Abstract

Abstract: Plasmon resonances and electric field enhancements of several near-field optical antennae with plasmonic nanostructures engineered at their apices were quantitatively compared using finite difference time domain simulations. Although many probe designs have been tested experimentally, a systematic comparison of field enhancements has not been possible, due to differences in instrument configuration, reporter mechanism, excitation energy, and plasmonic materials used. For plasmonic nanostructures attached to a non-plasmonic support (e.g., a nanoparticle functionalized AFM tip), we find that the complex refractive index of the support material is critical in controlling the overall plasmonic behavior of the antenna. Supports with strong absorption at optical energies (Pt, W) dampen plasmon resonances and lead to lower enhancements, while those with low absorption (SiO2, Si3N4, Si) boost enhancement by increasing the extinction cross-section of the apex nanostructure. Using a set of physically realistic constraints, probes were optimized for peak plasmonic enhancement at common near-field optical wavelengths (633-647 nm) and those with focused ion-beam milled grooves near the apex were found to give the largest local field enhancements (~30x). Compared to unstructured metal cones, grooved probes gave a 300% improvement in field strength, which can boost tip-enhanced Raman spectroscopy (TERS) signals by 1-2 orders of magnitude. Moreover, grooved probe resonances can be easily tuned over visible and near-infrared energies by varying the plasmonic metal (Ag or Au) and groove location. Overall, this work shows that probes with strong localized surface plasmon resonances at their apices can be engineered to provide large field enhancements and boost signals in near-field optical experiments.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips

Wei Bao, Matteo Staffaroni, Jeffrey Bokor, Miquel B. Salmeron, Eli Yablonovitch, Stefano Cabrini, Alexander Weber-Bargioni, and P. James Schuck
Opt. Express 21(7) 8166-8176 (2013)

Grating enhanced apertureless near-field optical microscopy

Josip Mihaljevic, Christian Hafner, and Alfred J. Meixner
Opt. Express 23(14) 18401-18414 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335(5–6), 369–374 (2001).
    [Crossref]
  2. B. Ren, G. Picardi, and B. Pettinger, “Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching,” Rev. Sci. Instrum. 75(4), 837–841 (2004).
    [Crossref]
  3. T. Schmid, L. Opilik, C. Blum, and R. Zenobi, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review,” Angew. Chem. Int. Ed. Engl. 52(23), 5940–5954 (2013).
    [Crossref] [PubMed]
  4. C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
    [Crossref]
  5. B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
    [Crossref]
  6. N. Hayazawa, H. Ishitobi, A. Taguchi, A. Tarun, K. Ikeda, and S. Kawata, “Focused excitation of surface plasmon polaritons based on gap-mode in tip-enhanced spectroscopy,” Jpn. J. Appl. Phys. 46(1212R), 7995–7999 (2007).
    [Crossref]
  7. K. Ikeda, N. Fujimoto, H. Uehara, and K. Uosaki, “Raman scattering of aryl isocyanide monolayers on atomically flat Au(111) single crystal surfaces enhanced by gap-mode plasmon excitation,” Chem. Phys. Lett. 460(1-3), 205–208 (2008).
    [Crossref]
  8. G. Picardi, M. Chaigneau, and R. Ossikovski, “High resolution probing of multi wall carbon nanotubes by tip enhanced Raman spectroscopy in gap-mode,” Chem. Phys. Lett. 469(1–3), 161–165 (2009).
    [Crossref]
  9. L. Meng, Z. Yang, J. Chen, and M. Sun, “Effect of electric field gradient on sub-nanometer spatial resolution of tip-enhanced Raman spectroscopy,” Sci. Rep. 5(9240 (2015).
  10. C. M. Aikens, L. R. Madison, and G. C. Schatz, “The effect of field gradient on SERS,” Nat. Photonics 7(7), 508–510 (2013).
    [Crossref]
  11. R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
    [Crossref] [PubMed]
  12. C. Chen, N. Hayazawa, and S. Kawata, “A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient,” Nat. Comm. 5(3312 (2014).
  13. N. Chiang, X. Chen, G. Goubert, D. V. Chulhai, X. Chen, E. A. Pozzi, N. Jiang, M. C. Hersam, T. Seideman, L. Jensen, and R. P. Van Duyne, “Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy,” Nano Lett. 16(12), 7774–7778 (2016).
    [Crossref] [PubMed]
  14. X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
    [Crossref] [PubMed]
  15. W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
    [Crossref] [PubMed]
  16. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
    [Crossref] [PubMed]
  17. E. D. Palik, Handbook of Optical Constants of Solids I–III (Academic, 1997).
  18. K. Luke, Y. Okawachi, M. R. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40(21), 4823–4826 (2015).
    [Crossref] [PubMed]
  19. Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spec. 40(10), 1343–1348 (2009).
    [Crossref]
  20. N. Kazemi-Zanjani, S. Vedraine, and F. Lagugné-Labarthet, “Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light,” Opt. Express 21(21), 25271–25276 (2013).
    [Crossref] [PubMed]
  21. N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip− sample coupling, and near-field enhancement,” J. Phys. Chem. C 112(10), 3766–3773 (2008).
    [Crossref]
  22. J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap‐mode tip‐enhanced Raman spectroscopy,” J. Raman Spec. 44(2), 227–233 (2013).
    [Crossref]
  23. C. Lu, P. Tang, X. Lu, Q. Zhang, S. Liu, J. Tian, and L. Zhong, “Theoretical localized electric field enhancement in tip-enhanced spectroscopy using multi-order radially polarized modes,” Plasmonics 13, 1–8 (2018).
    [Crossref]
  24. W. Zhang, X. Cui, and O. J. Martin, “Local field enhancement of an infinite conical metal tip illuminated by a focused beam,” J. Raman Spec. 40(10), 1338–1342 (2009).
    [Crossref]
  25. Y. Kitahama, T. Itoh, and T. Suzuki, “Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 197, 142–147 (2018).
    [Crossref] [PubMed]
  26. J. T. Krug, E. J. Sánchez, and X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116(24), 10895–10901 (2002).
    [Crossref]
  27. A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, and H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48(30), 5683–5691 (2009).
    [Crossref] [PubMed]
  28. A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering,” J. Chem. Phys. 122(18), 184716 (2005).
    [Crossref] [PubMed]
  29. A. V. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107(2-3), 151–157 (2007).
    [Crossref] [PubMed]
  30. C. Huber, A. Trügler, U. Hohenester, Y. Prior, and W. Kautek, “Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation,” Phys. Chem. Chem. Phys. 16(6), 2289–2296 (2014).
    [Crossref] [PubMed]
  31. R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, “Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips,” Opt. Express 14(7), 2921–2931 (2006).
    [Crossref] [PubMed]
  32. L. Meng, T. Huang, X. Wang, S. Chen, Z. Yang, and B. Ren, “Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration,” Opt. Express 23(11), 13804–13813 (2015).
    [Crossref] [PubMed]
  33. M. Sukharev and T. Seideman, “Optical properties of metal tips for tip-enhanced spectroscopies,” J. Phys. Chem. A 113(26), 7508–7513 (2009).
    [Crossref] [PubMed]
  34. P. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys. 76(1), 751–752 (1982).
    [Crossref]
  35. H. Wang, T. Tian, Y. Zhang, Z. Pan, Y. Wang, and Z. Xiao, “Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes,” Langmuir 24(16), 8918–8922 (2008).
    [Crossref] [PubMed]
  36. A. Sanders, L. Zhang, R. W. Bowman, L. O. Herrmann, and J. J. Baumberg, “Facile fabrication of spherical nanoparticle‐tipped AFM probes for plasmonic applications,” Part. Part. Syst. Charact. 32(2), 182–187 (2015).
    [Crossref] [PubMed]
  37. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
    [Crossref] [PubMed]
  38. A. Taguchi, N. Hayazawa, Y. Saito, H. Ishitobi, A. Tarun, and S. Kawata, “Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification,” Opt. Express 17(8), 6509–6518 (2009).
    [Crossref] [PubMed]
  39. I. Maouli, A. Taguchi, Y. Saito, S. Kawata, and P. Verma, “Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging,” Appl. Phys. Express 8(3), 032401 (2015).
    [Crossref]
  40. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]
  41. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
    [Crossref] [PubMed]
  42. T. S. van Zanten, M. J. Lopez-Bosque, and M. F. Garcia-Parajo, “Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna,” Small 6(2), 270–275 (2010).
    [Crossref] [PubMed]
  43. L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101(10), 104305 (2007).
    [Crossref]
  44. N. P. Logeeswaran VJ, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Mobile iron nanoparticle and its role in the formation of SiO2 nanotrench via carbon nanotube-guided carbothermal reduction,” Nano Lett. 8(1), 178–182 (2009).
    [Crossref] [PubMed]
  45. T. Stefaniuk, P. Wróbel, P. Trautman, and T. Szoplik, “Ultrasmooth metal nanolayers for plasmonic applications: surface roughness and specific resistivity,” Appl. Opt. 53(10), B237–B241 (2014).
    [Crossref] [PubMed]
  46. S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
    [Crossref] [PubMed]
  47. M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal, “Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics,” Nano Lett. 15(5), 3410–3419 (2015).
    [Crossref] [PubMed]
  48. F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
    [Crossref] [PubMed]
  49. Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
    [Crossref]
  50. T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
    [Crossref] [PubMed]
  51. A. Sanders, R. W. Bowman, L. Zhang, V. Turek, D. O. Sigle, A. Lombardi, L. Weller, and J. J. Baumberg, “Understanding the plasmonics of nanostructured atomic force microscopy tips,” Appl. Phys. Lett. 109(15), 153110 (2016).
    [Crossref]

