Abstract

A magnetic field sensor using a dual-frequency optoelectronic oscillator (OEO) incorporating cascaded magnetostrictive alloy-fiber Bragg grating-Fabry Perot (MA-FBG-FP) and FBG-FP filters is proposed and demonstrated. In the OEO resonant cavity, two microwave signals are generated, whose oscillation frequencies are determined by the FBG-FP filter and MA-FBG-FP filter filters with two ultra-narrow notches and two laser sources. Due to the characteristics of MA and FBG, the two generated microwave signals show different magnetic field and temperature sensitivities. By monitoring the variations of two oscillating frequencies and the beat signal using a digital signal processor, the simultaneous measurement for the magnetic field and temperature can be realized. The proposed sensor has the advantages of high-speed and high-resolution measurement, which make it very attractive for practical magnetic field sensing applications. The sensitivities of the proposed OEO sensor for magnetic field and temperature are experimentally measured to be as high as −38.4MHz/Oe and −1.23 or −2.45 GHz/°C corresponding to the MA-FBG-FP filter and FBG-FP filter, respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter

Bin Yin, Muguang Wang, Songhua Wu, Yu Tang, Suchun Feng, and Hongwei Zhang
Opt. Express 25(13) 14106-14113 (2017)

Fiber Bragg grating sensor interrogation system based on an optoelectronic oscillator loop

Zuowei Xu, Xuewen Shu, and Hongyan Fu
Opt. Express 27(16) 23274-23281 (2019)

