R. Wu, Z. Feng, Z. Zheng, R. Liang, P. Benítez, and J. C. Miñano, “Design of freeform illumination optics,” Laser & Photonics Rev. 12(7), 1700310 (2018).

[Crossref]

R. Wu, S. Chang, Z. Zheng, L. Zhao, and X. Liu, “Formulating the design of two freeform lens surfaces for point-like light sources,” Opt. Lett. 43(7), 1619–1622 (2018).

[Crossref]
[PubMed]

C. Bösel and H. Gross, “Double freeform illumination design for prescribed wavefronts and irradiances,” J. Opt. Soc. Am. A 35(2), 236–243 (2018).

[Crossref]

L. L. Doskolovich, D. A. Bykov, E. S. Andreev, E. A. Bezus, and V. Oliker, “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems,” Opt. Express 26(19), 24602–24613 (2018).

[Crossref]

A. A. Mingazov, D. A. Bykov, L. L. Doskolovich, and N. L. Kazanskiy, “Variational interpretation of the eikonal calculation problem from the condition of generating a prescribed irradiance distribution,” Comput. Opt. 42(4), 567–573 (2018).

L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, and E. A. Bezus, “Variational approach to calculation of light field eikonal function for illuminating a prescribed region,” Opt. Express 25(22), 26378–26392 (2017).

[Crossref]
[PubMed]

C. Bösel and H. Gross, “Single freeform surface design for prescribed input wavefront and target irradiance,” J. Opt. Soc. Am. A 34(9), 1490–1499 (2017).

[Crossref]

X. Mao, S. Xu, X. Hu, and Y. Xie, “Design of a smooth freeform illumination system for a point light source based on polar-type optimal transport mapping,” Appl. Opt. 56(22), 6324–6331 (2017).

[Crossref]
[PubMed]

Y. Ma, H. Zhang, Z. Su, Y. He, L. Xu, X. Lui, and H. Li, “Hybrid method of free-form lens design for arbitrary illumination target,” Appl. Opt. 54(14), 4503–4508 (2015).

[Crossref]
[PubMed]

C. R. Prins, R. Beltman, J. H. M. ten Thije Boonkkamp, W. L. IJzerman, and T. W. Tukker, “A least-squares method for optimal transport using the Monge–Ampère equation,” SIAM J. Sci. Comput. 37(6), B937–B961 (2015).

[Crossref]

K. Brix, Y. Hafizogullari, and A. Platen, “Designing illumination lenses and mirrors by the numerical solution of Monge–Ampère equations,” J. Opt. Soc. Am. A 32(11), 2227–2236 (2015).

[Crossref]

K. Brix, Y. Hafizogullari, and A. Platen, “Solving the Monge–Ampère equations for the inverse reflector problem,” Math. Model. Methods Appl. Sci. 25(6), 803–837 (2015).

[Crossref]

X. Mao, H. Li, Y. Han, and Y. Luo, “Polar-grids based source-target mapping construction method for designing freeform illumination system for a lighting target with arbitrary shape,” Opt. Express 23(4), 4313–4328 (2015).

[Crossref]
[PubMed]

C. E. Gutiérrez and Q. Huang, “The near field refractor,” Ann. Inst. Henri Poincaré C Non Linear Anal. 31(4), 655–684 (2014).

[Crossref]

R. Wu, Y. Zhang, M. M. Sulman, Z. Zheng, P. Benítez, and J. C. Miñano, “Initial design with L2 Monge–Kantorovich theory for the Monge–Ampère equation method in freeform surface illumination design,” Opt. Express 22(13), 16161–16177 (2014).

[Crossref]
[PubMed]

C. R. Prins, J. H. M. ten Thije Boonkkamp, J. van Roosmalen, W. L. IJzerman, and T. W. Tukker, “A Monge–Ampère-solver for free-form reflector design,” SIAM J. Sci. Comput. 36(3), B640–B660 (2014).

[Crossref]

R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).

[Crossref]
[PubMed]

R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Xiu, “Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampère equation,” Opt. Lett. 38(2), 229–231 (2013).

[Crossref]
[PubMed]

F. de Goes, K. Breeden, V. Ostromoukhov, and M. Desbrun, “Blue noise through optimal transport,” ACM Trans. Graph. 31(6), 171 (2012).