2018 (2)

C. Lu, P. Tang, X. Lu, Q. Zhang, S. Liu, J. Tian, and L. Zhong, “Theoretical localized electric field enhancement in tip-enhanced spectroscopy using multi-order radially polarized modes,” Plasmonics 13, 1–8 (2018).
[Crossref]

Y. Kitahama, T. Itoh, and T. Suzuki, “Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 197, 142–147 (2018).
[Crossref] [PubMed]

2017 (2)

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[Crossref] [PubMed]

2016 (4)

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

A. Sanders, R. W. Bowman, L. Zhang, V. Turek, D. O. Sigle, A. Lombardi, L. Weller, and J. J. Baumberg, “Understanding the plasmonics of nanostructured atomic force microscopy tips,” Appl. Phys. Lett. 109(15), 153110 (2016).
[Crossref]

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

N. Chiang, X. Chen, G. Goubert, D. V. Chulhai, X. Chen, E. A. Pozzi, N. Jiang, M. C. Hersam, T. Seideman, L. Jensen, and R. P. Van Duyne, “Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy,” Nano Lett. 16(12), 7774–7778 (2016).
[Crossref] [PubMed]

2015 (6)

K. Luke, Y. Okawachi, M. R. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40(21), 4823–4826 (2015).
[Crossref] [PubMed]

L. Meng, T. Huang, X. Wang, S. Chen, Z. Yang, and B. Ren, “Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration,” Opt. Express 23(11), 13804–13813 (2015).
[Crossref] [PubMed]

A. Sanders, L. Zhang, R. W. Bowman, L. O. Herrmann, and J. J. Baumberg, “Facile fabrication of spherical nanoparticle‐tipped AFM probes for plasmonic applications,” Part. Part. Syst. Charact. 32(2), 182–187 (2015).
[Crossref] [PubMed]

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
[Crossref] [PubMed]

M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal, “Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics,” Nano Lett. 15(5), 3410–3419 (2015).
[Crossref] [PubMed]

I. Maouli, A. Taguchi, Y. Saito, S. Kawata, and P. Verma, “Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging,” Appl. Phys. Express 8(3), 032401 (2015).
[Crossref]

2014 (3)

T. Stefaniuk, P. Wróbel, P. Trautman, and T. Szoplik, “Ultrasmooth metal nanolayers for plasmonic applications: surface roughness and specific resistivity,” Appl. Opt. 53(10), B237–B241 (2014).
[Crossref] [PubMed]

C. Huber, A. Trügler, U. Hohenester, Y. Prior, and W. Kautek, “Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation,” Phys. Chem. Chem. Phys. 16(6), 2289–2296 (2014).
[Crossref] [PubMed]

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

2013 (5)

T. Schmid, L. Opilik, C. Blum, and R. Zenobi, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review,” Angew. Chem. Int. Ed. Engl. 52(23), 5940–5954 (2013).
[Crossref] [PubMed]

C. M. Aikens, L. R. Madison, and G. C. Schatz, “The effect of field gradient on SERS,” Nat. Photonics 7(7), 508–510 (2013).
[Crossref]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

N. Kazemi-Zanjani, S. Vedraine, and F. Lagugné-Labarthet, “Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light,” Opt. Express 21(21), 25271–25276 (2013).
[Crossref] [PubMed]

J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap‐mode tip‐enhanced Raman spectroscopy,” J. Raman Spec. 44(2), 227–233 (2013).
[Crossref]

2011 (1)

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

2010 (1)

T. S. van Zanten, M. J. Lopez-Bosque, and M. F. Garcia-Parajo, “Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna,” Small 6(2), 270–275 (2010).
[Crossref] [PubMed]

2009 (8)

N. P. Logeeswaran VJ, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Mobile iron nanoparticle and its role in the formation of SiO2 nanotrench via carbon nanotube-guided carbothermal reduction,” Nano Lett. 8(1), 178–182 (2009).
[Crossref] [PubMed]

Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
[Crossref]

A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, and H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48(30), 5683–5691 (2009).
[Crossref] [PubMed]

W. Zhang, X. Cui, and O. J. Martin, “Local field enhancement of an infinite conical metal tip illuminated by a focused beam,” J. Raman Spec. 40(10), 1338–1342 (2009).
[Crossref]

M. Sukharev and T. Seideman, “Optical properties of metal tips for tip-enhanced spectroscopies,” J. Phys. Chem. A 113(26), 7508–7513 (2009).
[Crossref] [PubMed]

A. Taguchi, N. Hayazawa, Y. Saito, H. Ishitobi, A. Tarun, and S. Kawata, “Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification,” Opt. Express 17(8), 6509–6518 (2009).
[Crossref] [PubMed]

Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spec. 40(10), 1343–1348 (2009).
[Crossref]

G. Picardi, M. Chaigneau, and R. Ossikovski, “High resolution probing of multi wall carbon nanotubes by tip enhanced Raman spectroscopy in gap-mode,” Chem. Phys. Lett. 469(1–3), 161–165 (2009).
[Crossref]

2008 (3)

N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip− sample coupling, and near-field enhancement,” J. Phys. Chem. C 112(10), 3766–3773 (2008).
[Crossref]

K. Ikeda, N. Fujimoto, H. Uehara, and K. Uosaki, “Raman scattering of aryl isocyanide monolayers on atomically flat Au(111) single crystal surfaces enhanced by gap-mode plasmon excitation,” Chem. Phys. Lett. 460(1-3), 205–208 (2008).
[Crossref]

H. Wang, T. Tian, Y. Zhang, Z. Pan, Y. Wang, and Z. Xiao, “Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes,” Langmuir 24(16), 8918–8922 (2008).
[Crossref] [PubMed]

2007 (5)

A. V. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107(2-3), 151–157 (2007).
[Crossref] [PubMed]

B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
[Crossref]

N. Hayazawa, H. Ishitobi, A. Taguchi, A. Tarun, K. Ikeda, and S. Kawata, “Focused excitation of surface plasmon polaritons based on gap-mode in tip-enhanced spectroscopy,” Jpn. J. Appl. Phys. 46(1212R), 7995–7999 (2007).
[Crossref]

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101(10), 104305 (2007).
[Crossref]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[Crossref] [PubMed]

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering,” J. Chem. Phys. 122(18), 184716 (2005).
[Crossref] [PubMed]

2004 (1)

B. Ren, G. Picardi, and B. Pettinger, “Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching,” Rev. Sci. Instrum. 75(4), 837–841 (2004).
[Crossref]

2002 (1)

J. T. Krug, E. J. Sánchez, and X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116(24), 10895–10901 (2002).
[Crossref]

2001 (2)

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335(5–6), 369–374 (2001).
[Crossref]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

1982 (1)

P. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys. 76(1), 751–752 (1982).
[Crossref]

Achete, C. A.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
[Crossref] [PubMed]

Adams, M. M.