High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique

Yiping Wang, Ming Wang, Wei Xia, and Xiaoqi Ni
Opt. Express 24(16) 17960-17967 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Lenz and S. Edelstein, “Magnetic sensors and their applications,” IEEE Sens. J. 6(3), 631–649 (2006).
    [Crossref]
  2. R. S. Popovic, Hall effect devices: magnetic sensors and characterization of semiconductors (CRC Press, 2003).
  3. T. McGuire and R. Potter, “Anisotropic magnetoresistance in ferromagnetic 3d alloys,” IEEE Trans. Magn. 11(4), 1018–1038 (1975).
    [Crossref]
  4. R. Fagaly, “Superconducting quantum interference device instruments and applications,” Rev. Sci. Instrum. 77(10), 101101 (2006).
    [Crossref]
  5. H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys. 173(1), 122–126 (2012).
    [Crossref]
  6. B. Zhou, C. Lu, B.-M. Mao, H.-Y. Tam, and S. He, “Magnetic field sensor of enhanced sensitivity and temperature self-calibration based on silica fiber Fabry-Perot resonator with silicone cavity,” Opt. Express 25(7), 8108–8114 (2017).
    [Crossref] [PubMed]
  7. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
    [Crossref] [PubMed]
  8. L. Luo, S. Pu, J. Tang, X. Zeng, and M. Lahoubi, “Reflective all-fiber magnetic field sensor based on microfiber and magnetic fluid,” Opt. Express 23(14), 18133–18142 (2015).
    [Crossref] [PubMed]
  9. P. Zu, C. C. Chan, W. S. Lew, Y. Jin, Y. Zhang, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Magneto-optical fiber sensor based on magnetic fluid,” Opt. Lett. 37(3), 398–400 (2012).
    [Crossref] [PubMed]
  10. L. Cheng, J. Han, Z. Guo, L. Jin, and B.-O. Guan, “Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser,” Opt. Lett. 38(5), 688–690 (2013).
    [Crossref] [PubMed]
  11. B.-O. Guan and S.-N. Wang, “Fiber grating laser current sensor based on magnetic force,” IEEE Photonics Technol. Lett. 22(4), 230–232 (2010).
    [Crossref]
  12. M. Deng, D. Liu, W. Huang, and T. Zhu, “Highly-sensitive magnetic field sensor based on fiber ring laser,” Opt. Express 24(1), 645–651 (2016).
    [Crossref] [PubMed]
  13. L. Cheng, J. Han, L. Jin, Z. Guo, and B.-O. Guan, “Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence,” Opt. Express 21(25), 30156–30162 (2013).
    [Crossref] [PubMed]
  14. D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
    [Crossref]
  15. M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
    [Crossref] [PubMed]
  16. Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
    [Crossref]
  17. J. Han, H. Hu, H. Wang, B. Zhang, X. Song, Z. Ding, X. Zhang, and T. Liu, “Temperature-Compensated Magnetostrictive Current Sensor Based on the Configuration of Dual Fiber Bragg Gratings,” J. Lightwave Technol. 35(22), 4910–4915 (2017).
    [Crossref]
  18. J. Yao, “Microwave photonics for high-resolution and high-speed interrogation of fiber Bragg grating sensors,” Fiber Integr. Opt. 34(4), 204–216 (2015).
    [Crossref]
  19. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  20. J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
    [Crossref]
  21. O. Xu, J. Zhang, and J. Yao, “High speed and high resolution interrogation of a fiber Bragg grating sensor based on microwave photonic filtering and chirped microwave pulse compression,” Opt. Lett. 41(21), 4859–4862 (2016).
    [Crossref] [PubMed]
  22. X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
    [Crossref]
  23. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [Crossref]
  24. Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, and Q. Ding, “Refractive Index and Temperature Sensing Based on an Optoelectronic Oscillator Incorporating a Fabry–Perot Fiber Bragg Grating,” IEEE Photonics J. 10, 1–9 (2018).
  25. J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
    [Crossref]
  26. B. Yin, M. Wang, S. Wu, Y. Tang, S. Feng, and H. Zhang, “High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter,” Opt. Express 25(13), 14106–14113 (2017).
    [Crossref] [PubMed]
  27. O. Xu, J. Zhang, H. Deng, and J. Yao, “Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor,” IEEE Photonics Technol. Lett. 29(4), 357–360 (2017).
    [Crossref]
  28. C. H. Lee and S. H. Yim, “Optoelectronic oscillator for a measurement of acoustic velocity in acousto-optic device,” Opt. Express 22(11), 13634–13640 (2014).
    [Crossref] [PubMed]
  29. F. Kong, W. Li, and J. Yao, “Transverse load sensing based on a dual-frequency optoelectronic oscillator,” Opt. Lett. 38(14), 2611–2613 (2013).
    [Crossref] [PubMed]
  30. F. Kong, B. Romeira, J. Zhang, W. Li, and J. Yao, “A dual-wavelength fiber ring laser incorporating an injection-coupled optoelectronic oscillator and its application to transverse load sensing,” J. Lightwave Technol. 32(9), 1784–1793 (2014).
    [Crossref]
  31. J. Zhang, M. Wang, Y. Tang, Q. Ding, B. Wu, Y. Yang, H. Mu, B. Yin, and S. Jian, “High-sensitivity measurement of angular velocity based on an optoelectronic oscillator with an intra-loop Sagnac interferometer,” Opt. Lett. 43(12), 2799–2802 (2018).
    [Crossref] [PubMed]
  32. A. B. Matsko, D. Strekalov, and L. Maleki, “Magnetometer based on the opto-electronic microwave oscillator,” Opt. Commun. 247(1-3), 141–148 (2005).
    [Crossref]
  33. W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
    [Crossref]
  34. Y. Dai, M. Yang, G. Xu, and Y. Yuan, “Magnetic field sensor based on fiber Bragg grating with a spiral microgroove ablated by femtosecond laser,” Opt. Express 21(14), 17386–17391 (2013).
    [Crossref] [PubMed]
  35. G. N. Smith, T. Allsop, K. Kalli, C. Koutsides, R. Neal, K. Sugden, P. Culverhouse, and I. Bennion, “Characterisation and performance of a Terfenol-D coated femtosecond laser inscribed optical fibre Bragg sensor with a laser ablated microslot for the detection of static magnetic fields,” Opt. Express 19(1), 363–370 (2011).
    [Crossref] [PubMed]
  36. S. M. Quintero, C. Martelli, A. M. Braga, L. C. Valente, and C. C. Kato, “Magnetic field measurements based on Terfenol coated photonic crystal fibers,” Sensors (Basel) 11(12), 11103–11111 (2011).
    [Crossref] [PubMed]
  37. W. Zhang and J. Yao, “Silicon Photonic Integrated Optoelectronic Oscillator for Frequency-Tunable Microwave Generation,” J. Lightwave Technol., in press (2018).
  38. W. Zhang and J. Yao, “A silicon photonic integrated frequency-tunable optoelectronic oscillator,” in 2017 International Topical Meeting on Microwave Photonics (MWP) (IEEE, 2017), pp. 1–4.
    [Crossref]

