Abstract

A fiber temperature sensor based on four-wave mixing (FWM) with an oil-filled photonic crystal fiber (PCF) is proposed in this study, and a multipoint measurement based on the wavelength multiplexing of such sensors is constructed for the first time. The sensing performance and signal spectral characteristics of the temperature sensor are theoretically and experimentally studied. The maximum temperature sensitivity of the signal light of 0.207 nm/°C is achieved using a FWM sensing fiber with a length of 10 cm. The signal wavelength response to excitation power is also explored in this experiment. Results showed that the temperature sensor is relatively insensitive to the fluctuation of power change. The wavelength multiplexing of a FWM-based PCF temperature sensor also presents the possibility of multiplexing measurement and multipoint sensing, and high multiplexed capability is theoretically predicted to be obtainable with optimized sensitivity and splicing loss.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling

Yongqin Yu, Xuejin Li, Xueming Hong, Yuanlong Deng, Kuiyan Song, Youfu Geng, Huifeng Wei, and Weijun Tong
Opt. Express 18(15) 15383-15388 (2010)

Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal

Erick Reyes-Vera, Cristiano M. B. Cordeiro, and Pedro Torres
Appl. Opt. 56(2) 156-162 (2017)

Degenerate four-wave mixing for measurement of magnetic field using a nanoparticles-doped highly nonlinear photonic crystal fiber

Nagarajan Nallusamy, Peng Zu, R. Vasantha Jayakantha Raja, N. Arzate, and D. Vigneswaran
Appl. Opt. 58(2) 333-339 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Yuan, X. Sang, Q. Wu, G. Zhou, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrell, and L. Hou, “Efficient and broadband Stokes wave generation by degenerate four-wave mixing at the mid-infrared wavelength in a silica photonic crystal fiber,” Opt. Lett. 38(24), 5288–5291 (2013).
    [Crossref] [PubMed]
  2. J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, X. Zhou, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P. K. A. Wai, “Enhanced intermodal four-wave mixing for visible and near-infrared wavelength generation in a photonic crystal fiber,” Opt. Lett. 40(7), 1338–1341 (2015).
    [Crossref] [PubMed]
  3. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
    [Crossref] [PubMed]
  4. P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16(16), 11954–11968 (2008).
    [Crossref] [PubMed]
  5. W. Xie, I. Fsaifes, T. Labidi, and F. Bretenaker, “Investigation of degenerate dual-pump phase sensitive amplifier using multi-wave model,” Opt. Express 23(25), 31896–31907 (2015).
    [Crossref] [PubMed]
  6. T. Huang, X. Li, P. P. Shum, Q. J. Wang, X. Shao, L. Wang, H. Li, Z. Wu, and X. Dong, “All-fiber multiwavelength thulium-doped laser assisted by four-wave mixing in highly germania-doped fiber,” Opt. Express 23(1), 340–348 (2015).
    [Crossref] [PubMed]
  7. X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, “Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing,” Opt. Lett. 33(6), 593–595 (2008).
    [Crossref] [PubMed]
  8. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
    [Crossref]
  9. S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), 653–660 (2011).
    [Crossref]
  10. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26(14), 1048–1050 (2001).
    [Crossref] [PubMed]
  11. M. H. Frosz, A. Stefani, and O. Bang, “Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing,” Opt. Express 19(11), 10471–10484 (2011).
    [Crossref] [PubMed]
  12. B. Gu, W. Yuan, M. H. Frosz, A. P. Zhang, S. He, and O. Bang, “Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber,” Opt. Lett. 37(5), 794–796 (2012).
    [Crossref] [PubMed]
  13. C. Markos and O. Bang, “Nonlinear label-free biosensing with high sensitivity using As2S3 chalcogenide tapered fiber,” J. Lightwave Technol. 33(13), 2892–2898 (2015).
    [Crossref]
  14. N. Nallusamy, R. Vasantha Jayakantha Raja, and G. J. Raj, “Highly sensitive nonlinear temperature sensor based on modulational instability technique in liquid infiltrated photonic crystal fiber,” IEEE Sens. J. 17(12), 3720–3727 (2017).
    [Crossref]
  15. L. Velázquez-Ibarra, A. Díez, E. Silvestre, and M. V. Andrés, “Wideband tuning of four-wave mixing in solid-core liquid-filled photonic crystal fibers,” Opt. Lett. 41(11), 2600–2603 (2016).
    [Crossref] [PubMed]
  16. “ http://www.cargille.com/refractivestandards.shtml
  17. K. Okamoto, Fundamentals of optical waveguides (Elsevier Academic, 2006), Chap. 92.
  18. Y. Geng, X. Li, X. Tan, Y. Deng, and X. Hong, “Compact and ultrasensitive temperature sensor with a fully liquid-filled photonic crystal fiber Mach-Zehnder interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
    [Crossref]
  19. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
    [Crossref] [PubMed]
  20. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310–324 (2008).
    [Crossref]
  21. X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber,” IEEE Sens. J. 17(21), 6948–6952 (2017).
    [Crossref]
  22. G. Agrawal, Nonlinear fiber optics, 5th ed. (Elsevier Academic, 2015), Chap. 10, page 419.