Aikens, C. M.

C. M. Aikens, L. R. Madison, and G. C. Schatz, “The effect of field gradient on SERS,” Nat. Photonics 7(7), 508–510 (2013).
[Crossref]

Aizpurua, J.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[Crossref] [PubMed]

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal, “Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics,” Nano Lett. 15(5), 3410–3419 (2015).
[Crossref] [PubMed]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spec. 40(10), 1343–1348 (2009).
[Crossref]

Archanjo, B. S.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
[Crossref] [PubMed]

Atkin, J. M.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Barbry, M.

M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal, “Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics,” Nano Lett. 15(5), 3410–3419 (2015).
[Crossref] [PubMed]

Baumberg, J. J.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

A. Sanders, R. W. Bowman, L. Zhang, V. Turek, D. O. Sigle, A. Lombardi, L. Weller, and J. J. Baumberg, “Understanding the plasmonics of nanostructured atomic force microscopy tips,” Appl. Phys. Lett. 109(15), 153110 (2016).
[Crossref]

A. Sanders, L. Zhang, R. W. Bowman, L. O. Herrmann, and J. J. Baumberg, “Facile fabrication of spherical nanoparticle‐tipped AFM probes for plasmonic applications,” Part. Part. Syst. Charact. 32(2), 182–187 (2015).
[Crossref] [PubMed]

Behr, N.

N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip− sample coupling, and near-field enhancement,” J. Phys. Chem. C 112(10), 3766–3773 (2008).
[Crossref]

Benz, F.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Blum, C.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

T. Schmid, L. Opilik, C. Blum, and R. Zenobi, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review,” Angew. Chem. Int. Ed. Engl. 52(23), 5940–5954 (2013).
[Crossref] [PubMed]

Borisov, A. G.

M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal, “Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics,” Nano Lett. 15(5), 3410–3419 (2015).
[Crossref] [PubMed]

Bowman, R. W.

A. Sanders, R. W. Bowman, L. Zhang, V. Turek, D. O. Sigle, A. Lombardi, L. Weller, and J. J. Baumberg, “Understanding the plasmonics of nanostructured atomic force microscopy tips,” Appl. Phys. Lett. 109(15), 153110 (2016).
[Crossref]

A. Sanders, L. Zhang, R. W. Bowman, L. O. Herrmann, and J. J. Baumberg, “Facile fabrication of spherical nanoparticle‐tipped AFM probes for plasmonic applications,” Part. Part. Syst. Charact. 32(2), 182–187 (2015).
[Crossref] [PubMed]

Braun, K.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Cançado, L. G.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
[Crossref] [PubMed]

Carnegie, C.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Chaigneau, M.

G. Picardi, M. Chaigneau, and R. Ossikovski, “High resolution probing of multi wall carbon nanotubes by tip enhanced Raman spectroscopy in gap-mode,” Chem. Phys. Lett. 469(1–3), 161–165 (2009).
[Crossref]

Chang, H.-C.

A. V. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107(2-3), 151–157 (2007).
[Crossref] [PubMed]

Chaturvedi, N. X.

N. P. Logeeswaran VJ, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Mobile iron nanoparticle and its role in the formation of SiO2 nanotrench via carbon nanotube-guided carbothermal reduction,” Nano Lett. 8(1), 178–182 (2009).
[Crossref] [PubMed]

Chen, L. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Chen, S.

Chen, X.

N. Chiang, X. Chen, G. Goubert, D. V. Chulhai, X. Chen, E. A. Pozzi, N. Jiang, M. C. Hersam, T. Seideman, L. Jensen, and R. P. Van Duyne, “Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy,” Nano Lett. 16(12), 7774–7778 (2016).
[Crossref] [PubMed]

N. Chiang, X. Chen, G. Goubert, D. V. Chulhai, X. Chen, E. A. Pozzi, N. Jiang, M. C. Hersam, T. Seideman, L. Jensen, and R. P. Van Duyne, “Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy,” Nano Lett. 16(12), 7774–7778 (2016).
[Crossref] [PubMed]

Chiang, N.

N. Chiang, X. Chen, G. Goubert, D. V. Chulhai, X. Chen, E. A. Pozzi, N. Jiang, M. C. Hersam, T. Seideman, L. Jensen, and R. P. Van Duyne, “Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy,” Nano Lett. 16(12), 7774–7778 (2016).
[Crossref] [PubMed]

Chikkaraddy, R.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Chulhai, D. V.

N. Chiang, X. Chen, G. Goubert, D. V. Chulhai, X. Chen, E. A. Pozzi, N. Jiang, M. C. Hersam, T. Seideman, L. Jensen, and R. P. Van Duyne, “Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy,” Nano Lett. 16(12), 7774–7778 (2016).
[Crossref] [PubMed]

Coca-López, N.

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

Crozier, K. B.

Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
[Crossref]

Cui, X.

W. Zhang, X. Cui, and O. J. Martin, “Local field enhancement of an infinite conical metal tip illuminated by a focused beam,” J. Raman Spec. 40(10), 1338–1342 (2009).
[Crossref]

de Nijs, B.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Deckert, V.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[Crossref] [PubMed]

Dellith, J.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[Crossref] [PubMed]

Demetriadou, A.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Demming, A. L.

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering,” J. Chem. Phys. 122(18), 184716 (2005).
[Crossref] [PubMed]

Domke, K. F.

B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
[Crossref]

Dong, Z. C.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Dreismann, A.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Ertl, G.

B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
[Crossref]

Esteban, R.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal, “Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics,” Nano Lett. 15(5), 3410–3419 (2015).
[Crossref] [PubMed]

Fang, S. Y.

N. P. Logeeswaran VJ, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Mobile iron nanoparticle and its role in the formation of SiO2 nanotrench via carbon nanotube-guided carbothermal reduction,” Nano Lett. 8(1), 178–182 (2009).
[Crossref] [PubMed]

Festy, F.

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering,” J. Chem. Phys. 122(18), 184716 (2005).
[Crossref] [PubMed]

Fragneaud, B.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
[Crossref] [PubMed]

Fujimoto, N.

K. Ikeda, N. Fujimoto, H. Uehara, and K. Uosaki, “Raman scattering of aryl isocyanide monolayers on atomically flat Au(111) single crystal surfaces enhanced by gap-mode plasmon excitation,” Chem. Phys. Lett. 460(1-3), 205–208 (2008).
[Crossref]

Gaeta, A. L.

Garcia-Parajo, M. F.

T. S. van Zanten, M. J. Lopez-Bosque, and M. F. Garcia-Parajo, “Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna,” Small 6(2), 270–275 (2010).
[Crossref] [PubMed]

Georgi, C.

