabled by polarization based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54(4), 0700112 (2018).
    [Crossref]

2018 (2)

S. Zhu, Z. Shi, M. Li, N. H. Zhu, and W. Li, “Simultaneous frequency upconversion and phase coding of a radio-frequency signal for photonic radars,” Opt. Lett. 43(3), 583–586 (2018).
[Crossref] [PubMed]

Y. Zhang, S. L. Pan, and S. Member, “Broadband microwave signal processing enabled by polarization based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54(4), 0700112 (2018).
[Crossref]

2017 (2)

X. Li, S. Zhao, S. Pan, Z. Zhu, K. Qu, and T. Lin, “Generation of a frequency-quadrupled phase-coded signal using optical carrier phase shifting and balanced detection,” Appl. Opt. 56(4), 1151–1156 (2017).
[Crossref] [PubMed]

Y. Chen, A. J. Wen, and W. Zhang, “Generation of phase-coded microwave signals through equivalent phase modulation,” IEEE Photonics Technol. Lett. 29(16), 1371–1374 (2017).
[Crossref]

2016 (1)

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (4)

2012 (2)

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveform generation using a spatially discrete chirped fiber bragg grating,” IEEE Photonics Technol. Lett. 24(17), 1493–1495 (2012).
[Crossref]

J. Ye, L. S. Yan, Z. Y. Chen, W. Pan, B. Luo, X. H. Zou, A. L. Yi, and S. Yao, “Photonic generation of microwave phase-coded signals based on frequency-to-time conversion,” IEEE Photonics Technol. Lett. 24(17), 1527–1529 (2012).
[Crossref]

2011 (2)

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

A. K. Sahoo and G. Panda, “Doppler tolerant convolutional windows for radar pulse compression,” Int. J. Electron. Commun. Eng. Intemational Research Publication 4(1), 145–152 (2011).

2009 (1)

2008 (1)

H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

2007 (2)

J. Yang and T. K. Sarkar, “A novel Doppler-tolerant polyphase codes for pulse compression based on hyperbolic frequency modulation,” Digit. Signal Process. 17(6), 1019–1029 (2007).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (1)

2005 (1)

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Compon. Lett. 15(4), 226–228 (2005).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chen, M.

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Chen, W.

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Chen, Y.

Chen, Z. Y.

J. Ye, L. S. Yan, Z. Y. Chen, W. Pan, B. Luo, X. H. Zou, A. L. Yi, and S. Yao, “Photonic generation of microwave phase-coded signals based on frequency-to-time conversion,” IEEE Photonics Technol. Lett. 24(17), 1527–1529 (2012).
[Crossref]

Chi, H.

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

Gao, B.

Gao, Y. S.

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Ge, X.

Jiang, H. Y.

Kong, F. Q.

Li, M.

Li, W.

Li, W. Z.

W. Z. Li, F. Q. Kong, and J. P. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 31(23), 3780–3786 (2013).
[Crossref]

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Li, X.

Li, Z.

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Lin, I. S.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Compon. Lett. 15(4), 226–228 (2005).
[Crossref]

Lin, T.

Luo, B.

H. Y. Jiang, L. S. Yan, J. Ye, W. Pan, B. Luo, and X. Zou, “Photonic generation of phase-coded microwave signals with tunable carrier frequency,” Opt. Lett. 38(8), 1361–1363 (2013).
[Crossref] [PubMed]

J. Ye, L. S. Yan, Z. Y. Chen, W. Pan, B. Luo, X. H. Zou, A. L. Yi, and S. Yao, “Photonic generation of microwave phase-coded signals based on frequency-to-time conversion,” IEEE Photonics Technol. Lett. 24(17), 1527–1529 (2012).
[Crossref]

McKinney, J. D.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Compon. Lett. 15(4), 226–228 (2005).
[Crossref]

Member, S.

Y. Zhang, S. L. Pan, and S. Member, “Broadband microwave signal processing enabled by polarization based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54(4), 0700112 (2018).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Pan, S.