2017 (2)

N. Nallusamy, R. Vasantha Jayakantha Raja, and G. J. Raj, “Highly sensitive nonlinear temperature sensor based on modulational instability technique in liquid infiltrated photonic crystal fiber,” IEEE Sens. J. 17(12), 3720–3727 (2017).
[Crossref]

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber,” IEEE Sens. J. 17(21), 6948–6952 (2017).
[Crossref]

2016 (1)

2015 (5)

2014 (1)

Y. Geng, X. Li, X. Tan, Y. Deng, and X. Hong, “Compact and ultrasensitive temperature sensor with a fully liquid-filled photonic crystal fiber Mach-Zehnder interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (2)

M. H. Frosz, A. Stefani, and O. Bang, “Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing,” Opt. Express 19(11), 10471–10484 (2011).
[Crossref] [PubMed]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), 653–660 (2011).
[Crossref]

2008 (3)

2004 (1)

2001 (1)

2000 (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Albert, J.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Andrés, M. V.

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Bang, O.

Biancalana, F.

Birks, T.

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Bramerie, L.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), 653–660 (2011).
[Crossref]

Bretenaker, F.

Brilland, L.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), 653–660 (2011).
[Crossref]

Caucheteur, C.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Chartier, T.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), 653–660 (2011).
[Crossref]

Coker, A.

Costa Silva, M.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), 653–660 (2011).
[Crossref]

Cui, L.

Deng, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and X. Hong, “Compact and ultrasensitive temperature sensor with a fully liquid-filled photonic crystal fiber Mach-Zehnder interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
[Crossref]

Díez, A.

Dong, X.

Farrell, G.

Fiorentino, M.

Frosz, M. H.

Fsaifes, I.

Gay, M.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), 653–660 (2011).
[Crossref]

Geng, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and X. Hong, “Compact and ultrasensitive temperature sensor with a fully liquid-filled photonic crystal fiber Mach-Zehnder interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
[Crossref]

Gu, B.

Guo, T.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Han, Y.

He, S.

Hong, X.

Y. Geng, X. Li, X. Tan, Y. Deng, and X. Hong, “Compact and ultrasensitive temperature sensor with a fully liquid-filled photonic crystal fiber Mach-Zehnder interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
[Crossref]

Hou, L.

Huang, T.

Joly, N.

Knight, J.

Knight, J. C.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Kumar, P.

Labidi, T.

Le, S. D.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), 653–660 (2011).
[Crossref]

Lengle, K.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), 653–660 (2011).
[Crossref]

Li, F.

Li, H.

Li, X.

Liu, B. L.

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber,” IEEE Sens. J. 17(21), 6948–6952 (2017).
[Crossref]

Lu, Y.

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber,” IEEE Sens. J. 17(21), 6948–6952 (2017).
[Crossref]

Markos, C.

Mechin, D.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), 653–660 (2011).
[Crossref]

Moselund, P. M.

Nallusamy, N.

N. Nallusamy, R. Vasantha Jayakantha Raja, and G. J. Raj, “Highly sensitive nonlinear temperature sensor based on modulational instability technique in liquid infiltrated photonic crystal fiber,” IEEE Sens. J. 17(12), 3720–3727 (2017).
[Crossref]

Nguyen, D. M.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), 653–660 (2011).
[Crossref]

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Ou, Z. Y.

Raj, G. J.

N. Nallusamy, R. Vasantha Jayakantha Raja, and G. J. Raj, “Highly sensitive nonlinear temperature sensor based on modulational instability technique in liquid infiltrated photonic crystal fiber,” IEEE Sens. J. 17(12), 3720–3727 (2017).
[Crossref]

Rindorf, L.

Russell, P.

Russell, P. S.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Sang, X.

Shao, X.

Sharping, J. E.

Shum, P. P.

Silvestre, E.

Stefani, A.

Tam, H. Y.

Tan, X.

Y. Geng, X. Li, X. Tan, Y. Deng, and X. Hong, “Compact and ultrasensitive temperature sensor with a fully liquid-filled photonic crystal fiber Mach-Zehnder interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
[Crossref]

Thomsen, C. L.