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101(10), 104305 (2007).
[Crossref]

Goncharenko, A. V.

A. V. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107(2-3), 151–157 (2007).
[Crossref] [PubMed]

Götz, I.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[Crossref] [PubMed]

Goubert, G.

N. Chiang, X. Chen, G. Goubert, D. V. Chulhai, X. Chen, E. A. Pozzi, N. Jiang, M. C. Hersam, T. Seideman, L. Jensen, and R. P. Van Duyne, “Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy,” Nano Lett. 16(12), 7774–7778 (2016).
[Crossref] [PubMed]

Hartschuh, A.

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

Hayazawa, N.

A. Taguchi, N. Hayazawa, Y. Saito, H. Ishitobi, A. Tarun, and S. Kawata, “Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification,” Opt. Express 17(8), 6509–6518 (2009).
[Crossref] [PubMed]

N. Hayazawa, H. Ishitobi, A. Taguchi, A. Tarun, K. Ikeda, and S. Kawata, “Focused excitation of surface plasmon polaritons based on gap-mode in tip-enhanced spectroscopy,” Jpn. J. Appl. Phys. 46(1212R), 7995–7999 (2007).
[Crossref]

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335(5–6), 369–374 (2001).
[Crossref]

Hecker, M.

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101(10), 104305 (2007).
[Crossref]

Herrmann, L. O.

A. Sanders, L. Zhang, R. W. Bowman, L. O. Herrmann, and J. J. Baumberg, “Facile fabrication of spherical nanoparticle‐tipped AFM probes for plasmonic applications,” Part. Part. Syst. Charact. 32(2), 182–187 (2015).
[Crossref] [PubMed]

Hersam, M. C.

N. Chiang, X. Chen, G. Goubert, D. V. Chulhai, X. Chen, E. A. Pozzi, N. Jiang, M. C. Hersam, T. Seideman, L. Jensen, and R. P. Van Duyne, “Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy,” Nano Lett. 16(12), 7774–7778 (2016).
[Crossref] [PubMed]

Hohenester, U.

C. Huber, A. Trügler, U. Hohenester, Y. Prior, and W. Kautek, “Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation,” Phys. Chem. Chem. Phys. 16(6), 2289–2296 (2014).
[Crossref] [PubMed]

Hou, J. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Huang, T.

Huber, C.

C. Huber, A. Trügler, U. Hohenester, Y. Prior, and W. Kautek, “Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation,” Phys. Chem. Chem. Phys. 16(6), 2289–2296 (2014).
[Crossref] [PubMed]

Hwan Kim, Z.

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

Ikeda, K.

K. Ikeda, N. Fujimoto, H. Uehara, and K. Uosaki, “Raman scattering of aryl isocyanide monolayers on atomically flat Au(111) single crystal surfaces enhanced by gap-mode plasmon excitation,” Chem. Phys. Lett. 460(1-3), 205–208 (2008).
[Crossref]

N. Hayazawa, H. Ishitobi, A. Taguchi, A. Tarun, K. Ikeda, and S. Kawata, “Focused excitation of surface plasmon polaritons based on gap-mode in tip-enhanced spectroscopy,” Jpn. J. Appl. Phys. 46(1212R), 7995–7999 (2007).
[Crossref]

Inouye, Y.

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335(5–6), 369–374 (2001).
[Crossref]

Ishitobi, H.

A. Taguchi, N. Hayazawa, Y. Saito, H. Ishitobi, A. Tarun, and S. Kawata, “Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification,” Opt. Express 17(8), 6509–6518 (2009).
[Crossref] [PubMed]

N. Hayazawa, H. Ishitobi, A. Taguchi, A. Tarun, K. Ikeda, and S. Kawata, “Focused excitation of surface plasmon polaritons based on gap-mode in tip-enhanced spectroscopy,” Jpn. J. Appl. Phys. 46(1212R), 7995–7999 (2007).
[Crossref]

Islam, W.

N. P. Logeeswaran VJ, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Mobile iron nanoparticle and its role in the formation of SiO2 nanotrench via carbon nanotube-guided carbothermal reduction,” Nano Lett. 8(1), 178–182 (2009).
[Crossref] [PubMed]

Itoh, T.

Y. Kitahama, T. Itoh, and T. Suzuki, “Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 197, 142–147 (2018).
[Crossref] [PubMed]

Janik, J.

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

Jensen, L.

N. Chiang, X. Chen, G. Goubert, D. V. Chulhai, X. Chen, E. A. Pozzi, N. Jiang, M. C. Hersam, T. Seideman, L. Jensen, and R. P. Van Duyne, “Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy,” Nano Lett. 16(12), 7774–7778 (2016).
[Crossref] [PubMed]

Jiang, N.

N. Chiang, X. Chen, G. Goubert, D. V. Chulhai, X. Chen, E. A. Pozzi, N. Jiang, M. C. Hersam, T. Seideman, L. Jensen, and R. P. Van Duyne, “Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy,” Nano Lett. 16(12), 7774–7778 (2016).
[Crossref] [PubMed]

Jiang, S.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Jorio, A.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
[Crossref] [PubMed]

Kalkbrenner, T.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

Kämmer, S. B.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Kautek, W.

C. Huber, A. Trügler, U. Hohenester, Y. Prior, and W. Kautek, “Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation,” Phys. Chem. Chem. Phys. 16(6), 2289–2296 (2014).
[Crossref] [PubMed]

Kawata, S.

I. Maouli, A. Taguchi, Y. Saito, S. Kawata, and P. Verma, “Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging,” Appl. Phys. Express 8(3), 032401 (2015).
[Crossref]

A. Taguchi, N. Hayazawa, Y. Saito, H. Ishitobi, A. Tarun, and S. Kawata, “Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification,” Opt. Express 17(8), 6509–6518 (2009).
[Crossref] [PubMed]

N. Hayazawa, H. Ishitobi, A. Taguchi, A. Tarun, K. Ikeda, and S. Kawata, “Focused excitation of surface plasmon polaritons based on gap-mode in tip-enhanced spectroscopy,” Jpn. J. Appl. Phys. 46(1212R), 7995–7999 (2007).
[Crossref]

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335(5–6), 369–374 (2001).
[Crossref]

Kazemi-Zanjani, N.

Kim, D.

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

Kim, N.

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

Kim, W.

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

Kitahama, Y.

Y. Kitahama, T. Itoh, and T. Suzuki, “Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 197, 142–147 (2018).
[Crossref] [PubMed]

Kobayashi, M. S.

N. P. Logeeswaran VJ, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Mobile iron nanoparticle and its role in the formation of SiO2 nanotrench via carbon nanotube-guided carbothermal reduction,” Nano Lett. 8(1), 178–182 (2009).
[Crossref] [PubMed]

Kolomenski, A.

Kolomenskii, A.

Koval, P.

M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal, “Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics,” Nano Lett. 15(5), 3410–3419 (2015).
[Crossref] [PubMed]

Kravtsov, V.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Krug, J. T.

J. T. Krug, E. J. Sánchez, and X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116(24), 10895–10901 (2002).
[Crossref]

Kumar, N.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Lagugné-Labarthet, F.

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[Crossref] [PubMed]

Lamont, M. R.

Lee, E.

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

Lemeshko, S.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Li, C.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
[Crossref] [PubMed]

Li, J. F.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Liao, P.

P. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys. 76(1), 751–752 (1982).
[Crossref]

Liao, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Lipson, M.

Liu, S.

C. Lu, P. Tang, X. Lu, Q. Zhang, S. Liu, J. Tian, and L. Zhong, “Theoretical localized electric field enhancement in tip-enhanced spectroscopy using multi-order radially polarized modes,” Plasmonics 13, 1–8 (2018).
[Crossref]

Logeeswaran VJ, N. P.