Pan, S. L.

Y. Zhang, S. L. Pan, and S. Member, “Broadband microwave signal processing enabled by polarization based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54(4), 0700112 (2018).
[Crossref]

Pan, W.

H. Y. Jiang, L. S. Yan, J. Ye, W. Pan, B. Luo, and X. Zou, “Photonic generation of phase-coded microwave signals with tunable carrier frequency,” Opt. Lett. 38(8), 1361–1363 (2013).
[Crossref] [PubMed]

J. Ye, L. S. Yan, Z. Y. Chen, W. Pan, B. Luo, X. H. Zou, A. L. Yi, and S. Yao, “Photonic generation of microwave phase-coded signals based on frequency-to-time conversion,” IEEE Photonics Technol. Lett. 24(17), 1527–1529 (2012).
[Crossref]

Panda, G.

A. K. Sahoo and G. Panda, “Doppler tolerant convolutional windows for radar pulse compression,” Int. J. Electron. Commun. Eng. Intemational Research Publication 4(1), 145–152 (2011).

Qu, K.

Sahoo, A. K.

A. K. Sahoo and G. Panda, “Doppler tolerant convolutional windows for radar pulse compression,” Int. J. Electron. Commun. Eng. Intemational Research Publication 4(1), 145–152 (2011).

Sarkar, T. K.

J. Yang and T. K. Sarkar, “A novel Doppler-tolerant polyphase codes for pulse compression based on hyperbolic frequency modulation,” Digit. Signal Process. 17(6), 1019–1029 (2007).
[Crossref]

Seeds, A. J.

Shi, Z.

Wang, C.

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveform generation using a spatially discrete chirped fiber bragg grating,” IEEE Photonics Technol. Lett. 24(17), 1493–1495 (2012).
[Crossref]

Wang, Y.

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Weiner, A. M.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Compon. Lett. 15(4), 226–228 (2005).
[Crossref]

Wen, A.

Wen, A. J.

Y. Chen, A. J. Wen, and W. Zhang, “Generation of phase-coded microwave signals through equivalent phase modulation,” IEEE Photonics Technol. Lett. 29(16), 1371–1374 (2017).
[Crossref]

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Williams, K. J.

Wu, X.

Xiang, S. Y.

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Yan, L. S.

H. Y. Jiang, L. S. Yan, J. Ye, W. Pan, B. Luo, and X. Zou, “Photonic generation of phase-coded microwave signals with tunable carrier frequency,” Opt. Lett. 38(8), 1361–1363 (2013).
[Crossref] [PubMed]

J. Ye, L. S. Yan, Z. Y. Chen, W. Pan, B. Luo, X. H. Zou, A. L. Yi, and S. Yao, “Photonic generation of microwave phase-coded signals based on frequency-to-time conversion,” IEEE Photonics Technol. Lett. 24(17), 1527–1529 (2012).
[Crossref]

Yang, J.

J. Yang and T. K. Sarkar, “A novel Doppler-tolerant polyphase codes for pulse compression based on hyperbolic frequency modulation,” Digit. Signal Process. 17(6), 1019–1029 (2007).
[Crossref]

Yao, J.

Yao, J. P.

W. Z. Li, F. Q. Kong, and J. P. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 31(23), 3780–3786 (2013).
[Crossref]

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveform generation using a spatially discrete chirped fiber bragg grating,” IEEE Photonics Technol. Lett. 24(17), 1493–1495 (2012).
[Crossref]

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

Yao, N.

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Yao, S.

J. Ye, L. S. Yan, Z. Y. Chen, W. Pan, B. Luo, X. H. Zou, A. L. Yi, and S. Yao, “Photonic generation of microwave phase-coded signals based on frequency-to-time conversion,” IEEE Photonics Technol. Lett. 24(17), 1527–1529 (2012).
[Crossref]

Ye, J.

