Abstract

Silicon based Mach Zehnder modulators, unlike lithium niobate, suffer from nonlinear pattern-dependent behavior beyond simple intersymbol interference. We experimentally demonstrate a novel predistortion method based on the iterative learning control (ILC) technique to address this issue using quasi-real-time adaptation with hardware-in-the-loop. We compare bit error rate performance to that of linear solutions at several M-QAM modulation levels and baud rates. We demonstrate 256QAM at 20 Gbaud which linear compensation alone cannot achieve. For 40 Gbaud 128QAM, we improve power sensitivity by 4.4 dB. We combine optical compensation with ILC to improve power sensitivity by ∼ 5 dB for 60 Gbaud 32QAM.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reduced-size lookup tables enabling higher-order QAM with all-silicon IQ modulators

Sasan Zhalehpour, Jiachuan Lin, Wei Shi, and Leslie A. Rusch
Opt. Express 27(17) 24243-24259 (2019)

Single-carrier 72 GBaud 32QAM and 84 GBaud 16QAM transmission using a SiP IQ modulator with joint digital-optical pre-compensation

Jiachuan Lin, Hassan Sepehrian, Leslie A. Rusch, and Wei Shi
Opt. Express 27(4) 5610-5619 (2019)

Coherent transceiver operating at 61-Gbaud/s

Zhuhong Zhang, Chuandong Li, Jun Chen, Tao Ding, Yongzhong Wang, Hui Xiang, Zhiyu Xiao, Liangchuan Li, Minggang Si, and Xiuguo Cui
Opt. Express 23(15) 18988-18995 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Imec magazine, “New silicon photonics technology delivers faster data traffic in data centers,” www.imecint.com/en/imec-magazine/imec-magazine-may-2017 .
  2. Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
    [Crossref]
  3. J. Lin, H. Sepehrian, L. Rusch, and W. Shi, “CMOS-Compatible Silicon Photonic IQ Modulator for 84 Gbaud 16QAM and 70 Gbaud 32QAM,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper Tu2E.4.
    [Crossref]
  4. A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.
  5. P. Gou, Y. Gao, L. Zhao, W. Wang, and J. Yu, “Nonlinear Look-Up Table Predistortion and Chromatic Dispersion Precompensation for IM/DD PAM-4 Transmission,” IEEE Photon. J. 9(5), 1–7 (2017).
    [Crossref]
  6. J. Ke, Y. Gao, and J. Cartledge, “400 Gbit/s single-carrier and 1 Tbit/s three-carrier superchannel signals using dual polarization 16-QAM with look-up table correction and optical pulse shaping,” Opt. Express 22(1), 71–84 (2014).
    [Crossref] [PubMed]
  7. A. Bakhshali, W-Y Chan, A Rezania, and JC Cartledge, “Detection of high baud-rate signals with pattern dependent distortion using hidden Markov modeling,” J. Lightw. Technol. 35(13), 2612–2621 (2017).
    [Crossref]
  8. G. Karam and H. Sari, “A data predistortion technique with memory for QAM radio systems,” IEEE Trans. Commun. 39(2), 336–344 (1991).
    [Crossref]
  9. P. J. Winzer, “High-Spectral-Efficiency Optical Modulation Formats,” J. Lightw. Technol. 30(24), 3824–3835 (2012).
    [Crossref]
  10. A. Khilo, C. M. Sorace, and F. X. Kärtner, “Broadband linearized silicon modulator,” Opt. Express 19(5), 4485–4500 (2011).
    [Crossref] [PubMed]
  11. G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A Robust Adaptive Pre-Distortion Method for Optical Communication Transmitters,” IEEE Photon. Technol. Lett. 28(7), 752–755 (2016).
    [Crossref]
  12. G. Khanna, B. Spinnler, S. Calabro, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A memory polynomial based digital pre-distorter for high power transmitter components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
    [Crossref]
  13. D. Zhou and V. E. DeBrunner, “Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm,” IEEE Trans. Signal Process. 55(1), 120–133 (2007).
    [Crossref]
  14. J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE Trans. Microw. Theory Tech. 64(9), 2778–2789 (2016).
    [Crossref]
  15. M. Schoukens, J. Hammenecker, and A. Cooman, “Obtaining the Preinverse of a Power Amplifier Using Iterative Learning Control,” IEEE Trans. Microw. Theory Tech. 65(11), 4266–4273 (2017).
    [Crossref]
  16. D. Wang, Y. Ye, and B. Zhang, Practical Iterative Learning Control with Frequency Domain Design and Sampled Data Implementation (SpringerSingapore, 2014).
  17. S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning,” J. Field Robot. 65(11), 123–140 (1984).
  18. S. Zhalehpour, J. Lin, H. Sepehrian, L. Rusch, and W. Shi, “Countering Pattern Dependent Effects in SiP Modulators with Iterative Learning Control Predistortion for 64QAM,” in Proceeding of 44th European Conference on Optical Communication (ECOC, 2018), paper Th2.20.