[Crossref]

V. Oliker, “Designing freeform lenses for intensity and phase control of coherent light with help from geometry and mass transport,” Arch. for Ration. Mech. Analysis 201(3), 1013–1045 (2011).

[Crossref]

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the Monge– Ampère equation,” Appl. Numer. Math. 61(3), 298–307 (2011).

[Crossref]

C. E. Gutiérrez and Q. Huang, “The refractor problem in reshaping light beams,” Arch. Ration. Mech. Anal. 193, 423–443 (2009).

[Crossref]

M. Balzer, T. Schölmer, and O. Deussen, “Capacity-constrained point distributions: a variant of Lloyd’s method,” ACM Trans. Graph. 28(3), 86 (2009).

[Crossref]

X.-J. Wang, “On the design of a reflector antenna II,” Calc. Var. 20(3), 329–341 (2004).

[Crossref]

T. Glimm and V. Oliker, “Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem,” J. Math. Sci. 117(3), 4096–4108 (2003).

[Crossref]

S. A. Kochengin and V. I. Oliker, “Determination of reflector surfaces from near-field scattering data,” Inverse Probl. 13(2), 363–373 (1997).

[Crossref]

L. L. Doskolovich, N. L. Kazansky, S. I. Kharitonov, and V. A. Soifer, “A method of designing diffractive optical elements focusing into plane areas,” J. Mod. Opt. 43(7), 1423–1433 (1996).

[Crossref]

D. P. Bertsekas, “The auction algorithm: A distributed relaxation method for the assignment problem,” Ann. Oper. Res. 14(1), 105–123 (1988).

[Crossref]

J. Munkres, “Algorithms for the assignment and transportation problems,” Journal of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957).

[Crossref]

L. L. Doskolovich, D. A. Bykov, E. S. Andreev, E. A. Bezus, and V. Oliker, “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems,” Opt. Express 26(19), 24602–24613 (2018).

[Crossref]

L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, and E. A. Bezus, “Variational approach to calculation of light field eikonal function for illuminating a prescribed region,” Opt. Express 25(22), 26378–26392 (2017).

[Crossref]
[PubMed]

M. Balzer, T. Schölmer, and O. Deussen, “Capacity-constrained point distributions: a variant of Lloyd’s method,” ACM Trans. Graph. 28(3), 86 (2009).

[Crossref]

C. R. Prins, R. Beltman, J. H. M. ten Thije Boonkkamp, W. L. IJzerman, and T. W. Tukker, “A least-squares method for optimal transport using the Monge–Ampère equation,” SIAM J. Sci. Comput. 37(6), B937–B961 (2015).

[Crossref]

R. Wu, Z. Feng, Z. Zheng, R. Liang, P. Benítez, and J. C. Miñano, “Design of freeform illumination optics,” Laser & Photonics Rev. 12(7), 1700310 (2018).

[Crossref]

R. Wu, Y. Zhang, M. M. Sulman, Z. Zheng, P. Benítez, and J. C. Miñano, “Initial design with L2 Monge–Kantorovich theory for the Monge–Ampère equation method in freeform surface illumination design,” Opt. Express 22(13), 16161–16177 (2014).

[Crossref]
[PubMed]

D. P. Bertsekas, “The auction algorithm: A distributed relaxation method for the assignment problem,” Ann. Oper. Res. 14(1), 105–123 (1988).

[Crossref]

L. L. Doskolovich, D. A. Bykov, E. S. Andreev, E. A. Bezus, and V. Oliker, “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems,” Opt. Express 26(19), 24602–24613 (2018).

[Crossref]

L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, and E. A. Bezus, “Variational approach to calculation of light field eikonal function for illuminating a prescribed region,” Opt. Express 25(22), 26378–26392 (2017).

[Crossref]
[PubMed]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

[Crossref]

F. de Goes, K. Breeden, V. Ostromoukhov, and M. Desbrun, “Blue noise through optimal transport,” ACM Trans. Graph. 31(6), 171 (2012).

[Crossref]

K. Brix, Y. Hafizogullari, and A. Platen, “Designing illumination lenses and mirrors by the numerical solution of Monge–Ampère equations,” J. Opt. Soc. Am. A 32(11), 2227–2236 (2015).