H. Y. Jiang, L. S. Yan, J. Ye, W. Pan, B. Luo, and X. Zou, “Photonic generation of phase-coded microwave signals with tunable carrier frequency,” Opt. Lett. 38(8), 1361–1363 (2013).
[Crossref] [PubMed]

J. Ye, L. S. Yan, Z. Y. Chen, W. Pan, B. Luo, X. H. Zou, A. L. Yi, and S. Yao, “Photonic generation of microwave phase-coded signals based on frequency-to-time conversion,” IEEE Photonics Technol. Lett. 24(17), 1527–1529 (2012).
[Crossref]

Yi, A. L.

J. Ye, L. S. Yan, Z. Y. Chen, W. Pan, B. Luo, X. H. Zou, A. L. Yi, and S. Yao, “Photonic generation of microwave phase-coded signals based on frequency-to-time conversion,” IEEE Photonics Technol. Lett. 24(17), 1527–1529 (2012).
[Crossref]

Zhang, F.

Zhang, W.

Y. Chen, A. J. Wen, and W. Zhang, “Generation of phase-coded microwave signals through equivalent phase modulation,” IEEE Photonics Technol. Lett. 29(16), 1371–1374 (2017).
[Crossref]

Zhang, X. M.

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Zhang, Y.

Y. Zhang, S. L. Pan, and S. Member, “Broadband microwave signal processing enabled by polarization based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54(4), 0700112 (2018).
[Crossref]

Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38(5), 766–768 (2013).
[Crossref] [PubMed]

Zhao, S.

Zhu, N. H.

Zhu, S.

Zhu, Z.

Zou, X.

Zou, X. H.

J. Ye, L. S. Yan, Z. Y. Chen, W. Pan, B. Luo, X. H. Zou, A. L. Yi, and S. Yao, “Photonic generation of microwave phase-coded signals based on frequency-to-time conversion,” IEEE Photonics Technol. Lett. 24(17), 1527–1529 (2012).
[Crossref]

Appl. Opt. (1)

Digit. Signal Process. (1)

J. Yang and T. K. Sarkar, “A novel Doppler-tolerant polyphase codes for pulse compression based on hyperbolic frequency modulation,” Digit. Signal Process. 17(6), 1019–1029 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Zhang, S. L. Pan, and S. Member, “Broadband microwave signal processing enabled by polarization based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54(4), 0700112 (2018).
[Crossref]

IEEE Microw. Compon. Lett. (2)

H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Compon. Lett. 15(4), 226–228 (2005).
[Crossref]

IEEE Photonics J. (1)

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (4)

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveform generation using a spatially discrete chirped fiber bragg grating,” IEEE Photonics Technol. Lett. 24(17), 1493–1495 (2012).
[Crossref]

J. Ye, L. S. Yan, Z. Y. Chen, W. Pan, B. Luo, X. H. Zou, A. L. Yi, and S. Yao, “Photonic generation of microwave phase-coded signals based on frequency-to-time conversion,” IEEE Photonics Technol. Lett. 24(17), 1527–1529 (2012).
[Crossref]

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Y. Chen, A. J. Wen, and W. Zhang, “Generation of phase-coded microwave signals through equivalent phase modulation,” IEEE Photonics Technol. Lett. 29(16), 1371–1374 (2017).
[Crossref]

Int. J. Electron. Commun. Eng. Intemational Research Publication (1)

A. K. Sahoo and G. Panda, “Doppler tolerant convolutional windows for radar pulse compression,” Int. J. Electron. Commun. Eng. Intemational Research Publication 4(1), 145–152 (2011).