2017 (3)

P. Gou, Y. Gao, L. Zhao, W. Wang, and J. Yu, “Nonlinear Look-Up Table Predistortion and Chromatic Dispersion Precompensation for IM/DD PAM-4 Transmission,” IEEE Photon. J. 9(5), 1–7 (2017).
[Crossref]

A. Bakhshali, W-Y Chan, A Rezania, and JC Cartledge, “Detection of high baud-rate signals with pattern dependent distortion using hidden Markov modeling,” J. Lightw. Technol. 35(13), 2612–2621 (2017).
[Crossref]

M. Schoukens, J. Hammenecker, and A. Cooman, “Obtaining the Preinverse of a Power Amplifier Using Iterative Learning Control,” IEEE Trans. Microw. Theory Tech. 65(11), 4266–4273 (2017).
[Crossref]

2016 (2)

J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE Trans. Microw. Theory Tech. 64(9), 2778–2789 (2016).
[Crossref]

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A Robust Adaptive Pre-Distortion Method for Optical Communication Transmitters,” IEEE Photon. Technol. Lett. 28(7), 752–755 (2016).
[Crossref]

2014 (1)

2012 (2)

P. J. Winzer, “High-Spectral-Efficiency Optical Modulation Formats,” J. Lightw. Technol. 30(24), 3824–3835 (2012).
[Crossref]

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
[Crossref]

2011 (1)

2007 (1)

D. Zhou and V. E. DeBrunner, “Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm,” IEEE Trans. Signal Process. 55(1), 120–133 (2007).
[Crossref]

1991 (1)

G. Karam and H. Sari, “A data predistortion technique with memory for QAM radio systems,” IEEE Trans. Commun. 39(2), 336–344 (1991).
[Crossref]

1984 (1)

S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning,” J. Field Robot. 65(11), 123–140 (1984).

Arimoto, S.

S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning,” J. Field Robot. 65(11), 123–140 (1984).

Bakhshali, A.

A. Bakhshali, W-Y Chan, A Rezania, and JC Cartledge, “Detection of high baud-rate signals with pattern dependent distortion using hidden Markov modeling,” J. Lightw. Technol. 35(13), 2612–2621 (2017).
[Crossref]

Baks, C.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Calabro, S.

G. Khanna, B. Spinnler, S. Calabro, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A memory polynomial based digital pre-distorter for high power transmitter components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

Calabrò, S.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A Robust Adaptive Pre-Distortion Method for Optical Communication Transmitters,” IEEE Photon. Technol. Lett. 28(7), 752–755 (2016).
[Crossref]

Cartledge, J.

Cartledge, JC

A. Bakhshali, W-Y Chan, A Rezania, and JC Cartledge, “Detection of high baud-rate signals with pattern dependent distortion using hidden Markov modeling,” J. Lightw. Technol. 35(13), 2612–2621 (2017).
[Crossref]

Chan, W-Y

A. Bakhshali, W-Y Chan, A Rezania, and JC Cartledge, “Detection of high baud-rate signals with pattern dependent distortion using hidden Markov modeling,” J. Lightw. Technol. 35(13), 2612–2621 (2017).
[Crossref]

Chani-Cahuana, J.