[Crossref]

K. Brix, Y. Hafizogullari, and A. Platen, “Solving the Monge–Ampère equations for the inverse reflector problem,” Math. Model. Methods Appl. Sci. 25(6), 803–837 (2015).

[Crossref]

A. A. Mingazov, D. A. Bykov, L. L. Doskolovich, and N. L. Kazanskiy, “Variational interpretation of the eikonal calculation problem from the condition of generating a prescribed irradiance distribution,” Comput. Opt. 42(4), 567–573 (2018).

L. L. Doskolovich, D. A. Bykov, E. S. Andreev, E. A. Bezus, and V. Oliker, “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems,” Opt. Express 26(19), 24602–24613 (2018).

[Crossref]

L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, and E. A. Bezus, “Variational approach to calculation of light field eikonal function for illuminating a prescribed region,” Opt. Express 25(22), 26378–26392 (2017).

[Crossref]
[PubMed]

F. de Goes, K. Breeden, V. Ostromoukhov, and M. Desbrun, “Blue noise through optimal transport,” ACM Trans. Graph. 31(6), 171 (2012).

[Crossref]

F. de Goes, K. Breeden, V. Ostromoukhov, and M. Desbrun, “Blue noise through optimal transport,” ACM Trans. Graph. 31(6), 171 (2012).

[Crossref]

M. Balzer, T. Schölmer, and O. Deussen, “Capacity-constrained point distributions: a variant of Lloyd’s method,” ACM Trans. Graph. 28(3), 86 (2009).

[Crossref]

A. A. Mingazov, D. A. Bykov, L. L. Doskolovich, and N. L. Kazanskiy, “Variational interpretation of the eikonal calculation problem from the condition of generating a prescribed irradiance distribution,” Comput. Opt. 42(4), 567–573 (2018).

L. L. Doskolovich, D. A. Bykov, E. S. Andreev, E. A. Bezus, and V. Oliker, “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems,” Opt. Express 26(19), 24602–24613 (2018).

[Crossref]

L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, and E. A. Bezus, “Variational approach to calculation of light field eikonal function for illuminating a prescribed region,” Opt. Express 25(22), 26378–26392 (2017).

[Crossref]
[PubMed]

L. L. Doskolovich, N. L. Kazansky, S. I. Kharitonov, and V. A. Soifer, “A method of designing diffractive optical elements focusing into plane areas,” J. Mod. Opt. 43(7), 1423–1433 (1996).

[Crossref]

V. A. Soifer, V. V. Kotlyar, and L. L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, 1997).

L. C. Evans, “Partial differential equations and Monge–Kantorovich mass transfer,” in Current Developments in Mathematics, R. Bott, A. Jaffe, D. Jerison, G. Lusztig, I. Singer, and S.-T. Yau, eds. (International Press of Boston, 1999).

R. Wu, Z. Feng, Z. Zheng, R. Liang, P. Benítez, and J. C. Miñano, “Design of freeform illumination optics,” Laser & Photonics Rev. 12(7), 1700310 (2018).

[Crossref]

T. Glimm and V. Oliker, “Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem,” J. Math. Sci. 117(3), 4096–4108 (2003).

[Crossref]

C. E. Gutiérrez and Q. Huang, “The near field refractor,” Ann. Inst. Henri Poincaré C Non Linear Anal. 31(4), 655–684 (2014).

[Crossref]

C. E. Gutiérrez and Q. Huang, “The refractor problem in reshaping light beams,” Arch. Ration. Mech. Anal. 193, 423–443 (2009).

[Crossref]

C. E. Gutiérrez, “Refraction problems in geometric optics,” Fully Nonlinear PDEs in Real and Complex Geometry and Optics, Vol. 2087 of the Series Lecture Notes in Mathematics (Springer, 2014), pp. 95–150.

[Crossref]

K. Brix, Y. Hafizogullari, and A. Platen, “Designing illumination lenses and mirrors by the numerical solution of Monge–Ampère equations,” J. Opt. Soc. Am. A 32(11), 2227–2236 (2015).

[Crossref]

K. Brix, Y. Hafizogullari, and A. Platen, “Solving the Monge–Ampère equations for the inverse reflector problem,” Math. Model. Methods Appl. Sci. 25(6), 803–837 (2015).