J. Lightwave Technol. (3)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Other (1)

D. Van Den Bome, “Robust optical transmission systems: modulation and equalization,” thesis (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of the proposed binary and quaternary phase-coded microwave signals generation scheme. The structure of the (b) U-DPMZM and (c) L-DPMZM. LD, laser diode; DP-DPMZM, dual-polarization dual-parallel Mach-Zehnder modulator; PC, polarization controller; Pol., polarizer; EDFA, erbium doped fiber amplifier; PD, photodetector; PR, polarization rotator; RF, radio frequency; PBC, polarization beam combiner.
Fig. 2
Fig. 2 (a) The optical spectrum at the output of the upper DPMZM and (b) The eye diagram at the output of the lower DPMZM.
Fig. 3
Fig. 3 Electrical spectral of the generated 10 GHz (a) binary and (b) quaternary phase-coded signal. (c) Waveform of the generated 10 GHz binary phase-coded microwave signal, and (d) Extracted phase shift information from (c). (e) Waveform of generated 10 GHz quaternary phase-coded microwave signal, and (f) Extracted phase shift information from (e).
Fig. 4
Fig. 4 The autocorrelation of the binary phase-coded microwave signal: (a) simulated results and (b) experimental results, and the quaternary phase-coded microwave signal (c) simulated results and (d) experimental results.
Fig. 5
Fig. 5 (a) Waveform of generated 15 GHz binary phase-coded microwave signal, and (b) Extracted phase shift information from (a); (c) Waveform of generated 15 GHz quaternary phase-coded microwave signal, and (d) Extracted phase shift information form (b).
Fig. 6
Fig. 6 The autocorrelation of the generated (a) binary phase-coded microwave signal and (b) quaternary phase-coded microwave signal.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E upper (t)= 2 8 E 0 exp( j ω c t )[ exp( jmcos( ω R t)+jπ )+exp( -jmcos( ω R t) ) +exp( jφ )( exp( jmsin( ω R t)+jπ )+exp( -jmsin( ω R t) ) ) ]
E upper (t) 2 8 E 0 exp( j ω c t )[ J 0 (m)j J 1 (m)exp(j ω R t)j J 1 (m)exp(j ω R t) + J 0 (m)j J 1 (m)exp(j ω R t)j J 1 (m)exp(j ω R t) exp( jφ )( J 0 (m)+ J 1 (m)exp(j ω R t) J 1 (m)exp(j ω R t) ) +exp( jφ )( J 0 (m) J 1 (m)exp(j ω R t)+ J 1 (m)exp(j ω R t) ) ]
E upper (t) 2 2 j J 1 (m) E 0 exp( j( ω c + ω R )t )
E lower (t)= 2 8 E 0 exp( j ω c t )[ exp( j m 1 s 1 (t)+jπ )+exp( -j m 1 s 1 (t) ) +exp( j π 2 )( exp( j m 2 s 2 (t)+jπ )+exp( -j m 2 s 2 (t) ) ) ]
E lower (t)={ 1 2 E 0 | sin( m 1 ) |expj( ω c t π 4 )( s 1 (t)=1, s 2 (t)=1) 1 2 E 0 | sin( m 1 ) |expj( ω c t+ π 4 )( s 1 (t)=1, s 2 (t)=1) 1 2 E 0 | sin( m 1 ) |expj( ω c t+ 3π 4 )( s 1 (t)=1, s 2 (t)=1) 1 2 E 0 | sin( m 1 ) |expj( ω c t 3π 4 )( s 1 (t)=1, s 2 (t)=1)
E Pol. = 2 2 E upper (t)+ 2 2 E lower (t)
i(t)=R E Pol. (t)* E Pol. (t) * ={ 2 4 R J 1 (m) E 0 2 | sin( m 1 ) |cos( ω R t π 4 )( s 1 (t)=1, s 2 (t)=1) 2 4 R J 1 (m) E 0 2 | sin( m 1 ) |cos( ω R t+ π 4 )( s 1 (t)=1, s 2 (t)=1) 2 4 R J 1 (m) E 0 2 | sin( m 1 ) |cos( ω R t+ 3π 4 )( s 1 (t)=1, s 2 (t)=1) 2 4 R J 1 (m) E 0 2 | sin( m 1 ) |cos( ω R t 3π 4 )( s 1 (t)=1, s 2 (t)=1)

Metrics