N. P. Logeeswaran VJ, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Mobile iron nanoparticle and its role in the formation of SiO2 nanotrench via carbon nanotube-guided carbothermal reduction,” Nano Lett. 8(1), 178–182 (2009).
[Crossref] [PubMed]

Lombardi, A.

A. Sanders, R. W. Bowman, L. Zhang, V. Turek, D. O. Sigle, A. Lombardi, L. Weller, and J. J. Baumberg, “Understanding the plasmonics of nanostructured atomic force microscopy tips,” Appl. Phys. Lett. 109(15), 153110 (2016).
[Crossref]

Lopez-Bosque, M. J.

T. S. van Zanten, M. J. Lopez-Bosque, and M. F. Garcia-Parajo, “Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna,” Small 6(2), 270–275 (2010).
[Crossref] [PubMed]

Lu, C.

C. Lu, P. Tang, X. Lu, Q. Zhang, S. Liu, J. Tian, and L. Zhong, “Theoretical localized electric field enhancement in tip-enhanced spectroscopy using multi-order radially polarized modes,” Plasmonics 13, 1–8 (2018).
[Crossref]

Lu, X.

C. Lu, P. Tang, X. Lu, Q. Zhang, S. Liu, J. Tian, and L. Zhong, “Theoretical localized electric field enhancement in tip-enhanced spectroscopy using multi-order radially polarized modes,” Plasmonics 13, 1–8 (2018).
[Crossref]

Luke, K.

Luo, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Luszcz, K.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Madison, L. R.

C. M. Aikens, L. R. Madison, and G. C. Schatz, “The effect of field gradient on SERS,” Nat. Photonics 7(7), 508–510 (2013).
[Crossref]

Mai, A.

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101(10), 104305 (2007).
[Crossref]

Maleki, T.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Maouli, I.

I. Maouli, A. Taguchi, Y. Saito, S. Kawata, and P. Verma, “Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging,” Appl. Phys. Express 8(3), 032401 (2015).
[Crossref]

Marchesin, F.

M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal, “Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics,” Nano Lett. 15(5), 3410–3419 (2015).
[Crossref] [PubMed]

Martin, O. J.

W. Zhang, X. Cui, and O. J. Martin, “Local field enhancement of an infinite conical metal tip illuminated by a focused beam,” J. Raman Spec. 40(10), 1338–1342 (2009).
[Crossref]

Meixner, A. J.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Meng, L.

Minne, S.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

Neacsu, C. C.

Noel, J.

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Ohadi, H.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Okawachi, Y.

Oliveira, B. S.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
[Crossref] [PubMed]

Opilik, L.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

T. Schmid, L. Opilik, C. Blum, and R. Zenobi, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review,” Angew. Chem. Int. Ed. Engl. 52(23), 5940–5954 (2013).
[Crossref] [PubMed]

Osgood, R. M.

Ossikovski, R.

G. Picardi, M. Chaigneau, and R. Ossikovski, “High resolution probing of multi wall carbon nanotubes by tip enhanced Raman spectroscopy in gap-mode,” Chem. Phys. Lett. 469(1–3), 161–165 (2009).
[Crossref]

Oswald, B.

J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap‐mode tip‐enhanced Raman spectroscopy,” J. Raman Spec. 44(2), 227–233 (2013).
[Crossref]

Pan, Z.

H. Wang, T. Tian, Y. Zhang, Z. Pan, Y. Wang, and Z. Xiao, “Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes,” Langmuir 24(16), 8918–8922 (2008).
[Crossref] [PubMed]

Panoiu, N. C.

Peng, S.

Pettinger, B.

B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
[Crossref]

B. Ren, G. Picardi, and B. Pettinger, “Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching,” Rev. Sci. Instrum. 75(4), 837–841 (2004).
[Crossref]

Picardi, G.

G. Picardi, M. Chaigneau, and R. Ossikovski, “High resolution probing of multi wall carbon nanotubes by tip enhanced Raman spectroscopy in gap-mode,” Chem. Phys. Lett. 469(1–3), 161–165 (2009).
[Crossref]

B. Ren, G. Picardi, and B. Pettinger, “Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching,” Rev. Sci. Instrum. 75(4), 837–841 (2004).
[Crossref]

Pozzi, E. A.

N. Chiang, X. Chen, G. Goubert, D. V. Chulhai, X. Chen, E. A. Pozzi, N. Jiang, M. C. Hersam, T. Seideman, L. Jensen, and R. P. Van Duyne, “Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy,” Nano Lett. 16(12), 7774–7778 (2016).
[Crossref] [PubMed]

Prior, Y.

C. Huber, A. Trügler, U. Hohenester, Y. Prior, and W. Kautek, “Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation,” Phys. Chem. Chem. Phys. 16(6), 2289–2296 (2014).
[Crossref] [PubMed]

Rabelo, C.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
[Crossref] [PubMed]

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

Raschke, M. B.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip− sample coupling, and near-field enhancement,” J. Phys. Chem. C 112(10), 3766–3773 (2008).
[Crossref]

R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, “Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips,” Opt. Express 14(7), 2921–2931 (2006).
[Crossref] [PubMed]

Ren, B.

L. Meng, T. Huang, X. Wang, S. Chen, Z. Yang, and B. Ren, “Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration,” Opt. Express 23(11), 13804–13813 (2015).
[Crossref] [PubMed]

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

B. Ren, G. Picardi, and B. Pettinger, “Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching,” Rev. Sci. Instrum. 75(4), 837–841 (2004).
[Crossref]

Rettenmayr, M.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[Crossref] [PubMed]

Ribeiro, D. S.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
[Crossref] [PubMed]

Richards, D.

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering,” J. Chem. Phys. 122(18), 184716 (2005).
[Crossref] [PubMed]

Riikonen, J.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
[Crossref] [PubMed]

Rinderknecht, J.

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101(10), 104305 (2007).
[Crossref]

Ritz, Y.

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101(10), 104305 (2007).
[Crossref]

Rodrigues, W. N.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
[Crossref] [PubMed]

Rogalski, J.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Roth, R. M.

Roy, D.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Saito, Y.

I. Maouli, A. Taguchi, Y. Saito, S. Kawata, and P. Verma, “Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging,” Appl. Phys. Express 8(3), 032401 (2015).
[Crossref]

A. Taguchi, N. Hayazawa, Y. Saito, H. Ishitobi, A. Tarun, and S. Kawata, “Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification,” Opt. Express 17(8), 6509–6518 (2009).
[Crossref] [PubMed]

Sánchez, E. J.

J. T. Krug, E. J. Sánchez, and X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116(24), 10895–10901 (2002).
[Crossref]

Sánchez-Portal, D.

M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal, “Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics,” Nano Lett. 15(5), 3410–3419 (2015).
[Crossref] [PubMed]

Sanders, A.

A. Sanders, R. W. Bowman, L. Zhang, V. Turek, D. O. Sigle, A. Lombardi, L. Weller, and J. J. Baumberg, “Understanding the plasmonics of nanostructured atomic force microscopy tips,” Appl. Phys. Lett. 109(15), 153110 (2016).
[Crossref]

A. Sanders, L. Zhang, R. W. Bowman, L. O. Herrmann, and J. J. Baumberg, “Facile fabrication of spherical nanoparticle‐tipped AFM probes for plasmonic applications,” Part. Part. Syst. Charact. 32(2), 182–187 (2015).
[Crossref] [PubMed]

Sandoghdar, V.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

Schatz, G. C.

C. M. Aikens, L. R. Madison, and G. C. Schatz, “The effect of field gradient on SERS,” Nat. Photonics 7(7), 508–510 (2013).
[Crossref]

Schmid, T.