[Crossref]

C. E. Gutiérrez and Q. Huang, “The near field refractor,” Ann. Inst. Henri Poincaré C Non Linear Anal. 31(4), 655–684 (2014).

[Crossref]

C. E. Gutiérrez and Q. Huang, “The refractor problem in reshaping light beams,” Arch. Ration. Mech. Anal. 193, 423–443 (2009).

[Crossref]

C. R. Prins, R. Beltman, J. H. M. ten Thije Boonkkamp, W. L. IJzerman, and T. W. Tukker, “A least-squares method for optimal transport using the Monge–Ampère equation,” SIAM J. Sci. Comput. 37(6), B937–B961 (2015).

[Crossref]

C. R. Prins, J. H. M. ten Thije Boonkkamp, J. van Roosmalen, W. L. IJzerman, and T. W. Tukker, “A Monge–Ampère-solver for free-form reflector design,” SIAM J. Sci. Comput. 36(3), B640–B660 (2014).

[Crossref]

A. A. Mingazov, D. A. Bykov, L. L. Doskolovich, and N. L. Kazanskiy, “Variational interpretation of the eikonal calculation problem from the condition of generating a prescribed irradiance distribution,” Comput. Opt. 42(4), 567–573 (2018).

L. L. Doskolovich, N. L. Kazansky, S. I. Kharitonov, and V. A. Soifer, “A method of designing diffractive optical elements focusing into plane areas,” J. Mod. Opt. 43(7), 1423–1433 (1996).

[Crossref]

L. L. Doskolovich, N. L. Kazansky, S. I. Kharitonov, and V. A. Soifer, “A method of designing diffractive optical elements focusing into plane areas,” J. Mod. Opt. 43(7), 1423–1433 (1996).

[Crossref]

S. A. Kochengin and V. I. Oliker, “Determination of reflector surfaces from near-field scattering data,” Inverse Probl. 13(2), 363–373 (1997).

[Crossref]

V. A. Soifer, V. V. Kotlyar, and L. L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, 1997).

Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, 1990).

[Crossref]

X. Mao, H. Li, Y. Han, and Y. Luo, “Polar-grids based source-target mapping construction method for designing freeform illumination system for a lighting target with arbitrary shape,” Opt. Express 23(4), 4313–4328 (2015).

[Crossref]
[PubMed]

Y. Ma, H. Zhang, Z. Su, Y. He, L. Xu, X. Lui, and H. Li, “Hybrid method of free-form lens design for arbitrary illumination target,” Appl. Opt. 54(14), 4503–4508 (2015).

[Crossref]
[PubMed]

R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).

[Crossref]
[PubMed]

R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Xiu, “Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampère equation,” Opt. Lett. 38(2), 229–231 (2013).

[Crossref]
[PubMed]

R. Wu, Z. Feng, Z. Zheng, R. Liang, P. Benítez, and J. C. Miñano, “Design of freeform illumination optics,” Laser & Photonics Rev. 12(7), 1700310 (2018).

[Crossref]

R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).

[Crossref]
[PubMed]

R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Xiu, “Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampère equation,” Opt. Lett. 38(2), 229–231 (2013).

[Crossref]
[PubMed]

R. Wu, S. Chang, Z. Zheng, L. Zhao, and X. Liu, “Formulating the design of two freeform lens surfaces for point-like light sources,” Opt. Lett. 43(7), 1619–1622 (2018).

[Crossref]
[PubMed]

R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).

[Crossref]
[PubMed]

Y. Ding, X. Liu, Z.-R. Zheng, and P.-F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).

[Crossref]
[PubMed]

X. Mao, S. Xu, X. Hu, and Y. Xie, “Design of a smooth freeform illumination system for a point light source based on polar-type optimal transport mapping,” Appl. Opt. 56(22), 6324–6331 (2017).

[Crossref]
[PubMed]

X. Mao, H. Li, Y. Han, and Y. Luo, “Polar-grids based source-target mapping construction method for designing freeform illumination system for a lighting target with arbitrary shape,” Opt. Express 23(4), 4313–4328 (2015).

[Crossref]
[PubMed]

R. Wu, Z. Feng, Z. Zheng, R. Liang, P. Benítez, and J. C. Miñano, “Design of freeform illumination optics,” Laser & Photonics Rev. 12(7), 1700310 (2018).