Thual, M.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), 653–660 (2011).
[Crossref]

Toupin, P.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), 653–660 (2011).
[Crossref]

Troles, J.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), 653–660 (2011).
[Crossref]

Vasantha Jayakantha Raja, R.

N. Nallusamy, R. Vasantha Jayakantha Raja, and G. J. Raj, “Highly sensitive nonlinear temperature sensor based on modulational instability technique in liquid infiltrated photonic crystal fiber,” IEEE Sens. J. 17(12), 3720–3727 (2017).
[Crossref]

Velázquez-Ibarra, L.

Wadsworth, W.

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Wai, P. K. A.

Wang, K.

Wang, L.

Wang, Q. J.

Windeler, R. S.

Wu, Q.

Wu, Z.

Xie, W.

Yan, B.

Yang, L.

Yang, X. C.

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber,” IEEE Sens. J. 17(21), 6948–6952 (2017).
[Crossref]

Yao, J. Q.

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber,” IEEE Sens. J. 17(21), 6948–6952 (2017).
[Crossref]

Yu, C.

Yu, D.

Yuan, J.

Yuan, W.

Zhang, A. P.

Zhou, G.

Zhou, X.

Anal. Bioanal. Chem. (1)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

IEEE Sens. J. (3)

N. Nallusamy, R. Vasantha Jayakantha Raja, and G. J. Raj, “Highly sensitive nonlinear temperature sensor based on modulational instability technique in liquid infiltrated photonic crystal fiber,” IEEE Sens. J. 17(12), 3720–3727 (2017).
[Crossref]

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber,” IEEE Sens. J. 17(21), 6948–6952 (2017).
[Crossref]

Y. Geng, X. Li, X. Tan, Y. Deng, and X. Hong, “Compact and ultrasensitive temperature sensor with a fully liquid-filled photonic crystal fiber Mach-Zehnder interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Opt. Lett. (6)

Other (3)

G. Agrawal, Nonlinear fiber optics, 5th ed. (Elsevier Academic, 2015), Chap. 10, page 419.

“ http://www.cargille.com/refractivestandards.shtml

K. Okamoto, Fundamentals of optical waveguides (Elsevier Academic, 2006), Chap. 92.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Transverse section of the PCF.
Fig. 2
Fig. 2 (a) Theoretical GVD dispersion curves and (b) tuning curves of signal wavelengths for the PCFs unfilled and filled with oils with refractive indices of 1.32, 1.34, and 1.36 when P0 = 5 kW. (c) Theoretical temperature sensitivity of signal wave for the PCFs filled with various oils when P0 = 5 kW and λP = 1064 nm. (d) The shift of the signal wavelength with the decreasing excitation power at a step of 10% when λP = 1064 nm.
Fig. 3
Fig. 3 The experimental setup for the FWM-based PCF temperature sensors.
Fig. 4
Fig. 4 Signal wave output spectra for the unfilled and filled PCFs. Note that the integration time for the 745.31 nm light is 1 s.
Fig. 5
Fig. 5 (a) Signal spectra shift with the increasing temperature, (b) The response of the signal wavelength to temperature for the FWM-based PCF temperature sensors, RT is the room temperature.
Fig. 6
Fig. 6 Central wavelengths of the signal wave versus time at different excited powers.
Fig. 7
Fig. 7 Transmission spectra of the multiplexed PCF temperature sensors at different temperatures. PCF1, PCF2, PCF3 are the PCFs filled with oils with refractive indices of 1.32, 1.34, and 1.36.
Fig. 8
Fig. 8 (a) The fitted original temperature sensitivity and FWHM of the signal waves; (b) The number of the multiplexed PCF temperature sensors versus splicing loss of each unit at the original temperature sensitivity and half of it; (c) the simulated output spectra for α = 0.4 and α = 2 dB at the original temperature sensitivity; (d) simulated output spectra for Li = Li-1 and Li = 1.07Li-1 when α = 0.4 dB and S is at the original temperature sensitivity.

Tables (1)

Tables Icon

Table 1 Cauchy dispersion equation of the refractive index matching oils at 25 °C. no = A + B/λ2 + C/λ4 (λ is the wavelength in nm)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

κ=2 m=2,4,6,... β m m! Ω m +2γ P 0 =0,
P i (λ, λ i )=ηsin h 2 (r P 0 α i L i ) g i (λ, λ i ) α Ni , i=1,2,...,N,
g i (λ, λ i )=exp[ 4ln2 ( λ λ i Δ λ i ) 2 ],
λ i = λ i1 + S i Δ T max +Δ λ i ,
Δ λ i = λ i 2 2C 1 L| β 2 | Ω i ,

Metrics