2018 (2)

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, and Q. Ding, “Refractive Index and Temperature Sensing Based on an Optoelectronic Oscillator Incorporating a Fabry–Perot Fiber Bragg Grating,” IEEE Photonics J. 10, 1–9 (2018).

J. Zhang, M. Wang, Y. Tang, Q. Ding, B. Wu, Y. Yang, H. Mu, B. Yin, and S. Jian, “High-sensitivity measurement of angular velocity based on an optoelectronic oscillator with an intra-loop Sagnac interferometer,” Opt. Lett. 43(12), 2799–2802 (2018).
[Crossref] [PubMed]

2017 (6)

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

B. Yin, M. Wang, S. Wu, Y. Tang, S. Feng, and H. Zhang, “High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter,” Opt. Express 25(13), 14106–14113 (2017).
[Crossref] [PubMed]

O. Xu, J. Zhang, H. Deng, and J. Yao, “Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor,” IEEE Photonics Technol. Lett. 29(4), 357–360 (2017).
[Crossref]

J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

B. Zhou, C. Lu, B.-M. Mao, H.-Y. Tam, and S. He, “Magnetic field sensor of enhanced sensitivity and temperature self-calibration based on silica fiber Fabry-Perot resonator with silicone cavity,” Opt. Express 25(7), 8108–8114 (2017).
[Crossref] [PubMed]

J. Han, H. Hu, H. Wang, B. Zhang, X. Song, Z. Ding, X. Zhang, and T. Liu, “Temperature-Compensated Magnetostrictive Current Sensor Based on the Configuration of Dual Fiber Bragg Gratings,” J. Lightwave Technol. 35(22), 4910–4915 (2017).
[Crossref]

2016 (3)

2015 (2)

J. Yao, “Microwave photonics for high-resolution and high-speed interrogation of fiber Bragg grating sensors,” Fiber Integr. Opt. 34(4), 204–216 (2015).
[Crossref]

L. Luo, S. Pu, J. Tang, X. Zeng, and M. Lahoubi, “Reflective all-fiber magnetic field sensor based on microfiber and magnetic fluid,” Opt. Express 23(14), 18133–18142 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (4)

2012 (3)

P. Zu, C. C. Chan, W. S. Lew, Y. Jin, Y. Zhang, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Magneto-optical fiber sensor based on magnetic fluid,” Opt. Lett. 37(3), 398–400 (2012).
[Crossref] [PubMed]

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys. 173(1), 122–126 (2012).
[Crossref]

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

2011 (2)

2010 (2)

L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
[Crossref] [PubMed]

B.-O. Guan and S.-N. Wang, “Fiber grating laser current sensor based on magnetic force,” IEEE Photonics Technol. Lett. 22(4), 230–232 (2010).
[Crossref]

2009 (2)

2008 (1)

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

2006 (2)

R. Fagaly, “Superconducting quantum interference device instruments and applications,” Rev. Sci. Instrum. 77(10), 101101 (2006).
[Crossref]

J. Lenz and S. Edelstein, “Magnetic sensors and their applications,” IEEE Sens. J. 6(3), 631–649 (2006).
[Crossref]

2005 (1)

A. B. Matsko, D. Strekalov, and L. Maleki, “Magnetometer based on the opto-electronic microwave oscillator,” Opt. Commun. 247(1-3), 141–148 (2005).
[Crossref]

1996 (1)

1975 (1)

T. McGuire and R. Potter, “Anisotropic magnetoresistance in ferromagnetic 3d alloys,” IEEE Trans. Magn. 11(4), 1018–1038 (1975).
[Crossref]

Allsop, T.

Ambrosino, C.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

Bennion, I.

Braga, A. M.