[Crossref]

R. Wu, Y. Zhang, M. M. Sulman, Z. Zheng, P. Benítez, and J. C. Miñano, “Initial design with L2 Monge–Kantorovich theory for the Monge–Ampère equation method in freeform surface illumination design,” Opt. Express 22(13), 16161–16177 (2014).

[Crossref]
[PubMed]

A. A. Mingazov, D. A. Bykov, L. L. Doskolovich, and N. L. Kazanskiy, “Variational interpretation of the eikonal calculation problem from the condition of generating a prescribed irradiance distribution,” Comput. Opt. 42(4), 567–573 (2018).

L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, and E. A. Bezus, “Variational approach to calculation of light field eikonal function for illuminating a prescribed region,” Opt. Express 25(22), 26378–26392 (2017).

[Crossref]
[PubMed]

J. Munkres, “Algorithms for the assignment and transportation problems,” Journal of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957).

[Crossref]

L. L. Doskolovich, D. A. Bykov, E. S. Andreev, E. A. Bezus, and V. Oliker, “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems,” Opt. Express 26(19), 24602–24613 (2018).

[Crossref]

V. Oliker, “Designing freeform lenses for intensity and phase control of coherent light with help from geometry and mass transport,” Arch. for Ration. Mech. Analysis 201(3), 1013–1045 (2011).

[Crossref]

T. Glimm and V. Oliker, “Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem,” J. Math. Sci. 117(3), 4096–4108 (2003).

[Crossref]

S. A. Kochengin and V. I. Oliker, “Determination of reflector surfaces from near-field scattering data,” Inverse Probl. 13(2), 363–373 (1997).

[Crossref]

Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, 1990).

[Crossref]

F. de Goes, K. Breeden, V. Ostromoukhov, and M. Desbrun, “Blue noise through optimal transport,” ACM Trans. Graph. 31(6), 171 (2012).

[Crossref]

K. Brix, Y. Hafizogullari, and A. Platen, “Designing illumination lenses and mirrors by the numerical solution of Monge–Ampère equations,” J. Opt. Soc. Am. A 32(11), 2227–2236 (2015).

[Crossref]

K. Brix, Y. Hafizogullari, and A. Platen, “Solving the Monge–Ampère equations for the inverse reflector problem,” Math. Model. Methods Appl. Sci. 25(6), 803–837 (2015).

[Crossref]

C. R. Prins, R. Beltman, J. H. M. ten Thije Boonkkamp, W. L. IJzerman, and T. W. Tukker, “A least-squares method for optimal transport using the Monge–Ampère equation,” SIAM J. Sci. Comput. 37(6), B937–B961 (2015).

[Crossref]

C. R. Prins, J. H. M. ten Thije Boonkkamp, J. van Roosmalen, W. L. IJzerman, and T. W. Tukker, “A Monge–Ampère-solver for free-form reflector design,” SIAM J. Sci. Comput. 36(3), B640–B660 (2014).

[Crossref]

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the Monge– Ampère equation,” Appl. Numer. Math. 61(3), 298–307 (2011).

[Crossref]

B. Schmitzer and C. Schnörr, “A hierarchical approach to optimal transport,” in Scale Space and Variational Methods in Computer Vision, A. Kuijper, K. Bredies, T. Pock, and H. Bischof, eds. (Springer, 2013), pp. 452–464.

[Crossref]

B. Schmitzer and C. Schnörr, “A hierarchical approach to optimal transport,” in Scale Space and Variational Methods in Computer Vision, A. Kuijper, K. Bredies, T. Pock, and H. Bischof, eds. (Springer, 2013), pp. 452–464.

[Crossref]

M. Balzer, T. Schölmer, and O. Deussen, “Capacity-constrained point distributions: a variant of Lloyd’s method,” ACM Trans. Graph. 28(3), 86 (2009).

[Crossref]

L. L. Doskolovich, N. L. Kazansky, S. I. Kharitonov, and V. A. Soifer, “A method of designing diffractive optical elements focusing into plane areas,” J. Mod. Opt. 43(7), 1423–1433 (1996).

