Abstract

A simple and low-cost radiative cooler based on one-dimensional photonic crystal is proposed in this work, which has an average emissivity of 96% within the atmospheric transparency window (8-13μm). The ultra-broadband emissivity property is realized by constructing the strongly overlapped optical resonances with a tandem structure composed of two lossy materials while an additional lossless material is adopted as the top layer to reduce the Fresnel reflection of the whole structure. The maximum cooling power density of the fabricated radiative cooler can reach 113.0W/m2 at night. When integrated with an excellent solar reflector that can reflect 97% incident solar power, it theoretically has the maximum cooling power of 83.0 W/m2 in the case of solar irradiance up to 1000 W/m2 at noon.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling

Aru Kong, Boyuan Cai, Peng Shi, and Xiao-cong Yuan
Opt. Express 27(21) 30102-30115 (2019)

Example of metal-multi-dielectric-metal cooling metamaterial use in engineering thermal radiation

Dong Wang, Yeqing Zhu, Cheng Fang, Ping He, and Yonghong Ye
Appl. Opt. 58(26) 7035-7041 (2019)

Self-adaptive radiative cooling based on phase change materials

Masashi Ono, Kaifeng Chen, Wei Li, and Shanhui Fan
Opt. Express 26(18) A777-A787 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Harrison and M. R. Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20(2), 185–188 (1978).
    [Crossref]
  2. C. G. Granqvist and A. Hjortsberg, “Surfaces for radiative cooling: silicon monoxide films on aluminum,” Appl. Phys. Lett. 36(2), 139–141 (1980).
    [Crossref]
  3. M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
    [Crossref]
  4. K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
    [Crossref]
  5. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  6. M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Passive radiative cooling design with broadband optical thin-film filters,” J. Quant. Spectrosc. Radiat. Transf. 198, 179–186 (2017).
    [Crossref]
  7. Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
    [Crossref] [PubMed]
  8. Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
    [Crossref]
  9. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref] [PubMed]
  10. P. Berdahl, “Radiative cooling with MgO and/or LiF layers,” Appl. Opt. 23(3), 370 (1984).
    [Crossref] [PubMed]
  11. C. G. Granqvist, “Radiative heating and cooling with spectrally selective surfaces,” Appl. Opt. 20(15), 2606–2615 (1981).
    [Crossref] [PubMed]
  12. C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
    [Crossref]
  13. S. Vall and A. Castell, “Radiative cooling as low-grade energy source: a literature review,” Renew. Sustain. Energy Rev. 77, 803–820 (2017).
    [Crossref]
  14. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  15. A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
    [Crossref] [PubMed]
  16. J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
    [Crossref]
  17. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 62(4), 2243 (2000).
    [Crossref]
  18. G. B. Smith, “Amplified radiative cooling via optimized combinations of aperture geometry and spectral emittance profiles of surfaces and the atmosphere,” Sol. Energy Mater. Sol. Cells 93(9), 1696–1701 (2009).
    [Crossref]
  19. T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
    [Crossref]
  20. C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
    [Crossref]
  21. A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95(12), 3207–3215 (2011).
    [Crossref]
  22. C. N. Suryawanshi and C. T. Lin, “Radiative cooling: lattice quantization and surface emissivity in thin coatings,” ACS Appl. Mater. Interfaces 1(6), 1334–1338 (2009).
    [Crossref] [PubMed]
  23. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  24. M. Ono, K. Chen, W. Li, and S. Fan, “Self-adaptive radiative cooling based on phase change materials,” Opt. Express 26(18), A777–A787 (2018).
    [Crossref] [PubMed]
  25. C. Yang, C. Ji, W. Shen, K.-T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
    [Crossref]
  26. B. Fang, C. Yang, C. Pang, W. Shen, X. Zhang, Y. Zhang, W. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
    [Crossref]
  27. S. D. Lord, NASA Technical Memor. 103957 (1992).
  28. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. Ted Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref] [PubMed]
  29. M. R. Querry, “Optical constants of minerals and other materials from the millimeter to the ultraviolet,” Contractor Report CRDEC-CR-88009 (1987).
  30. Y. J. Xu, J. X. Liao, Q. W. Cai, and X. X. Yang, “Preparation of a highly-reflective TiO2/SiO2/Ag thin film with self-cleaning properties by magnetron sputtering for solar front reflectors,” Sol. Energy Mater. Sol. Cells 113, 7–12 (2013).
    [Crossref]
  31. H. W. Yates, and J. H. Taylor, no. NRL-5453 (Naval Research Lab, 1960).