S. M. Quintero, C. Martelli, A. M. Braga, L. C. Valente, and C. C. Kato, “Magnetic field measurements based on Terfenol coated photonic crystal fibers,” Sensors (Basel) 11(12), 11103–11111 (2011).
[Crossref] [PubMed]

Campopiano, S.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

Capmany, J.

J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

Chan, C. C.

Chen, L. H.

Cheng, L.

Culverhouse, P.

Cusano, A.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

Cutolo, A.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

Dai, J.

Dai, Y.

Davino, D.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

Deng, H.

O. Xu, J. Zhang, H. Deng, and J. Yao, “Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor,” IEEE Photonics Technol. Lett. 29(4), 357–360 (2017).
[Crossref]

Deng, M.

Ding, Q.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, and Q. Ding, “Refractive Index and Temperature Sensing Based on an Optoelectronic Oscillator Incorporating a Fabry–Perot Fiber Bragg Grating,” IEEE Photonics J. 10, 1–9 (2018).

J. Zhang, M. Wang, Y. Tang, Q. Ding, B. Wu, Y. Yang, H. Mu, B. Yin, and S. Jian, “High-sensitivity measurement of angular velocity based on an optoelectronic oscillator with an intra-loop Sagnac interferometer,” Opt. Lett. 43(12), 2799–2802 (2018).
[Crossref] [PubMed]

Ding, Z.

Dong, X.

Edelstein, S.

J. Lenz and S. Edelstein, “Magnetic sensors and their applications,” IEEE Sens. J. 6(3), 631–649 (2006).
[Crossref]

Fagaly, R.

R. Fagaly, “Superconducting quantum interference device instruments and applications,” Rev. Sci. Instrum. 77(10), 101101 (2006).
[Crossref]

Feng, S.

Fernández-Pousa, C. R.

J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

Guan, B.-O.

Guo, Z.

Han, J.

He, S.

Hervás, J.

J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

Hu, H.

Huang, W.

Jian, S.

J. Zhang, M. Wang, Y. Tang, Q. Ding, B. Wu, Y. Yang, H. Mu, B. Yin, and S. Jian, “High-sensitivity measurement of angular velocity based on an optoelectronic oscillator with an intra-loop Sagnac interferometer,” Opt. Lett. 43(12), 2799–2802 (2018).
[Crossref] [PubMed]

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

Jiang, D.

Jiang, S.

Jin, L.

Jin, W.

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

Jin, Y.

Kalli, K.

Kato, C. C.

S. M. Quintero, C. Martelli, A. M. Braga, L. C. Valente, and C. C. Kato, “Magnetic field measurements based on Terfenol coated photonic crystal fibers,” Sensors (Basel) 11(12), 11103–11111 (2011).
[Crossref] [PubMed]

Kong, F.

Koutsides, C.

Lahoubi, M.

Lee, C. H.

Lenz, J.

J. Lenz and S. Edelstein, “Magnetic sensors and their applications,” IEEE Sens. J. 6(3), 631–649 (2006).
[Crossref]

Lew, W. S.

Li, M.

J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

Li, P.

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

Li, W.

J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

F. Kong, B. Romeira, J. Zhang, W. Li, and J. Yao, “A dual-wavelength fiber ring laser incorporating an injection-coupled optoelectronic oscillator and its application to transverse load sensing,” J. Lightwave Technol. 32(9), 1784–1793 (2014).
[Crossref]

F. Kong, W. Li, and J. Yao, “Transverse load sensing based on a dual-frequency optoelectronic oscillator,” Opt. Lett. 38(14), 2611–2613 (2013).
[Crossref] [PubMed]

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

Liew, H. F.

Liu, D.

Liu, H.

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys. 173(1), 122–126 (2012).
[Crossref]

Liu, J.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, and Q. Ding, “Refractive Index and Temperature Sensing Based on an Optoelectronic Oscillator Incorporating a Fabry–Perot Fiber Bragg Grating,” IEEE Photonics J. 10, 1–9 (2018).

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

Liu, T.

Liu, X.

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

Lu, C.

Luo, L.

Lv, R.-Q.

Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

Maleki, L.