T. Schmid, L. Opilik, C. Blum, and R. Zenobi, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review,” Angew. Chem. Int. Ed. Engl. 52(23), 5940–5954 (2013).
[Crossref] [PubMed]

J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap‐mode tip‐enhanced Raman spectroscopy,” J. Raman Spec. 44(2), 227–233 (2013).
[Crossref]

Schmidt, M. K.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Schneidewind, H.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[Crossref] [PubMed]

Schuessler, H.

Schuster, R.

B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
[Crossref]

Seideman, T.

N. Chiang, X. Chen, G. Goubert, D. V. Chulhai, X. Chen, E. A. Pozzi, N. Jiang, M. C. Hersam, T. Seideman, L. Jensen, and R. P. Van Duyne, “Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy,” Nano Lett. 16(12), 7774–7778 (2016).
[Crossref] [PubMed]

M. Sukharev and T. Seideman, “Optical properties of metal tips for tip-enhanced spectroscopies,” J. Phys. Chem. A 113(26), 7508–7513 (2009).
[Crossref] [PubMed]

Sekkat, Z.

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335(5–6), 369–374 (2001).
[Crossref]

Shi, X.

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

Sigle, D. O.

A. Sanders, R. W. Bowman, L. Zhang, V. Turek, D. O. Sigle, A. Lombardi, L. Weller, and J. J. Baumberg, “Understanding the plasmonics of nanostructured atomic force microscopy tips,” Appl. Phys. Lett. 109(15), 153110 (2016).
[Crossref]

Stadler, J.

J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap‐mode tip‐enhanced Raman spectroscopy,” J. Raman Spec. 44(2), 227–233 (2013).
[Crossref]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

Stefaniuk, T.

Steinvurzel, P.

Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
[Crossref]

Stephanidis, B.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Sukharev, M.

M. Sukharev and T. Seideman, “Optical properties of metal tips for tip-enhanced spectroscopies,” J. Phys. Chem. A 113(26), 7508–7513 (2009).
[Crossref] [PubMed]

Suzuki, T.

Y. Kitahama, T. Itoh, and T. Suzuki, “Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 197, 142–147 (2018).
[Crossref] [PubMed]

Szoplik, T.

Taguchi, A.

I. Maouli, A. Taguchi, Y. Saito, S. Kawata, and P. Verma, “Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging,” Appl. Phys. Express 8(3), 032401 (2015).
[Crossref]

A. Taguchi, N. Hayazawa, Y. Saito, H. Ishitobi, A. Tarun, and S. Kawata, “Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification,” Opt. Express 17(8), 6509–6518 (2009).
[Crossref] [PubMed]

N. Hayazawa, H. Ishitobi, A. Taguchi, A. Tarun, K. Ikeda, and S. Kawata, “Focused excitation of surface plasmon polaritons based on gap-mode in tip-enhanced spectroscopy,” Jpn. J. Appl. Phys. 46(1212R), 7995–7999 (2007).
[Crossref]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

Tang, P.

C. Lu, P. Tang, X. Lu, Q. Zhang, S. Liu, J. Tian, and L. Zhong, “Theoretical localized electric field enhancement in tip-enhanced spectroscopy using multi-order radially polarized modes,” Plasmonics 13, 1–8 (2018).
[Crossref]

Tarun, A.

A. Taguchi, N. Hayazawa, Y. Saito, H. Ishitobi, A. Tarun, and S. Kawata, “Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification,” Opt. Express 17(8), 6509–6518 (2009).
[Crossref] [PubMed]

N. Hayazawa, H. Ishitobi, A. Taguchi, A. Tarun, K. Ikeda, and S. Kawata, “Focused excitation of surface plasmon polaritons based on gap-mode in tip-enhanced spectroscopy,” Jpn. J. Appl. Phys. 46(1212R), 7995–7999 (2007).
[Crossref]

Tian, J.

C. Lu, P. Tang, X. Lu, Q. Zhang, S. Liu, J. Tian, and L. Zhong, “Theoretical localized electric field enhancement in tip-enhanced spectroscopy using multi-order radially polarized modes,” Plasmonics 13, 1–8 (2018).
[Crossref]

Tian, T.

H. Wang, T. Tian, Y. Zhang, Z. Pan, Y. Wang, and Z. Xiao, “Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes,” Langmuir 24(16), 8918–8922 (2008).
[Crossref] [PubMed]

Trautman, P.

Trautmann, S.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[Crossref] [PubMed]

Trügler, A.

C. Huber, A. Trügler, U. Hohenester, Y. Prior, and W. Kautek, “Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation,” Phys. Chem. Chem. Phys. 16(6), 2289–2296 (2014).
[Crossref] [PubMed]

Turek, V.

A. Sanders, R. W. Bowman, L. Zhang, V. Turek, D. O. Sigle, A. Lombardi, L. Weller, and J. J. Baumberg, “Understanding the plasmonics of nanostructured atomic force microscopy tips,” Appl. Phys. Lett. 109(15), 153110 (2016).
[Crossref]

Uehara, H.

K. Ikeda, N. Fujimoto, H. Uehara, and K. Uosaki, “Raman scattering of aryl isocyanide monolayers on atomically flat Au(111) single crystal surfaces enhanced by gap-mode plasmon excitation,” Chem. Phys. Lett. 460(1-3), 205–208 (2008).
[Crossref]

Undisz, A.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[Crossref] [PubMed]

Uosaki, K.

K. Ikeda, N. Fujimoto, H. Uehara, and K. Uosaki, “Raman scattering of aryl isocyanide monolayers on atomically flat Au(111) single crystal surfaces enhanced by gap-mode plasmon excitation,” Chem. Phys. Lett. 460(1-3), 205–208 (2008).
[Crossref]

Van Duyne, R. P.

N. Chiang, X. Chen, G. Goubert, D. V. Chulhai, X. Chen, E. A. Pozzi, N. Jiang, M. C. Hersam, T. Seideman, L. Jensen, and R. P. Van Duyne, “Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy,” Nano Lett. 16(12), 7774–7778 (2016).
[Crossref] [PubMed]

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

van Zanten, T. S.

T. S. van Zanten, M. J. Lopez-Bosque, and M. F. Garcia-Parajo, “Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna,” Small 6(2), 270–275 (2010).
[Crossref] [PubMed]

Vasconcelos, T. L.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
[Crossref] [PubMed]

Vedraine, S.

Verma, P.

I. Maouli, A. Taguchi, Y. Saito, S. Kawata, and P. Verma, “Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging,” Appl. Phys. Express 8(3), 032401 (2015).
[Crossref]

Wang,

N. P. Logeeswaran VJ, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Mobile iron nanoparticle and its role in the formation of SiO2 nanotrench via carbon nanotube-guided carbothermal reduction,” Nano Lett. 8(1), 178–182 (2009).
[Crossref] [PubMed]

Wang, H.

H. Wang, T. Tian, Y. Zhang, Z. Pan, Y. Wang, and Z. Xiao, “Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes,” Langmuir 24(16), 8918–8922 (2008).
[Crossref] [PubMed]

Wang, J.-K.

A. V. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107(2-3), 151–157 (2007).
[Crossref] [PubMed]

Wang, X.

L. Meng, T. Huang, X. Wang, S. Chen, Z. Yang, and B. Ren, “Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration,” Opt. Express 23(11), 13804–13813 (2015).
[Crossref] [PubMed]

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Wang, Y.

H. Wang, T. Tian, Y. Zhang, Z. Pan, Y. Wang, and Z. Xiao, “Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes,” Langmuir 24(16), 8918–8922 (2008).
[Crossref] [PubMed]

Weller, L.

A. Sanders, R. W. Bowman, L. Zhang, V. Turek, D. O. Sigle, A. Lombardi, L. Weller, and J. J. Baumberg, “Understanding the plasmonics of nanostructured atomic force microscopy tips,” Appl. Phys. Lett. 109(15), 153110 (2016).
[Crossref]

Williams, R. S.