2018 (2)

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

M. Ono, K. Chen, W. Li, and S. Fan, “Self-adaptive radiative cooling based on phase change materials,” Opt. Express 26(18), A777–A787 (2018).
[Crossref] [PubMed]

2017 (7)

B. Fang, C. Yang, C. Pang, W. Shen, X. Zhang, Y. Zhang, W. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Passive radiative cooling design with broadband optical thin-film filters,” J. Quant. Spectrosc. Radiat. Transf. 198, 179–186 (2017).
[Crossref]

S. Vall and A. Castell, “Radiative cooling as low-grade energy source: a literature review,” Renew. Sustain. Energy Rev. 77, 803–820 (2017).
[Crossref]

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

2016 (2)

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

C. Yang, C. Ji, W. Shen, K.-T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

2015 (1)

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

2014 (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

2013 (1)

Y. J. Xu, J. X. Liao, Q. W. Cai, and X. X. Yang, “Preparation of a highly-reflective TiO2/SiO2/Ag thin film with self-cleaning properties by magnetron sputtering for solar front reflectors,” Sol. Energy Mater. Sol. Cells 113, 7–12 (2013).
[Crossref]

2012 (2)

2011 (2)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95(12), 3207–3215 (2011).
[Crossref]

2010 (1)

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

2009 (2)

G. B. Smith, “Amplified radiative cooling via optimized combinations of aperture geometry and spectral emittance profiles of surfaces and the atmosphere,” Sol. Energy Mater. Sol. Cells 93(9), 1696–1701 (2009).
[Crossref]

C. N. Suryawanshi and C. T. Lin, “Radiative cooling: lattice quantization and surface emissivity in thin coatings,” ACS Appl. Mater. Interfaces 1(6), 1334–1338 (2009).
[Crossref] [PubMed]

2000 (1)

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 62(4), 2243 (2000).
[Crossref]

1995 (1)

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

1984 (1)

1981 (2)

C. G. Granqvist, “Radiative heating and cooling with spectrally selective surfaces,” Appl. Opt. 20(15), 2606–2615 (1981).
[Crossref] [PubMed]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

1980 (1)

C. G. Granqvist and A. Hjortsberg, “Surfaces for radiative cooling: silicon monoxide films on aluminum,” Appl. Phys. Lett. 36(2), 139–141 (1980).
[Crossref]

1978 (1)

A. W. Harrison and M. R. Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20(2), 185–188 (1978).
[Crossref]

Aguilar, J. L. C.

A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95(12), 3207–3215 (2011).
[Crossref]

Ahmed, T.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Aleksandrova, A.

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Berdahl, P.

Bhaskaran, M.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Bilenberg, B.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Bur, J.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 62(4), 2243 (2000).
[Crossref]

Cai, Q. W.

Y. J. Xu, J. X. Liao, Q. W. Cai, and X. X. Yang, “Preparation of a highly-reflective TiO2/SiO2/Ag thin film with self-cleaning properties by magnetron sputtering for solar front reflectors,” Sol. Energy Mater. Sol. Cells 113, 7–12 (2013).
[Crossref]

Castell, A.

S. Vall and A. Castell, “Radiative cooling as low-grade energy source: a literature review,” Renew. Sustain. Energy Rev. 77, 803–820 (2017).
[Crossref]

Chashnikova, M.

Chen, K.