A. B. Matsko, D. Strekalov, and L. Maleki, “Magnetometer based on the opto-electronic microwave oscillator,” Opt. Commun. 247(1-3), 141–148 (2005).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

Mao, B.-M.

Marciante, J. R.

Martelli, C.

S. M. Quintero, C. Martelli, A. M. Braga, L. C. Valente, and C. C. Kato, “Magnetic field measurements based on Terfenol coated photonic crystal fibers,” Sensors (Basel) 11(12), 11103–11111 (2011).
[Crossref] [PubMed]

Matsko, A. B.

A. B. Matsko, D. Strekalov, and L. Maleki, “Magnetometer based on the opto-electronic microwave oscillator,” Opt. Commun. 247(1-3), 141–148 (2005).
[Crossref]

McGuire, T.

T. McGuire and R. Potter, “Anisotropic magnetoresistance in ferromagnetic 3d alloys,” IEEE Trans. Magn. 11(4), 1018–1038 (1975).
[Crossref]

Mu, H.

Neal, R.

Or, S. W.

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys. 173(1), 122–126 (2012).
[Crossref]

Pan, W.

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

Potter, R.

T. McGuire and R. Potter, “Anisotropic magnetoresistance in ferromagnetic 3d alloys,” IEEE Trans. Magn. 11(4), 1018–1038 (1975).
[Crossref]

Pu, S.

Quintero, S. M.

S. M. Quintero, C. Martelli, A. M. Braga, L. C. Valente, and C. C. Kato, “Magnetic field measurements based on Terfenol coated photonic crystal fibers,” Sensors (Basel) 11(12), 11103–11111 (2011).
[Crossref] [PubMed]

Ricchiuti, A. L.

J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

Romeira, B.

Sales, S.

J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

Shao, L.

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

Shen, Y.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, and Q. Ding, “Refractive Index and Temperature Sensing Based on an Optoelectronic Oscillator Incorporating a Fabry–Perot Fiber Bragg Grating,” IEEE Photonics J. 10, 1–9 (2018).

Smith, G. N.

Song, X.

Strekalov, D.

A. B. Matsko, D. Strekalov, and L. Maleki, “Magnetometer based on the opto-electronic microwave oscillator,” Opt. Commun. 247(1-3), 141–148 (2005).
[Crossref]

Sugden, K.

Sun, L.

Tam, H. Y.

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys. 173(1), 122–126 (2012).
[Crossref]

Tam, H.-Y.

Tang, J.

Tang, Y.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, and Q. Ding, “Refractive Index and Temperature Sensing Based on an Optoelectronic Oscillator Incorporating a Fabry–Perot Fiber Bragg Grating,” IEEE Photonics J. 10, 1–9 (2018).

J. Zhang, M. Wang, Y. Tang, Q. Ding, B. Wu, Y. Yang, H. Mu, B. Yin, and S. Jian, “High-sensitivity measurement of angular velocity based on an optoelectronic oscillator with an intra-loop Sagnac interferometer,” Opt. Lett. 43(12), 2799–2802 (2018).
[Crossref] [PubMed]

B. Yin, M. Wang, S. Wu, Y. Tang, S. Feng, and H. Zhang, “High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter,” Opt. Express 25(13), 14106–14113 (2017).
[Crossref] [PubMed]

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

Valente, L. C.

S. M. Quintero, C. Martelli, A. M. Braga, L. C. Valente, and C. C. Kato, “Magnetic field measurements based on Terfenol coated photonic crystal fibers,” Sensors (Basel) 11(12), 11103–11111 (2011).
[Crossref] [PubMed]

Visone, C.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

Wang, D.

Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

Wang, H.

Wang, M.

J. Zhang, M. Wang, Y. Tang, Q. Ding, B. Wu, Y. Yang, H. Mu, B. Yin, and S. Jian, “High-sensitivity measurement of angular velocity based on an optoelectronic oscillator with an intra-loop Sagnac interferometer,” Opt. Lett. 43(12), 2799–2802 (2018).
[Crossref] [PubMed]

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, and Q. Ding, “Refractive Index and Temperature Sensing Based on an Optoelectronic Oscillator Incorporating a Fabry–Perot Fiber Bragg Grating,” IEEE Photonics J. 10, 1–9 (2018).