J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE Trans. Microw. Theory Tech. 64(9), 2778–2789 (2016).
[Crossref]

Cooman, A.

M. Schoukens, J. Hammenecker, and A. Cooman, “Obtaining the Preinverse of a Power Amplifier Using Iterative Learning Control,” IEEE Trans. Microw. Theory Tech. 65(11), 4266–4273 (2017).
[Crossref]

De Man, E.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A Robust Adaptive Pre-Distortion Method for Optical Communication Transmitters,” IEEE Photon. Technol. Lett. 28(7), 752–755 (2016).
[Crossref]

G. Khanna, B. Spinnler, S. Calabro, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A memory polynomial based digital pre-distorter for high power transmitter components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

DeBrunner, V. E.

D. Zhou and V. E. DeBrunner, “Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm,” IEEE Trans. Signal Process. 55(1), 120–133 (2007).
[Crossref]

Drenski, T.

G. Khanna, B. Spinnler, S. Calabro, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A memory polynomial based digital pre-distorter for high power transmitter components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

Eriksson, T.

J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE Trans. Microw. Theory Tech. 64(9), 2778–2789 (2016).
[Crossref]

Fager, C.

J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE Trans. Microw. Theory Tech. 64(9), 2778–2789 (2016).
[Crossref]

Feiste, U.

G. Khanna, B. Spinnler, S. Calabro, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A memory polynomial based digital pre-distorter for high power transmitter components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

Fish, G.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Gao, Y.

P. Gou, Y. Gao, L. Zhao, W. Wang, and J. Yu, “Nonlinear Look-Up Table Predistortion and Chromatic Dispersion Precompensation for IM/DD PAM-4 Transmission,” IEEE Photon. J. 9(5), 1–7 (2017).
[Crossref]

J. Ke, Y. Gao, and J. Cartledge, “400 Gbit/s single-carrier and 1 Tbit/s three-carrier superchannel signals using dual polarization 16-QAM with look-up table correction and optical pulse shaping,” Opt. Express 22(1), 71–84 (2014).
[Crossref] [PubMed]

Gou, P.

P. Gou, Y. Gao, L. Zhao, W. Wang, and J. Yu, “Nonlinear Look-Up Table Predistortion and Chromatic Dispersion Precompensation for IM/DD PAM-4 Transmission,” IEEE Photon. J. 9(5), 1–7 (2017).
[Crossref]

Guzzon, R.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Hammenecker, J.

M. Schoukens, J. Hammenecker, and A. Cooman, “Obtaining the Preinverse of a Power Amplifier Using Iterative Learning Control,” IEEE Trans. Microw. Theory Tech. 65(11), 4266–4273 (2017).
[Crossref]

Hanik, N.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A Robust Adaptive Pre-Distortion Method for Optical Communication Transmitters,” IEEE Photon. Technol. Lett. 28(7), 752–755 (2016).
[Crossref]

G. Khanna, B. Spinnler, S. Calabro, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A memory polynomial based digital pre-distorter for high power transmitter components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

Imamura, J.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Karam, G.

G. Karam and H. Sari, “A data predistortion technique with memory for QAM radio systems,” IEEE Trans. Commun. 39(2), 336–344 (1991).
[Crossref]

Kärtner, F. X.

Kawamura, S.

S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning,” J. Field Robot. 65(11), 123–140 (1984).

Ke, J.

Khanna, G.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A Robust Adaptive Pre-Distortion Method for Optical Communication Transmitters,” IEEE Photon. Technol. Lett. 28(7), 752–755 (2016).
[Crossref]

G. Khanna, B. Spinnler, S. Calabro, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A memory polynomial based digital pre-distorter for high power transmitter components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

Khilo, A.

Koch, B.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Landin, P. N.