[Crossref]

V. A. Soifer, V. V. Kotlyar, and L. L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, 1997).

R. Wu, Y. Zhang, M. M. Sulman, Z. Zheng, P. Benítez, and J. C. Miñano, “Initial design with L2 Monge–Kantorovich theory for the Monge–Ampère equation method in freeform surface illumination design,” Opt. Express 22(13), 16161–16177 (2014).

[Crossref]
[PubMed]

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the Monge– Ampère equation,” Appl. Numer. Math. 61(3), 298–307 (2011).

[Crossref]

C. R. Prins, R. Beltman, J. H. M. ten Thije Boonkkamp, W. L. IJzerman, and T. W. Tukker, “A least-squares method for optimal transport using the Monge–Ampère equation,” SIAM J. Sci. Comput. 37(6), B937–B961 (2015).

[Crossref]

C. R. Prins, J. H. M. ten Thije Boonkkamp, J. van Roosmalen, W. L. IJzerman, and T. W. Tukker, “A Monge–Ampère-solver for free-form reflector design,” SIAM J. Sci. Comput. 36(3), B640–B660 (2014).

[Crossref]

C. R. Prins, R. Beltman, J. H. M. ten Thije Boonkkamp, W. L. IJzerman, and T. W. Tukker, “A least-squares method for optimal transport using the Monge–Ampère equation,” SIAM J. Sci. Comput. 37(6), B937–B961 (2015).

[Crossref]

C. R. Prins, J. H. M. ten Thije Boonkkamp, J. van Roosmalen, W. L. IJzerman, and T. W. Tukker, “A Monge–Ampère-solver for free-form reflector design,” SIAM J. Sci. Comput. 36(3), B640–B660 (2014).

[Crossref]

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Wiley, 1997).

C. R. Prins, J. H. M. ten Thije Boonkkamp, J. van Roosmalen, W. L. IJzerman, and T. W. Tukker, “A Monge–Ampère-solver for free-form reflector design,” SIAM J. Sci. Comput. 36(3), B640–B660 (2014).

[Crossref]

X.-J. Wang, “On the design of a reflector antenna II,” Calc. Var. 20(3), 329–341 (2004).

[Crossref]

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the Monge– Ampère equation,” Appl. Numer. Math. 61(3), 298–307 (2011).

[Crossref]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

[Crossref]

R. Wu, S. Chang, Z. Zheng, L. Zhao, and X. Liu, “Formulating the design of two freeform lens surfaces for point-like light sources,” Opt. Lett. 43(7), 1619–1622 (2018).

[Crossref]
[PubMed]

R. Wu, Z. Feng, Z. Zheng, R. Liang, P. Benítez, and J. C. Miñano, “Design of freeform illumination optics,” Laser & Photonics Rev. 12(7), 1700310 (2018).

[Crossref]

R. Wu, Y. Zhang, M. M. Sulman, Z. Zheng, P. Benítez, and J. C. Miñano, “Initial design with L2 Monge–Kantorovich theory for the Monge–Ampère equation method in freeform surface illumination design,” Opt. Express 22(13), 16161–16177 (2014).

[Crossref]
[PubMed]

R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).

[Crossref]
[PubMed]

R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Xiu, “Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampère equation,” Opt. Lett. 38(2), 229–231 (2013).

[Crossref]
[PubMed]

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Wiley, 1997).

Y. Ma, H. Zhang, Z. Su, Y. He, L. Xu, X. Lui, and H. Li, “Hybrid method of free-form lens design for arbitrary illumination target,” Appl. Opt. 54(14), 4503–4508 (2015).

[Crossref]
[PubMed]

R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Xiu, “Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampère equation,” Opt. Lett. 38(2), 229–231 (2013).

[Crossref]
[PubMed]

R. Wu, Y. Zhang, M. M. Sulman, Z. Zheng, P. Benítez, and J. C. Miñano, “Initial design with L2 Monge–Kantorovich theory for the Monge–Ampère equation method in freeform surface illumination design,” Opt. Express 22(13), 16161–16177 (2014).

[Crossref]
[PubMed]

R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Xiu, “Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampère equation,” Opt. Lett. 38(2), 229–231 (2013).

[Crossref]
[PubMed]

R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).

[Crossref]
[PubMed]

R. Wu, S. Chang, Z. Zheng, L. Zhao, and X. Liu, “Formulating the design of two freeform lens surfaces for point-like light sources,” Opt. Lett. 43(7), 1619–1622 (2018).