Chen, Z.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

Choi, K. K.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 62(4), 2243 (2000).
[Crossref]

Chow, E.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 62(4), 2243 (2000).
[Crossref]

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

de Groot, C. H.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Ding, F.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Fan, S.

M. Ono, K. Chen, W. Li, and S. Fan, “Self-adaptive radiative cooling based on phase change materials,” Opt. Express 26(18), A777–A787 (2018).
[Crossref] [PubMed]

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Fang, B.

B. Fang, C. Yang, C. Pang, W. Shen, X. Zhang, Y. Zhang, W. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Fedosenko, O.

Fleming, J. G.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 62(4), 2243 (2000).
[Crossref]

Flores, Y.

Fumeaux, C.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Gentle, A. R.

A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95(12), 3207–3215 (2011).
[Crossref]

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

Goldberg, A.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 62(4), 2243 (2000).
[Crossref]

Granqvist, C. G.

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

C. G. Granqvist, “Radiative heating and cooling with spectrally selective surfaces,” Appl. Opt. 20(15), 2606–2615 (1981).
[Crossref] [PubMed]

C. G. Granqvist and A. Hjortsberg, “Surfaces for radiative cooling: silicon monoxide films on aluminum,” Appl. Phys. Lett. 36(2), 139–141 (1980).
[Crossref]

Gruska, B.

Gu, M.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Guo, L. J.

C. Yang, C. Ji, W. Shen, K.-T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Harrison, A. W.

A. W. Harrison and M. R. Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20(2), 185–188 (1978).
[Crossref]

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Hjortsberg, A.

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Surfaces for radiative cooling: silicon monoxide films on aluminum,” Appl. Phys. Lett. 36(2), 139–141 (1980).
[Crossref]

Hossain, M. M.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Huang, Z.

Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
[Crossref]

Ji, C.

C. Yang, C. Ji, W. Shen, K.-T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Jia, B.

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Jurado, Z.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Kecebas, M. A.

M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Passive radiative cooling design with broadband optical thin-film filters,” J. Quant. Spectrosc. Radiat. Transf. 198, 179–186 (2017).
[Crossref]

Kischkat, J.

Klinkmüller, M.

Kosar, A.

M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Passive radiative cooling design with broadband optical thin-film filters,” J. Quant. Spectrosc. Radiat. Transf. 198, 179–186 (2017).
[Crossref]

Kou, J.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Lee, K.-T.

C. Yang, C. Ji, W. Shen, K.-T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Li, W.

Liao, J. X.

Y. J. Xu, J. X. Liao, Q. W. Cai, and X. X. Yang, “Preparation of a highly-reflective TiO2/SiO2/Ag thin film with self-cleaning properties by magnetron sputtering for solar front reflectors,” Sol. Energy Mater. Sol. Cells 113, 7–12 (2013).
[Crossref]

Lin, C. T.

C. N. Suryawanshi and C. T. Lin, “Radiative cooling: lattice quantization and surface emissivity in thin coatings,” ACS Appl. Mater. Interfaces 1(6), 1334–1338 (2009).
[Crossref] [PubMed]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 62(4), 2243 (2000).
[Crossref]

Liu, X.

B. Fang, C. Yang, C. Pang, W. Shen, X. Zhang, Y. Zhang, W. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

C. Yang, C. Ji, W. Shen, K.-T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Machulik, S.

Mengali, S.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Menguc, M. P.

M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Passive radiative cooling design with broadband optical thin-film filters,” J. Quant. Spectrosc. Radiat. Transf. 198, 179–186 (2017).
[Crossref]

Minnich, A. J.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Monastyrskyi, G.

Muskens, O. L.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Niklasson, G. A.

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

Nilsson, T. M. J.

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

Nirantar, S.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Ono, M.

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Pang, C.

B. Fang, C. Yang, C. Pang, W. Shen, X. Zhang, Y. Zhang, W. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Peters, S.

Raman, A.

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Ren, G.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Riedel, C. A.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Ruan, X.

Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
[Crossref]

Semtsiv, M.

Sendur, K.

M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Passive radiative cooling design with broadband optical thin-film filters,” J. Quant. Spectrosc. Radiat. Transf. 198, 179–186 (2017).
[Crossref]

Shen, W.

B. Fang, C. Yang, C. Pang, W. Shen, X. Zhang, Y. Zhang, W. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

C. Yang, C. Ji, W. Shen, K.-T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Simeoni, M.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Smith, G. B.

A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95(12), 3207–3215 (2011).
[Crossref]

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

G. B. Smith, “Amplified radiative cooling via optimized combinations of aperture geometry and spectral emittance profiles of surfaces and the atmosphere,” Sol. Energy Mater. Sol. Cells 93(9), 1696–1701 (2009).
[Crossref]

Sriram, S.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Sun, K.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Suryawanshi, C. N.

C. N. Suryawanshi and C. T. Lin, “Radiative cooling: lattice quantization and surface emissivity in thin coatings,” ACS Appl. Mater. Interfaces 1(6), 1334–1338 (2009).
[Crossref] [PubMed]

Tan, G.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Ted Masselink, W.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Urbani, A.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Vall, S.

S. Vall and A. Castell, “Radiative cooling as low-grade energy source: a literature review,” Renew. Sustain. Energy Rev. 77, 803–820 (2017).
[Crossref]

Walton, M. R.

A. W. Harrison and M. R. Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20(2), 185–188 (1978).
[Crossref]

Wang, Y.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Withayachumnankul, W.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Xu, Y. J.

Y. J. Xu, J. X. Liao, Q. W. Cai, and X. X. Yang, “Preparation of a highly-reflective TiO2/SiO2/Ag thin film with self-cleaning properties by magnetron sputtering for solar front reflectors,” Sol. Energy Mater. Sol. Cells 113, 7–12 (2013).
[Crossref]

Yang, C.

B. Fang, C. Yang, C. Pang, W. Shen, X. Zhang, Y. Zhang, W. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

C. Yang, C. Ji, W. Shen, K.-T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Yang, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Yang, X. X.

Y. J. Xu, J. X. Liao, Q. W. Cai, and X. X. Yang, “Preparation of a highly-reflective TiO2/SiO2/Ag thin film with self-cleaning properties by magnetron sputtering for solar front reflectors,” Sol. Energy Mater. Sol. Cells 113, 7–12 (2013).
[Crossref]

Yin, X.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Yuan, W.

B. Fang, C. Yang, C. Pang, W. Shen, X. Zhang, Y. Zhang, W. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Zalkovskij, M.

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

Zhai, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zhang, X.

B. Fang, C. Yang, C. Pang, W. Shen, X. Zhang, Y. Zhang, W. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Zhang, Y.

B. Fang, C. Yang, C. Pang, W. Shen, X. Zhang, Y. Zhang, W. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

C. Yang, C. Ji, W. Shen, K.-T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Zhao, D.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zhu, L.

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Zou, C.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (1)

C. N. Suryawanshi and C. T. Lin, “Radiative cooling: lattice quantization and surface emissivity in thin coatings,” ACS Appl. Mater. Interfaces 1(6), 1334–1338 (2009).
[Crossref] [PubMed]

ACS Photonics (3)

C. Yang, C. Ji, W. Shen, K.-T. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

K. Sun, C. A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft,” ACS Photonics 5(2), 495–501 (2018).
[Crossref]

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Adv. Opt. Mater. (2)

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

B. Fang, C. Yang, C. Pang, W. Shen, X. Zhang, Y. Zhang, W. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Surfaces for radiative cooling: silicon monoxide films on aluminum,” Appl. Phys. Lett. 36(2), 139–141 (1980).
[Crossref]

Int. J. Heat Mass Transfer (1)

Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
[Crossref]

J. Appl. Phys. (1)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Passive radiative cooling design with broadband optical thin-film filters,” J. Quant. Spectrosc. Radiat. Transf. 198, 179–186 (2017).
[Crossref]