J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE Trans. Microw. Theory Tech. 64(9), 2778–2789 (2016).
[Crossref]

Lee, B.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Lin, J.

S. Zhalehpour, J. Lin, H. Sepehrian, L. Rusch, and W. Shi, “Countering Pattern Dependent Effects in SiP Modulators with Iterative Learning Control Predistortion for 64QAM,” in Proceeding of 44th European Conference on Optical Communication (ECOC, 2018), paper Th2.20.

J. Lin, H. Sepehrian, L. Rusch, and W. Shi, “CMOS-Compatible Silicon Photonic IQ Modulator for 84 Gbaud 16QAM and 70 Gbaud 32QAM,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper Tu2E.4.
[Crossref]

Meghelli, M.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Miyazaki, F.

S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning,” J. Field Robot. 65(11), 123–140 (1984).

Norberg, E.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Proesel, J.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Ramaswamy, A.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Rezania, A

A. Bakhshali, W-Y Chan, A Rezania, and JC Cartledge, “Detection of high baud-rate signals with pattern dependent distortion using hidden Markov modeling,” J. Lightw. Technol. 35(13), 2612–2621 (2017).
[Crossref]

Rimolo-Donadio, R.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Roth, J.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Rusch, L.

J. Lin, H. Sepehrian, L. Rusch, and W. Shi, “CMOS-Compatible Silicon Photonic IQ Modulator for 84 Gbaud 16QAM and 70 Gbaud 32QAM,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper Tu2E.4.
[Crossref]

S. Zhalehpour, J. Lin, H. Sepehrian, L. Rusch, and W. Shi, “Countering Pattern Dependent Effects in SiP Modulators with Iterative Learning Control Predistortion for 64QAM,” in Proceeding of 44th European Conference on Optical Communication (ECOC, 2018), paper Th2.20.

Rylyakov, A.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Sari, H.

G. Karam and H. Sari, “A data predistortion technique with memory for QAM radio systems,” IEEE Trans. Commun. 39(2), 336–344 (1991).
[Crossref]

Schoukens, M.

M. Schoukens, J. Hammenecker, and A. Cooman, “Obtaining the Preinverse of a Power Amplifier Using Iterative Learning Control,” IEEE Trans. Microw. Theory Tech. 65(11), 4266–4273 (2017).
[Crossref]

Schow, C.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Sepehrian, H.

S. Zhalehpour, J. Lin, H. Sepehrian, L. Rusch, and W. Shi, “Countering Pattern Dependent Effects in SiP Modulators with Iterative Learning Control Predistortion for 64QAM,” in Proceeding of 44th European Conference on Optical Communication (ECOC, 2018), paper Th2.20.

J. Lin, H. Sepehrian, L. Rusch, and W. Shi, “CMOS-Compatible Silicon Photonic IQ Modulator for 84 Gbaud 16QAM and 70 Gbaud 32QAM,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper Tu2E.4.
[Crossref]

Shi, W.

J. Lin, H. Sepehrian, L. Rusch, and W. Shi, “CMOS-Compatible Silicon Photonic IQ Modulator for 84 Gbaud 16QAM and 70 Gbaud 32QAM,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper Tu2E.4.
[Crossref]

S. Zhalehpour, J. Lin, H. Sepehrian, L. Rusch, and W. Shi, “Countering Pattern Dependent Effects in SiP Modulators with Iterative Learning Control Predistortion for 64QAM,” in Proceeding of 44th European Conference on Optical Communication (ECOC, 2018), paper Th2.20.

Shin, J.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Sorace, C. M.

Sparacin, D.

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Spinnler, B.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A Robust Adaptive Pre-Distortion Method for Optical Communication Transmitters,” IEEE Photon. Technol. Lett. 28(7), 752–755 (2016).
[Crossref]

G. Khanna, B. Spinnler, S. Calabro, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A memory polynomial based digital pre-distorter for high power transmitter components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
[Crossref]

Wang, D.