[Crossref]
[PubMed]

R. Wu, Z. Feng, Z. Zheng, R. Liang, P. Benítez, and J. C. Miñano, “Design of freeform illumination optics,” Laser & Photonics Rev. 12(7), 1700310 (2018).

[Crossref]

R. Wu, Y. Zhang, M. M. Sulman, Z. Zheng, P. Benítez, and J. C. Miñano, “Initial design with L2 Monge–Kantorovich theory for the Monge–Ampère equation method in freeform surface illumination design,” Opt. Express 22(13), 16161–16177 (2014).

[Crossref]
[PubMed]

R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).

[Crossref]
[PubMed]

R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Xiu, “Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampère equation,” Opt. Lett. 38(2), 229–231 (2013).

[Crossref]
[PubMed]

M. Balzer, T. Schölmer, and O. Deussen, “Capacity-constrained point distributions: a variant of Lloyd’s method,” ACM Trans. Graph. 28(3), 86 (2009).

[Crossref]

F. de Goes, K. Breeden, V. Ostromoukhov, and M. Desbrun, “Blue noise through optimal transport,” ACM Trans. Graph. 31(6), 171 (2012).

[Crossref]

C. E. Gutiérrez and Q. Huang, “The near field refractor,” Ann. Inst. Henri Poincaré C Non Linear Anal. 31(4), 655–684 (2014).

[Crossref]

D. P. Bertsekas, “The auction algorithm: A distributed relaxation method for the assignment problem,” Ann. Oper. Res. 14(1), 105–123 (1988).

[Crossref]

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the Monge– Ampère equation,” Appl. Numer. Math. 61(3), 298–307 (2011).

[Crossref]

Y. Ma, H. Zhang, Z. Su, Y. He, L. Xu, X. Lui, and H. Li, “Hybrid method of free-form lens design for arbitrary illumination target,” Appl. Opt. 54(14), 4503–4508 (2015).

[Crossref]
[PubMed]

X. Mao, S. Xu, X. Hu, and Y. Xie, “Design of a smooth freeform illumination system for a point light source based on polar-type optimal transport mapping,” Appl. Opt. 56(22), 6324–6331 (2017).

[Crossref]
[PubMed]

V. Oliker, “Designing freeform lenses for intensity and phase control of coherent light with help from geometry and mass transport,” Arch. for Ration. Mech. Analysis 201(3), 1013–1045 (2011).

[Crossref]

C. E. Gutiérrez and Q. Huang, “The refractor problem in reshaping light beams,” Arch. Ration. Mech. Anal. 193, 423–443 (2009).

[Crossref]

X.-J. Wang, “On the design of a reflector antenna II,” Calc. Var. 20(3), 329–341 (2004).

[Crossref]

A. A. Mingazov, D. A. Bykov, L. L. Doskolovich, and N. L. Kazanskiy, “Variational interpretation of the eikonal calculation problem from the condition of generating a prescribed irradiance distribution,” Comput. Opt. 42(4), 567–573 (2018).

S. A. Kochengin and V. I. Oliker, “Determination of reflector surfaces from near-field scattering data,” Inverse Probl. 13(2), 363–373 (1997).

[Crossref]

T. Glimm and V. Oliker, “Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem,” J. Math. Sci. 117(3), 4096–4108 (2003).

[Crossref]

L. L. Doskolovich, N. L. Kazansky, S. I. Kharitonov, and V. A. Soifer, “A method of designing diffractive optical elements focusing into plane areas,” J. Mod. Opt. 43(7), 1423–1433 (1996).

[Crossref]

J. Rubinstein and G. Wolansky, “Intensity control with a free-form lens,” J. Opt. Soc. Am. A 24(2), 463–469 (2007).

[Crossref]

C. Bösel and H. Gross, “Single freeform surface design for prescribed input wavefront and target irradiance,” J. Opt. Soc. Am. A 34(9), 1490–1499 (2017).

[Crossref]

C. Bösel and H. Gross, “Double freeform illumination design for prescribed wavefronts and irradiances,” J. Opt. Soc. Am. A 35(2), 236–243 (2018).

[Crossref]

K. Brix, Y. Hafizogullari, and A. Platen, “Designing illumination lenses and mirrors by the numerical solution of Monge–Ampère equations,” J. Opt. Soc. Am. A 32(11), 2227–2236 (2015).