Nano Lett. (1)

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 62(4), 2243 (2000).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Renew. Sustain. Energy Rev. (1)

S. Vall and A. Castell, “Radiative cooling as low-grade energy source: a literature review,” Renew. Sustain. Energy Rev. 77, 803–820 (2017).
[Crossref]

Science (1)

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Sol. Energy (1)

A. W. Harrison and M. R. Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20(2), 185–188 (1978).
[Crossref]

Sol. Energy Mater. Sol. Cells (4)

G. B. Smith, “Amplified radiative cooling via optimized combinations of aperture geometry and spectral emittance profiles of surfaces and the atmosphere,” Sol. Energy Mater. Sol. Cells 93(9), 1696–1701 (2009).
[Crossref]

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95(12), 3207–3215 (2011).
[Crossref]

Y. J. Xu, J. X. Liao, Q. W. Cai, and X. X. Yang, “Preparation of a highly-reflective TiO2/SiO2/Ag thin film with self-cleaning properties by magnetron sputtering for solar front reflectors,” Sol. Energy Mater. Sol. Cells 113, 7–12 (2013).
[Crossref]

Other (3)

H. W. Yates, and J. H. Taylor, no. NRL-5453 (Naval Research Lab, 1960).

S. D. Lord, NASA Technical Memor. 103957 (1992).

M. R. Querry, “Optical constants of minerals and other materials from the millimeter to the ultraviolet,” Contractor Report CRDEC-CR-88009 (1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the proposed radiative cooler based on one-dimensional photonic crystal. From top to bottom, the whole structure is ZnS/SiO2/TiO2/SiO2/TiO2/Silica. (b) Simulated and experimental emissivity/absorptivity of the radiative cooler as well as the black-body radiation spectrum at typical ambient temperature (300K) in the mid-far infrared band. The realistic atmospheric transmittance of Mauna Kea coming from Gemini Observatory is also plotted with the gray shaded area. (c) Simulated and experimental angular average emissivity of the one-dimensional photonic crystal radiative cooler at 8-13μm. The wavelength-dependent optical constant of SiO2 material, TiO2 material and ZnS material can be found in reference [28,29].
Fig. 2
Fig. 2 (a) Cross-section diagram of the measuring equipment. (b) Cooling performance measurement of the proposed radiative cooler within an hour at night in Hangzhou, China (30°16′N, 120°12′E). The proposed radiative cooler experimentally presents the maximum cooling power density of ~113.0W/m2 with the cooling temperature of ~10.7°C at the ambient air temperature of ~5°C. (c) Schematic diagram of daytime radiative cooler with effective solar reflector. (d) Calculated maximum cooling power density of our radiative cooler with different reflectance of incident solar power in the case of solar irradiance up to 1000W/m2.
Fig. 3
Fig. 3 (a) The radiated power density, P rad , and the absorbed power density, P air , caused by incident atmospheric thermal radiation of the ideal radiative cooler and our actual radiative cooler as a function of the ambient temperature Tamb. (b) P rad - P air of the ideal radiative cooler and our actual radiative cooler as a function of the ambient temperature Tamb.
Fig. 4
Fig. 4 Optical admittance locus of the one-dimensional photonic crystal radiative cooler at different wavelengths within the atmospheric transparency window. The length of the black line provides a visualized measure of the reflectance of radiative cooler. The reflectance plotted is calculated by the Fresnel reflection formula with the acquired equivalent admittance.
Fig. 5
Fig. 5 The absorption distribution profile of the one-dimensional photonic crystal radiative cooler at different wavelengths within the atmospheric transparency window.
Fig. 6
Fig. 6 The optical constants of SiO2 and TiO2 within the atmospheric transparency window.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P cooling ( T ) = P rad ( T ) P air ( T amb ) P sun P nonrad
P nonrad = K nr ( T amb T )
P cooling ( T amb ) = P rad ( T amb ) P air ( T amb ) P sun

Metrics