D. Wang, Y. Ye, and B. Zhang, Practical Iterative Learning Control with Frequency Domain Design and Sampled Data Implementation (SpringerSingapore, 2014).

Wang, W.

P. Gou, Y. Gao, L. Zhao, W. Wang, and J. Yu, “Nonlinear Look-Up Table Predistortion and Chromatic Dispersion Precompensation for IM/DD PAM-4 Transmission,” IEEE Photon. J. 9(5), 1–7 (2017).
[Crossref]

Winzer, P. J.

P. J. Winzer, “High-Spectral-Efficiency Optical Modulation Formats,” J. Lightw. Technol. 30(24), 3824–3835 (2012).
[Crossref]

Ye, Y.

D. Wang, Y. Ye, and B. Zhang, Practical Iterative Learning Control with Frequency Domain Design and Sampled Data Implementation (SpringerSingapore, 2014).

Yu, J.

P. Gou, Y. Gao, L. Zhao, W. Wang, and J. Yu, “Nonlinear Look-Up Table Predistortion and Chromatic Dispersion Precompensation for IM/DD PAM-4 Transmission,” IEEE Photon. J. 9(5), 1–7 (2017).
[Crossref]

Zhalehpour, S.

S. Zhalehpour, J. Lin, H. Sepehrian, L. Rusch, and W. Shi, “Countering Pattern Dependent Effects in SiP Modulators with Iterative Learning Control Predistortion for 64QAM,” in Proceeding of 44th European Conference on Optical Communication (ECOC, 2018), paper Th2.20.

Zhang, B.

D. Wang, Y. Ye, and B. Zhang, Practical Iterative Learning Control with Frequency Domain Design and Sampled Data Implementation (SpringerSingapore, 2014).

Zhao, L.

P. Gou, Y. Gao, L. Zhao, W. Wang, and J. Yu, “Nonlinear Look-Up Table Predistortion and Chromatic Dispersion Precompensation for IM/DD PAM-4 Transmission,” IEEE Photon. J. 9(5), 1–7 (2017).
[Crossref]

Zhou, D.

D. Zhou and V. E. DeBrunner, “Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm,” IEEE Trans. Signal Process. 55(1), 120–133 (2007).
[Crossref]

IEEE Commun. Mag. (1)

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
[Crossref]

IEEE Photon. J. (1)

P. Gou, Y. Gao, L. Zhao, W. Wang, and J. Yu, “Nonlinear Look-Up Table Predistortion and Chromatic Dispersion Precompensation for IM/DD PAM-4 Transmission,” IEEE Photon. J. 9(5), 1–7 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (1)

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A Robust Adaptive Pre-Distortion Method for Optical Communication Transmitters,” IEEE Photon. Technol. Lett. 28(7), 752–755 (2016).
[Crossref]

IEEE Trans. Commun. (1)

G. Karam and H. Sari, “A data predistortion technique with memory for QAM radio systems,” IEEE Trans. Commun. 39(2), 336–344 (1991).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE Trans. Microw. Theory Tech. 64(9), 2778–2789 (2016).
[Crossref]

M. Schoukens, J. Hammenecker, and A. Cooman, “Obtaining the Preinverse of a Power Amplifier Using Iterative Learning Control,” IEEE Trans. Microw. Theory Tech. 65(11), 4266–4273 (2017).
[Crossref]

IEEE Trans. Signal Process. (1)

D. Zhou and V. E. DeBrunner, “Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm,” IEEE Trans. Signal Process. 55(1), 120–133 (2007).
[Crossref]

J. Field Robot. (1)

S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning,” J. Field Robot. 65(11), 123–140 (1984).