[Crossref]

J. Munkres, “Algorithms for the assignment and transportation problems,” Journal of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957).

[Crossref]

R. Wu, Z. Feng, Z. Zheng, R. Liang, P. Benítez, and J. C. Miñano, “Design of freeform illumination optics,” Laser & Photonics Rev. 12(7), 1700310 (2018).

[Crossref]

K. Brix, Y. Hafizogullari, and A. Platen, “Solving the Monge–Ampère equations for the inverse reflector problem,” Math. Model. Methods Appl. Sci. 25(6), 803–837 (2015).

[Crossref]

L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, and E. A. Bezus, “Variational approach to calculation of light field eikonal function for illuminating a prescribed region,” Opt. Express 25(22), 26378–26392 (2017).

[Crossref]
[PubMed]

R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).

[Crossref]
[PubMed]

R. Wu, Y. Zhang, M. M. Sulman, Z. Zheng, P. Benítez, and J. C. Miñano, “Initial design with L2 Monge–Kantorovich theory for the Monge–Ampère equation method in freeform surface illumination design,” Opt. Express 22(13), 16161–16177 (2014).

[Crossref]
[PubMed]

C. Bösel and H. Gross, “Ray mapping approach for the efficient design of continuous freeform surfaces,” Opt. Express 24(13), 14271–14282 (2016).

[Crossref]
[PubMed]

X. Mao, H. Li, Y. Han, and Y. Luo, “Polar-grids based source-target mapping construction method for designing freeform illumination system for a lighting target with arbitrary shape,” Opt. Express 23(4), 4313–4328 (2015).

[Crossref]
[PubMed]

Y. Ding, X. Liu, Z.-R. Zheng, and P.-F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).

[Crossref]
[PubMed]

L. L. Doskolovich, D. A. Bykov, E. S. Andreev, E. A. Bezus, and V. Oliker, “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems,” Opt. Express 26(19), 24602–24613 (2018).

[Crossref]

R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Xiu, “Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampère equation,” Opt. Lett. 38(2), 229–231 (2013).

[Crossref]
[PubMed]

R. Wu, S. Chang, Z. Zheng, L. Zhao, and X. Liu, “Formulating the design of two freeform lens surfaces for point-like light sources,” Opt. Lett. 43(7), 1619–1622 (2018).

[Crossref]
[PubMed]

C. R. Prins, J. H. M. ten Thije Boonkkamp, J. van Roosmalen, W. L. IJzerman, and T. W. Tukker, “A Monge–Ampère-solver for free-form reflector design,” SIAM J. Sci. Comput. 36(3), B640–B660 (2014).

[Crossref]

C. R. Prins, R. Beltman, J. H. M. ten Thije Boonkkamp, W. L. IJzerman, and T. W. Tukker, “A least-squares method for optimal transport using the Monge–Ampère equation,” SIAM J. Sci. Comput. 37(6), B937–B961 (2015).

[Crossref]

C. E. Gutiérrez, “Refraction problems in geometric optics,” Fully Nonlinear PDEs in Real and Complex Geometry and Optics, Vol. 2087 of the Series Lecture Notes in Mathematics (Springer, 2014), pp. 95–150.

[Crossref]

Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, 1990).

[Crossref]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

[Crossref]

L. C. Evans, “Partial differential equations and Monge–Kantorovich mass transfer,” in Current Developments in Mathematics, R. Bott, A. Jaffe, D. Jerison, G. Lusztig, I. Singer, and S.-T. Yau, eds. (International Press of Boston, 1999).

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Wiley, 1997).

V. A. Soifer, V. V. Kotlyar, and L. L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, 1997).

Implementation of Bertsekas’ auction algorithm. http://www.mathworks.com/matlabcentral/fileexchange/48448 .

A. M. Oberman and Y. Ruan, “An efficient linear programming method for optimal transportation,” https://arxiv.org/abs/1509.03668 .

B. Schmitzer and C. Schnörr, “A hierarchical approach to optimal transport,” in Scale Space and Variational Methods in Computer Vision, A. Kuijper, K. Bredies, T. Pock, and H. Bischof, eds. (Springer, 2013), pp. 452–464.

[Crossref]