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

B. Yin, M. Wang, S. Wu, Y. Tang, S. Feng, and H. Zhang, “High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter,” Opt. Express 25(13), 14106–14113 (2017).
[Crossref] [PubMed]

Wang, Q.

Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

Wang, S.-N.

B.-O. Guan and S.-N. Wang, “Fiber grating laser current sensor based on magnetic force,” IEEE Photonics Technol. Lett. 22(4), 230–232 (2010).
[Crossref]

Wei, B.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, and Q. Ding, “Refractive Index and Temperature Sensing Based on an Optoelectronic Oscillator Incorporating a Fabry–Perot Fiber Bragg Grating,” IEEE Photonics J. 10, 1–9 (2018).

Wong, W. C.

Wu, B.

Wu, S.

Wu, Y.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, and Q. Ding, “Refractive Index and Temperature Sensing Based on an Optoelectronic Oscillator Incorporating a Fabry–Perot Fiber Bragg Grating,” IEEE Photonics J. 10, 1–9 (2018).

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

Xiao, S.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, and Q. Ding, “Refractive Index and Temperature Sensing Based on an Optoelectronic Oscillator Incorporating a Fabry–Perot Fiber Bragg Grating,” IEEE Photonics J. 10, 1–9 (2018).

Xu, G.

Xu, O.

O. Xu, J. Zhang, H. Deng, and J. Yao, “Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor,” IEEE Photonics Technol. Lett. 29(4), 357–360 (2017).
[Crossref]

O. Xu, J. Zhang, and J. Yao, “High speed and high resolution interrogation of a fiber Bragg grating sensor based on microwave photonic filtering and chirped microwave pulse compression,” Opt. Lett. 41(21), 4859–4862 (2016).
[Crossref] [PubMed]

Yan, L.

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

Yang, M.

Yang, Y.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, and Q. Ding, “Refractive Index and Temperature Sensing Based on an Optoelectronic Oscillator Incorporating a Fabry–Perot Fiber Bragg Grating,” IEEE Photonics J. 10, 1–9 (2018).

J. Zhang, M. Wang, Y. Tang, Q. Ding, B. Wu, Y. Yang, H. Mu, B. Yin, and S. Jian, “High-sensitivity measurement of angular velocity based on an optoelectronic oscillator with an intra-loop Sagnac interferometer,” Opt. Lett. 43(12), 2799–2802 (2018).
[Crossref] [PubMed]

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

Yao, J.

O. Xu, J. Zhang, H. Deng, and J. Yao, “Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor,” IEEE Photonics Technol. Lett. 29(4), 357–360 (2017).
[Crossref]

O. Xu, J. Zhang, and J. Yao, “High speed and high resolution interrogation of a fiber Bragg grating sensor based on microwave photonic filtering and chirped microwave pulse compression,” Opt. Lett. 41(21), 4859–4862 (2016).
[Crossref] [PubMed]

J. Yao, “Microwave photonics for high-resolution and high-speed interrogation of fiber Bragg grating sensors,” Fiber Integr. Opt. 34(4), 204–216 (2015).
[Crossref]

F. Kong, B. Romeira, J. Zhang, W. Li, and J. Yao, “A dual-wavelength fiber ring laser incorporating an injection-coupled optoelectronic oscillator and its application to transverse load sensing,” J. Lightwave Technol. 32(9), 1784–1793 (2014).
[Crossref]

F. Kong, W. Li, and J. Yao, “Transverse load sensing based on a dual-frequency optoelectronic oscillator,” Opt. Lett. 38(14), 2611–2613 (2013).
[Crossref] [PubMed]

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

W. Zhang and J. Yao, “A silicon photonic integrated frequency-tunable optoelectronic oscillator,” in 2017 International Topical Meeting on Microwave Photonics (MWP) (IEEE, 2017), pp. 1–4.
[Crossref]

W. Zhang and J. Yao, “Silicon Photonic Integrated Optoelectronic Oscillator for Frequency-Tunable Microwave Generation,” J. Lightwave Technol., in press (2018).