J. Lightw. Technol. (2)

P. J. Winzer, “High-Spectral-Efficiency Optical Modulation Formats,” J. Lightw. Technol. 30(24), 3824–3835 (2012).
[Crossref]

A. Bakhshali, W-Y Chan, A Rezania, and JC Cartledge, “Detection of high baud-rate signals with pattern dependent distortion using hidden Markov modeling,” J. Lightw. Technol. 35(13), 2612–2621 (2017).
[Crossref]

Opt. Express (2)

Other (6)

J. Lin, H. Sepehrian, L. Rusch, and W. Shi, “CMOS-Compatible Silicon Photonic IQ Modulator for 84 Gbaud 16QAM and 70 Gbaud 32QAM,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper Tu2E.4.
[Crossref]

A. Ramaswamy, J. Roth, E. Norberg, R. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28Gbps Integrated Silicon Photonic Transmitter driven by 32nm CMOS driver ICs,” in Optical Fiber Communication Conference, Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.5.

Imec magazine, “New silicon photonics technology delivers faster data traffic in data centers,” www.imecint.com/en/imec-magazine/imec-magazine-may-2017 .

S. Zhalehpour, J. Lin, H. Sepehrian, L. Rusch, and W. Shi, “Countering Pattern Dependent Effects in SiP Modulators with Iterative Learning Control Predistortion for 64QAM,” in Proceeding of 44th European Conference on Optical Communication (ECOC, 2018), paper Th2.20.

D. Wang, Y. Ye, and B. Zhang, Practical Iterative Learning Control with Frequency Domain Design and Sampled Data Implementation (SpringerSingapore, 2014).

G. Khanna, B. Spinnler, S. Calabro, E. De Man, U. Feiste, T. Drenski, and N. Hanik, “A memory polynomial based digital pre-distorter for high power transmitter components,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M2C.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Block diagram of Iterative learning control method.
Fig. 2
Fig. 2 Block diagram of DSP and experimental set-up and feedback loop for the G-ILC predistortion method.
Fig. 3
Fig. 3 Received constellations at optical power of 2 dBm. (a–d) 20 Gbaud/256QAM: (a) linear predistortion at TX, (b) linear predistortion at TX and linear postcompensation at RX, (c) G-ILC predistortion at TX, and (d) G-ILC predistortion at TX and linear post-compensation at RX. Black-red-yellow is the transition from lowest to highest density of samples.
Fig. 4
Fig. 4 Received constellations at optical power of 2 dBm. (a–b) 40 Gbaud/128QAM: (a) linear predistortion at TX and linear postcompensation at RX, and (b) G-ILC predistortion at TX and linear post-compensation at RX. Black-red-yellow is the transition from lowest to highest density of samples.
Fig. 5
Fig. 5 BER performance versus optical received power for a) 256QAM at 20 Gbaud, and b) 128QAM at 40 Gbaud which correspond to constellation plots in Figs. 3 and 4, respectively.
Fig. 6
Fig. 6 Optical pre-emphasis filter response for 32QAM at 60 Gbaud.
Fig. 7
Fig. 7 Received 32QAM constellations at optical power of 2 dBm at 60 Gbaud. (a) linear predistortion at TX and linear postcompensation at RX, and (b) G-ILC predistortion at TX and linear post-compensation at RX. Black-red-yellow is transition from lowest to highest density of samples.
Fig. 8
Fig. 8 BER performance versus optical received power for 32QAM at 60 Gbaud.
Fig. 9
Fig. 9 BER for different modulation orders, M-QAM (M=32, 64, 128 and 256) at 2 dBm optical received power before CoRx at 20 Gbaud, 40 Gbaud, and 60 Gbaud.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

X _ k + 1 = F ( X _ k , e _ k )
X _ k = [ x k ( 1 ) x k ( n 1 ) x k ( n ) ] T
Γ k = diag [ G ( x k ( 1 ) ) G ( x k ( n ) ) ] T
G ( x k ( i ) ) = [ y k ( i ) D ( i ) ] 2
X _ k + 1 = F ( X _ k , e _ k ) = X _ k + α Γ k 1 e _ k
X _ k + 1 = X _ k + α e _ k
V clip = [ Δ V k + 1 0.2 2 ]
Δ V k + 1 = max ( X ˜ _ k + 1 ) min ( X ˜ _ k + 1 )

Metrics