N. P. Logeeswaran VJ, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Mobile iron nanoparticle and its role in the formation of SiO2 nanotrench via carbon nanotube-guided carbothermal reduction,” Nano Lett. 8(1), 178–182 (2009).
[Crossref] [PubMed]

Wokaun, A.

P. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys. 76(1), 751–752 (1982).
[Crossref]

Won Park, J.

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

Wróbel, P.

Wu, P.

N. P. Logeeswaran VJ, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Mobile iron nanoparticle and its role in the formation of SiO2 nanotrench via carbon nanotube-guided carbothermal reduction,” Nano Lett. 8(1), 178–182 (2009).
[Crossref] [PubMed]

Xiao, Z.

H. Wang, T. Tian, Y. Zhang, Z. Pan, Y. Wang, and Z. Xiao, “Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes,” Langmuir 24(16), 8918–8922 (2008).
[Crossref] [PubMed]

Xie, X. S.

J. T. Krug, E. J. Sánchez, and X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116(24), 10895–10901 (2002).
[Crossref]

Xu, H.

Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spec. 40(10), 1343–1348 (2009).
[Crossref]

Yang, J. L.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Yang, T.

Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
[Crossref]

Yang, Z.

Zenobi, R.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

T. Schmid, L. Opilik, C. Blum, and R. Zenobi, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review,” Angew. Chem. Int. Ed. Engl. 52(23), 5940–5954 (2013).
[Crossref] [PubMed]

J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap‐mode tip‐enhanced Raman spectroscopy,” J. Raman Spec. 44(2), 227–233 (2013).
[Crossref]

Zhang, C.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Zhang, D.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
[Crossref]

Zhang, L.

A. Sanders, R. W. Bowman, L. Zhang, V. Turek, D. O. Sigle, A. Lombardi, L. Weller, and J. J. Baumberg, “Understanding the plasmonics of nanostructured atomic force microscopy tips,” Appl. Phys. Lett. 109(15), 153110 (2016).
[Crossref]

A. Sanders, L. Zhang, R. W. Bowman, L. O. Herrmann, and J. J. Baumberg, “Facile fabrication of spherical nanoparticle‐tipped AFM probes for plasmonic applications,” Part. Part. Syst. Charact. 32(2), 182–187 (2015).
[Crossref] [PubMed]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Zhang, Q.

C. Lu, P. Tang, X. Lu, Q. Zhang, S. Liu, J. Tian, and L. Zhong, “Theoretical localized electric field enhancement in tip-enhanced spectroscopy using multi-order radially polarized modes,” Plasmonics 13, 1–8 (2018).
[Crossref]

Zhang, R.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, X. Cui, and O. J. Martin, “Local field enhancement of an infinite conical metal tip illuminated by a focused beam,” J. Raman Spec. 40(10), 1338–1342 (2009).
[Crossref]

Zhang, Y.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

H. Wang, T. Tian, Y. Zhang, Z. Pan, Y. Wang, and Z. Xiao, “Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes,” Langmuir 24(16), 8918–8922 (2008).
[Crossref] [PubMed]

Zhong, J.-H.

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Zhong, L.

C. Lu, P. Tang, X. Lu, Q. Zhang, S. Liu, J. Tian, and L. Zhong, “Theoretical localized electric field enhancement in tip-enhanced spectroscopy using multi-order radially polarized modes,” Plasmonics 13, 1–8 (2018).
[Crossref]

Zhu, L.

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101(10), 104305 (2007).
[Crossref]

Zou, Y.

Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
[Crossref]

Zschech, E.

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101(10), 104305 (2007).
[Crossref]

ACS Nano (1)

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9(6), 6297–6304 (2015).
[Crossref] [PubMed]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[Crossref] [PubMed]

Analyst (Lond.) (1)

W. Kim, N. Kim, E. Lee, D. Kim, Z. Hwan Kim, and J. Won Park, “A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy,” Analyst (Lond.) 141(17), 5066–5070 (2016).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

T. Schmid, L. Opilik, C. Blum, and R. Zenobi, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review,” Angew. Chem. Int. Ed. Engl. 52(23), 5940–5954 (2013).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Express (1)

I. Maouli, A. Taguchi, Y. Saito, S. Kawata, and P. Verma, “Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging,” Appl. Phys. Express 8(3), 032401 (2015).
[Crossref]

Appl. Phys. Lett. (2)

A. Sanders, R. W. Bowman, L. Zhang, V. Turek, D. O. Sigle, A. Lombardi, L. Weller, and J. J. Baumberg, “Understanding the plasmonics of nanostructured atomic force microscopy tips,” Appl. Phys. Lett. 109(15), 153110 (2016).
[Crossref]

Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonances of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
[Crossref]

Chem. Phys. Lett. (3)

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335(5–6), 369–374 (2001).
[Crossref]

K. Ikeda, N. Fujimoto, H. Uehara, and K. Uosaki, “Raman scattering of aryl isocyanide monolayers on atomically flat Au(111) single crystal surfaces enhanced by gap-mode plasmon excitation,” Chem. Phys. Lett. 460(1-3), 205–208 (2008).
[Crossref]

G. Picardi, M. Chaigneau, and R. Ossikovski, “High resolution probing of multi wall carbon nanotubes by tip enhanced Raman spectroscopy in gap-mode,” Chem. Phys. Lett. 469(1–3), 161–165 (2009).
[Crossref]

Chem. Rev. (1)

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

J. Appl. Phys. (1)

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101(10), 104305 (2007).
[Crossref]

J. Chem. Phys. (3)

P. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys. 76(1), 751–752 (1982).
[Crossref]

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering,” J. Chem. Phys. 122(18), 184716 (2005).
[Crossref] [PubMed]

J. T. Krug, E. J. Sánchez, and X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116(24), 10895–10901 (2002).
[Crossref]

J. Microsc. (1)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

J. Phys. Chem. A (1)

M. Sukharev and T. Seideman, “Optical properties of metal tips for tip-enhanced spectroscopies,” J. Phys. Chem. A 113(26), 7508–7513 (2009).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip− sample coupling, and near-field enhancement,” J. Phys. Chem. C 112(10), 3766–3773 (2008).
[Crossref]

J. Raman Spec. (4)

J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap‐mode tip‐enhanced Raman spectroscopy,” J. Raman Spec. 44(2), 227–233 (2013).
[Crossref]

W. Zhang, X. Cui, and O. J. Martin, “Local field enhancement of an infinite conical metal tip illuminated by a focused beam,” J. Raman Spec. 40(10), 1338–1342 (2009).
[Crossref]

Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spec. 40(10), 1343–1348 (2009).
[Crossref]

C. Blum, L. Opilik, J. M. Atkin, K. Braun, S. B. Kämmer, V. Kravtsov, N. Kumar, S. Lemeshko, J. F. Li, K. Luszcz, T. Maleki, A. J. Meixner, S. Minne, M. B. Raschke, B. Ren, J. Rogalski, D. Roy, B. Stephanidis, X. Wang, D. Zhang, J.-H. Zhong, and R. Zenobi, “Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study,” J. Raman Spec. 45(1), 22–31 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Hayazawa, H. Ishitobi, A. Taguchi, A. Tarun, K. Ikeda, and S. Kawata, “Focused excitation of surface plasmon polaritons based on gap-mode in tip-enhanced spectroscopy,” Jpn. J. Appl. Phys. 46(1212R), 7995–7999 (2007).
[Crossref]

Langmuir (1)

H. Wang, T. Tian, Y. Zhang, Z. Pan, Y. Wang, and Z. Xiao, “Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes,” Langmuir 24(16), 8918–8922 (2008).
[Crossref] [PubMed]