Yao, X. S.

Yim, S. H.

Yin, B.

Yuan, Y.

Zeng, X.

Zhang, B.

Zhang, H.

Zhang, J.

Zhang, W.

W. Zhang and J. Yao, “A silicon photonic integrated frequency-tunable optoelectronic oscillator,” in 2017 International Topical Meeting on Microwave Photonics (MWP) (IEEE, 2017), pp. 1–4.
[Crossref]

W. Zhang and J. Yao, “Silicon Photonic Integrated Optoelectronic Oscillator for Frequency-Tunable Microwave Generation,” J. Lightwave Technol., in press (2018).

Zhang, X.

Zhang, Y.

Zhao, Y.

Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

Zhou, B.

Zhou, C.

Zhu, N. H.

J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

Zhu, T.

Zou, X.

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

Zu, P.

Fiber Integr. Opt. (1)

J. Yao, “Microwave photonics for high-resolution and high-speed interrogation of fiber Bragg grating sensors,” Fiber Integr. Opt. 34(4), 204–216 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

IEEE Photonics J. (1)

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, and Q. Ding, “Refractive Index and Temperature Sensing Based on an Optoelectronic Oscillator Incorporating a Fabry–Perot Fiber Bragg Grating,” IEEE Photonics J. 10, 1–9 (2018).

IEEE Photonics Technol. Lett. (3)

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

O. Xu, J. Zhang, H. Deng, and J. Yao, “Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor,” IEEE Photonics Technol. Lett. 29(4), 357–360 (2017).
[Crossref]

B.-O. Guan and S.-N. Wang, “Fiber grating laser current sensor based on magnetic force,” IEEE Photonics Technol. Lett. 22(4), 230–232 (2010).
[Crossref]

IEEE Sens. J. (1)

J. Lenz and S. Edelstein, “Magnetic sensors and their applications,” IEEE Sens. J. 6(3), 631–649 (2006).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas. 63(9), 2210–2214 (2014).
[Crossref]

IEEE Trans. Magn. (1)

T. McGuire and R. Potter, “Anisotropic magnetoresistance in ferromagnetic 3d alloys,” IEEE Trans. Magn. 11(4), 1018–1038 (1975).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

A. B. Matsko, D. Strekalov, and L. Maleki, “Magnetometer based on the opto-electronic microwave oscillator,” Opt. Commun. 247(1-3), 141–148 (2005).
[Crossref]

Opt. Express (10)

M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
[Crossref] [PubMed]

Y. Dai, M. Yang, G. Xu, and Y. Yuan, “Magnetic field sensor based on fiber Bragg grating with a spiral microgroove ablated by femtosecond laser,” Opt. Express 21(14), 17386–17391 (2013).
[Crossref] [PubMed]

G. N. Smith, T. Allsop, K. Kalli, C. Koutsides, R. Neal, K. Sugden, P. Culverhouse, and I. Bennion, “Characterisation and performance of a Terfenol-D coated femtosecond laser inscribed optical fibre Bragg sensor with a laser ablated microslot for the detection of static magnetic fields,” Opt. Express 19(1), 363–370 (2011).
[Crossref] [PubMed]

C. H. Lee and S. H. Yim, “Optoelectronic oscillator for a measurement of acoustic velocity in acousto-optic device,” Opt. Express 22(11), 13634–13640 (2014).
[Crossref] [PubMed]

B. Yin, M. Wang, S. Wu, Y. Tang, S. Feng, and H. Zhang, “High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter,” Opt. Express 25(13), 14106–14113 (2017).
[Crossref] [PubMed]

M. Deng, D. Liu, W. Huang, and T. Zhu, “Highly-sensitive magnetic field sensor based on fiber ring laser,” Opt. Express 24(1), 645–651 (2016).
[Crossref] [PubMed]

L. Cheng, J. Han, L. Jin, Z. Guo, and B.-O. Guan, “Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence,” Opt. Express 21(25), 30156–30162 (2013).
[Crossref] [PubMed]