Nano Lett. (4)

N. Chiang, X. Chen, G. Goubert, D. V. Chulhai, X. Chen, E. A. Pozzi, N. Jiang, M. C. Hersam, T. Seideman, L. Jensen, and R. P. Van Duyne, “Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy,” Nano Lett. 16(12), 7774–7778 (2016).
[Crossref] [PubMed]

N. P. Logeeswaran VJ, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Mobile iron nanoparticle and its role in the formation of SiO2 nanotrench via carbon nanotube-guided carbothermal reduction,” Nano Lett. 8(1), 178–182 (2009).
[Crossref] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal, “Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics,” Nano Lett. 15(5), 3410–3419 (2015).
[Crossref] [PubMed]

Nanoscale (1)

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

C. M. Aikens, L. R. Madison, and G. C. Schatz, “The effect of field gradient on SERS,” Nat. Photonics 7(7), 508–510 (2013).
[Crossref]

Nature (1)

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Part. Part. Syst. Charact. (1)

A. Sanders, L. Zhang, R. W. Bowman, L. O. Herrmann, and J. J. Baumberg, “Facile fabrication of spherical nanoparticle‐tipped AFM probes for plasmonic applications,” Part. Part. Syst. Charact. 32(2), 182–187 (2015).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

C. Huber, A. Trügler, U. Hohenester, Y. Prior, and W. Kautek, “Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation,” Phys. Chem. Chem. Phys. 16(6), 2289–2296 (2014).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
[Crossref]

Phys. Rev. Lett. (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Plasmonics (1)

C. Lu, P. Tang, X. Lu, Q. Zhang, S. Liu, J. Tian, and L. Zhong, “Theoretical localized electric field enhancement in tip-enhanced spectroscopy using multi-order radially polarized modes,” Plasmonics 13, 1–8 (2018).
[Crossref]

Rev. Sci. Instrum. (1)

B. Ren, G. Picardi, and B. Pettinger, “Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching,” Rev. Sci. Instrum. 75(4), 837–841 (2004).
[Crossref]

Science (1)

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Small (1)

T. S. van Zanten, M. J. Lopez-Bosque, and M. F. Garcia-Parajo, “Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna,” Small 6(2), 270–275 (2010).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

Y. Kitahama, T. Itoh, and T. Suzuki, “Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 197, 142–147 (2018).
[Crossref] [PubMed]

Ultramicroscopy (1)

A. V. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107(2-3), 151–157 (2007).
[Crossref] [PubMed]

Other (3)

C. Chen, N. Hayazawa, and S. Kawata, “A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient,” Nat. Comm. 5(3312 (2014).

L. Meng, Z. Yang, J. Chen, and M. Sun, “Effect of electric field gradient on sub-nanometer spatial resolution of tip-enhanced Raman spectroscopy,” Sci. Rep. 5(9240 (2015).

E. D. Palik, Handbook of Optical Constants of Solids I–III (Academic, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Example of how LSP modes of Au cones are very sensitive to cone length, optical excitation source, and simulation boundary conditions. (a) When using a focused beam source of finite width (1 μm), the apex fields converge to the infinite cone limit when the cone length >6 μm. (b) Field convergence is much slower when using a planewave source spanning the entire simulation cross-section, due to the launching of surface plasmon-polaritons (SPPs) along the cone lateral surface. (c) Combining a Gaussian beam source and perfectly matched layer boundary conditions along the cone’s upper surface allows a 2 μm structure to accurately mimic the infinite cone limit.
Fig. 2
Fig. 2 Plasmonic response of Au-coated Si probes of varying size in comparison to solid Au probes. (a) Enhancement spectra of Au-coated Si probes with a constant total radius (Si base + Au coating) of 25 nm and a cone angle of 15°. The 5 nm Si + 20 nm Au probe (red) produces an optical response nearly identical to that of the 25 nm solid Au cone (black). (b) The minimum Au coating thickness required to optically mask the presence of the Si substrate as a function of apex radius. The excitation source was a 45° Gaussian beam with side-on illumination geometry with the probe placed 1 nm above a glass substrate.
Fig. 3
Fig. 3 Perturbations to the dipolar LSP mode of an Au nanoparticle (dia. = 50 nm) caused by the addition of a 10 nm wide connecting junction. Materials that strongly absorb at optical energies (Au, W, Pt) cause damping of the plasmon resonance and lead to lower field enhancements, while those with small extinction coefficients (Si, Si3N4, SiO2) increase the coupling of far-field radiation into the dipolar plasmon mode of the nanoparticle. Maximum fields (Emax = Egap/E0), as well as the real and imaginary parts of the refractive index of each support material at λmax (i.e., where Emax occurs), are also noted.
Fig. 4
Fig. 4 Enhancement spectra (Egap/E0) of near-field probes with resonant Au-apex nanostructures can be maximized by varying the refractive index of the support material. Probes were placed 1 nm above a glass surface with a 45° inverted beam source, and the support structures were extended to the simulation boundary, placed 2 μm above the surface. The approximate refractive indices of the low absorption materials studied are: n = 1.5 (glass), 2 (Si3N4), 3 (a generic dielectric), and 4 (Si). Au and Pt were included as examples of lossy support materials and produced lower field enhancements for all three geometries simulated.
Fig. 5
Fig. 5 Effects of different geometric parameters on the field enhancement (Egap/E0) produced by a metal-coated SiO2 probe with FIB structuring near the apex. (a) The LSP wavelength can be tuned by the apex length, with longer apices producing larger enhancements. (b) A cut length of roughly 100 nm is necessary to optically decouple the metal apex from the coating on the rest of the probe surface. (c) The cone angle of the underlying support shows a weak positive correlation with enhancement. The default values of parameters not being varied in each series were: apex length = 75 nm, cut length = 100 nm, and cone angle = 15°. In all cases, the SiO2 apex radius was 5 nm with a 20 nm thick Au coating.
Fig. 6
Fig. 6 Important geometric parameters to control field enhancement of FIB-milled, solid Au near-field probes. (a) Maximum field enhancement at the resonance peak (Emax/E0) for a 35° Au cone as a function of the FIB cut depth. A minimum cut depth of approximately 20 nm is required to maximize the LSP resonance supported by the apex. (b) The apex radius of curvature is the primary LSP tuning parameter for probes with a sphere and cone geometry. This type of structure can be produced by metal coating a commercial AFM tip with an electron-beam deposited apex structure [36].
Fig. 7
Fig. 7 Comparison of several near-field probe designs that have been optimized for operation in the 633-647 nm wavelength range. (a) The Au-coated dielectric and solid Au designs with FIB cuts made near the apex were predicted to produce the largest apex field enhancements (Egap/E0). (b) Example of tuning the LSP energy of a metal-coated SiO2 probe (Probe 1) over the full visible spectrum by varying the coating metal (Ag vs. Au) and apex length. All other parameters are the same as the Probe 1 structure in panel (a). Points represent the wavelength of maximum field enhancement.
Fig. 8
Fig. 8 Quantitative example of the local electric field normalization procedure using four different illumination geometries and three different Au nanostructures: a semi-infinite Au cone, spherical Au nanoparticle, and hemispherical Au cap on a semi-infinite Si post.

Tables (1)

Tables Icon

Table 1 Geometric parameters of the optimized probe structures presented in Fig. 7. Cone angles in the range of 15-35° capture the apex profiles of commonly used commercial AFM tips and electrochemically etched wires. Constraints were placed on the allowed values of the cut length, cut depth, and connection width to maintain reasonable mechanical stability of the structures. Geometric constraints were imposed using conservative estimates from available experimental data on similar probes that have been fabricated and used in scanning probe instruments.

Metrics