B. Zhou, C. Lu, B.-M. Mao, H.-Y. Tam, and S. He, “Magnetic field sensor of enhanced sensitivity and temperature self-calibration based on silica fiber Fabry-Perot resonator with silicone cavity,” Opt. Express 25(7), 8108–8114 (2017).
[Crossref] [PubMed]

L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
[Crossref] [PubMed]

L. Luo, S. Pu, J. Tang, X. Zeng, and M. Lahoubi, “Reflective all-fiber magnetic field sensor based on microfiber and magnetic fluid,” Opt. Express 23(14), 18133–18142 (2015).
[Crossref] [PubMed]

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

R. Fagaly, “Superconducting quantum interference device instruments and applications,” Rev. Sci. Instrum. 77(10), 101101 (2006).
[Crossref]

Sens. Actuators A Phys. (2)

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys. 173(1), 122–126 (2012).
[Crossref]

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

Sensors (Basel) (1)

S. M. Quintero, C. Martelli, A. M. Braga, L. C. Valente, and C. C. Kato, “Magnetic field measurements based on Terfenol coated photonic crystal fibers,” Sensors (Basel) 11(12), 11103–11111 (2011).
[Crossref] [PubMed]

Other (3)

W. Zhang and J. Yao, “Silicon Photonic Integrated Optoelectronic Oscillator for Frequency-Tunable Microwave Generation,” J. Lightwave Technol., in press (2018).

W. Zhang and J. Yao, “A silicon photonic integrated frequency-tunable optoelectronic oscillator,” in 2017 International Topical Meeting on Microwave Photonics (MWP) (IEEE, 2017), pp. 1–4.
[Crossref]

R. S. Popovic, Hall effect devices: magnetic sensors and characterization of semiconductors (CRC Press, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the proposed dual-frequency OEO based on MA-FBG-FP and FBG-FP filters for simultaneous magnetic field and temperature sensing.
Fig. 2
Fig. 2 The oscillating principle of the proposed OEO. (a) The relationship between the optical carrier and the reflection spectrum of the cascaded MA-FBG-FP and FBG-FP filters. (b) Frequency response of the dual-passband MPF.
Fig. 3
Fig. 3 Measured reflection spectra of the (a) MA-FBG-FP filter and (b) FBG-FP filter.
Fig. 4
Fig. 4 The superimposed electrical spectra of the generated microwave signals under different magnetic field strength at a constant room temperature.
Fig. 5
Fig. 5 (a) The frequency shifts of two generated microwave signals versus the magnetic field strength. (b) The frequency shift of the beat signal versus the magnetic field strength.
Fig. 6
Fig. 6 The superimposed electrical spectra of the generated microwave signals under different temperature.
Fig. 7
Fig. 7 (a) The frequency shifts of two generated microwave signals versus temperature changing. (b) The frequency shift of the beat signal versus temperature changing.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f O S C 1 , O S C 2 = f s 1 , s 2 f N 1 , N 2 c( λ s 1 , s 2 - λ N 1 , N 2 ) n eff λ s 1 , 2 2 , f B e a t = | f O S C 2 f O S C 1 |
Δ λ N 1 = λ N 1 { ( 1 p e ) k Δ H + [ ζ + α f + ( 1 p e ) ( α M α f ) ] Δ T } ,
Δ λ N 2 = λ N 2 [ α f + ζ ] Δ T .
[ Δ f O S C 1 Δ f O S C 2 ] = [ Δ f N 1 Δ f N 2 ] = c n e f f λ s 1 , s 2 2 [ Δ λ N 1 Δ λ N 2 ] = c n e f f λ s 1 , s 2 2 [ λ N 1 ( 1 p e ) k 0 λ N 1 [ ζ + α f + ( 1 p e ) ( α M α f ) ] λ N 2 [ α f + ζ ] ] [ Δ H Δ T ] = [ K H 1 0 K T 1 K T 2 ] [ Δ H Δ T ] ,
Δ f Beat = | K H 1 Δ H + ( K T 1 K T 2 ) Δ T | .
[ Δ f O S C 1 Δ f O S C 2 ] = [ -38 .4 0 -2450 -1230 ] [ Δ H Δ T ]

Metrics